

Remount (Phase 2), Rathmore Road, Lusk Co. Dublin – Ground Investigation

Client:

Fingal County Council

Client's Representative: McMahon Associates

Report No.:

22-1165

Date:

Status:

October 2022

Final for Issue

Causeway Geotech Ltd

8 Drumahiskey Road, Ballymoney Co. Antrim, N. Ireland, BT53 7QL +44 (0)28 2766 6640 info@causewaygeotech.com www.causewaygeotech.com

stered in Northern Ireland. Company Number: NI610766 Approved: ISO 9001 • ISO 14001 • OHSAS 18001

CONTENTS

Document Control Sheet

Note on: Methods of describing soils and rocks & abbreviations used on exploratory hole logs

8	REFI	ERENCES	15
	7.4	Waste classification	14
	7.3	7.2.7 Access roads, car parks and hard standing Infiltration drainage	13
		7.2.6 Soil aggressivity	
		7.2.5 Excavations for services	
		7.2.4 Floor slabs	
		7.2.3 Foundations and ground floor construction	
		7.2.2 Soil strength parameters	
		7.2.1 Summary	
	7.2	Recommendations for construction	
	7.1	Proposed construction	
7		USSION	
	6.3	Groundwater	9
	6.2	Ground types encountered during investigation of the site	
	6.1	General geology of the area	
6		UND CONDITIONS	
	5.2	Environmental laboratory testing of soils	8
	5.1	Geotechnical laboratory testing of soils	
5	LAB	ORATORY WORK	7
	4.5	Indirect CBR tests (DCP)	7
	4.4	Infiltration tests	7
	4.3	Trial Pits	7
	4.2	Boreholes	6
4	SITE 4.1	OPERATIONS Summary of site works	
3		CRIPTION OF SITE	
2		PE	
1	AUT	HORITY	5

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Trial pit logs
Appendix D	Trial pit photographs
Appendix E	Infiltration test results
Appendix F	Indirect in-situ CBR test results
Appendix G	Geotechnical laboratory test results
Appendix H	Environmental laboratory test results
Appendix I	SPT hammer energy measurement report
Appendix J	Waste classification report

Document Control Sheet

Report No.:		22-1165	22-1165							
Project Title:		Remount (Phas	Remount (Phase 2), Rathmore Road, Lusk, Co. Dublin							
Client:		Fingal County (Fingal County Council							
Client's Repres	sentative:	McMahon Asso	McMahon Associates							
Revision:	A00	Status:	Final for issue	27 th Oct 2022						
Prepared by:			Reviewed and approved by:							
they then	hul.		Steph Francy							
Lucy Newland BSc (Hons)			Stephen Franey BSc MSc MIEnvSc CEnv							

The works were conducted in accordance with:

UK Specification for Ground Investigation 2nd Edition, published by ICE Publishing (2012)

British Standards Institute (2015) BS 5930:2015+A1:2020, Code of practice for ground investigations.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with:

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS5930:2015+A1:2020, The Code of Practice for Ground Investigation.

Abbreviations use	ed on exploratory hole logs
U	Nominal 100mm diameter undisturbed open tube sample (thick walled sampler).
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler).
Р	Nominal 100mm diameter undisturbed piston sample.
В	Bulk disturbed sample.
LB	Large bulk disturbed sample.
D	Small disturbed sample.
С	Core sub-sample (displayed in the Field Records column on the logs).
L	Liner sample from dynamic sampled borehole.
W	Water sample.
ES / EW	Soil sample for environmental testing / Water sample for environmental testing.
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained).
SPT (c)	Standard penetration test using 60 degree solid cone.
(x,x/x,x,x,x)	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length.
(Y for Z/Y for Z)	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given seating or test length 'Z' (mm).
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm).
HVP / HVR	In situ hand vane test result (HVP) and vane test residual result (HVR). Results presented in kPa.
V VR	Shear vane test (borehole). Shear strength stated in kPa.V: undisturbed vane shear strengthVR: remoulded vane shear strength
Soil consistency description	In cohesive soils, where samples are disturbed and there are no suitable laboratory tests, N values may be used to indicate consistency on borehole logs – a median relationship of Nx5=Cu is used (as set out in Stroud & Butler 1975).
dd-mm-yyyy	Date at the end and start of shifts, shown at the relevant borehole depth. Corresponding casing and water depths shown in the adjacent columns.
\bigtriangledown	Water strike: initial depth of strike.
▼	Water strike: depth water rose to.
Abbreviations relatin	g to rock core – reference Clause 36.4.4 of BS 5930: 2015+A1:2020
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
FI	Fracture Index: Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non Intact: Used where the rock material was recovered fragmented, for example as fine to coarse gravel size particles.
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring.
(xxx/xxx/xxx)	Spacing between discontinuities (minimum/average/maximum) measured in millimetres.

Remount (Phase 2), Rathmore Road, Lusk Co. Dublin

1 AUTHORITY

On the instructions of McMahon Associates Consulting Engineers, ("the Client's Representative"), acting on the behalf of Fingal County Council ("the Client"), a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed residential development.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the ground investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client and the Client's Representative in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client's Representative, included boreholes, trial pits, soil sampling, environmental sampling, in-situ and laboratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on an open green area off the Rathmore Road in the southern area of Lusk, Co. Dublin. The site is bordered by Rathmore Road to the south, residential estates to the east and west and open grasslands with playing fields to the north. The site slopes down gently from north-west to south-east.

4 SITE OPERATIONS

4.1 Summary of site works

Site operations, which were conducted between 7th and 9th September 2022, comprised:

- six boreholes by dynamic (windowless) sampling
- six machine dug trial pits
- an infiltration test performed in two trial pits
- indirect CBR tests at two locations.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Six boreholes (BH01-BH06) were put down to completion by light percussion boring techniques using a Premier 110 dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

Hand dug inspection pits were carried out between ground level and 1.20m depth to ensure boreholes were put down clear of services or subsurface obstructions. The boreholes were taken to depths ranging between 2.65m and 4.50m where they were terminated on encountering virtual refusal.

Standard penetration tests were carried out in accordance with BS EN 22476-3:2005+A1:2011 at standard depth intervals using the split spoon sampler ($SPT_{(s)}$) or solid cone attachment ($SPT_{(c)}$). The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The *N*-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT hammer energy measurement report is provided in Appendix I.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals, as directed by the Client's Representative.

No groundwater was encountered during drilling.

Appendix B presents the borehole logs.

4.3 Trial Pits

Six trial pits (ST01, ST02 and TH01 to TH04) were excavated using a 3t tracked excavator fitted with a 400mm wide bucket, to depths ranging between 1.50m and 2.50m. Selected trial pits were excavated to allow completion of infiltration test.

Environmental samples were taken at depths select depths in trial pits TH01-TH04.

Disturbed (bulk bag) samples were taken at standard depth intervals and at change of strata.

No groundwater was encountered during excavations. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.4 Infiltration tests

An infiltration/soakaway test was carried out at two locations (ST01 and ST02) in accordance with BRE Digest 365 - Soakaways (BRE, 2016).

Appendix E presents the results and analysis of the infiltration test. The absence of the outflow from the pits precluded calculation of infiltration coefficients.

4.5 Indirect CBR tests (DCP)

An indirect CBR test was conducted at two locations (TH01 and TH04) using a Dynamic Cone Penetrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/06.

The test results are presented in Appendix F in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR for each depth range estimated using the following relationship, which is derived from Kleyn & Van Heerden (1983):

Log CBR = 2.48-1.057 Log (mm/blow)

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- **soil classification:** moisture content measurement, Atterberg Limit tests and particle size distribution analysis.
- **compaction related:** dry density/moisture content relationship, Moisture Condition Value, California bearing ratio tests
- **soil chemistry:** pH, water soluble sulphate content and sulphate 2:1 Extract.

Laboratory testing of soils samples was carried out in accordance with British Standards Institute: *BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (1990).*

The test results are presented in Appendix G.

5.2 Environmental laboratory testing of soils

Environmental testing was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk.

Rilta suite of analysis was carried out on two samples for landfill disposal criteria. This included testing for a range of determinants, including:

- Metals
- Speciated total petroleum hydrocarbons (TPH)
- Speciated polycyclic aromatic hydrocarbons (PAH)
- BTEX compounds
- Polychlorinated biphenyls (PCBs)
- Phenols
- Total Organic Carbon (TOC)
- Cyanides
- Asbestos screen
- Sulphate and sulphide
- Sulphur
- pH
- Waste acceptance criteria (WAC)

Results of environmental laboratory testing are presented in Appendix H.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise glacial till. These deposits are underlain by dark limestone and shale of the Lucan Limestone Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in approximate stratigraphic order:

- **Topsoil:** encountered typically in 100-300mm thickness across the site.
- **Made Ground (fill):** reworked sandy gravely clay fill with fragments of metal and type 1 extending to a depth of 1.90m in borehole BH04.
- **Glacial Till:** sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth.

6.3 Groundwater

Groundwater was not noted during drilling at any of the borehole locations.

Seasonal variation in groundwater levels should also be factored into design considerations.

7 **DISCUSSION**

7.1 Proposed construction

It is proposed to construct new residential properties on the site.

No further details were available to Causeway Geotech at the time of preparing this report and any designs based on the recommendations or conclusions within this report should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory holes. Causeway Geotech were commissioned to provide a geotechnical report, and it is outwith our remit to advise on structure design.

7.2 Recommendations for construction

7.2.1 Summary

Based on the presence of stiff glacial till at relatively shallow depths across the footprint of the proposed building, the implementation of traditional shallow (spread) foundations (strip/pad and trench fill) are considered suitable.

7.2.2 Soil strength parameters

When estimating the shear strength of fine soils (silt/clay), reference is made to the results of Standard Penetration Tests (SPT's) carried out within the boreholes. The undrained shear strength of fine soils can be estimated using the correlation developed by Stroud & Butler:

 $C_u = f_1 x N$

where f_1 is typically in the range 4 to 6. A median f_1 value of 5 is adopted for this report.

For granular soils (sand/gravel), a graphical relationship between SPT "N" value and angle of shearing resistance, φ , has been developed by Peck, Hanson and Thorburn. This is published in *Foundation Design and Construction* (Tomlinson, 2001) and is referenced in this report when deriving angles of shearing resistance for the gravel soils.

7.2.3 Foundations and ground floor construction

Foundations should transfer loading to below any Made Ground or subsoil. The recommended foundation construction and allowable bearing pressure (ABP) at the borehole locations are presented in Table 1.

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater
BH01	1.20m	130	Firm Glacial Till	Strip & pad	Ground bearing	Not encountered
BH02	1.20m	120	Firm Glacial Till	Strip & pad	Ground bearing	Not encountered
BH03	1.20m	140	Firm Glacial Till	Strip & pad	Ground bearing	Not encountered
BH04	2.00m	200	Stiff Glacial Till	Trench fill	Suspended	Not encountered

Table 1:	Construction	recommendations
----------	--------------	-----------------

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater
BH05	1.20m	120	Firm Glacial Till	Strip & pad	Ground bearing	Not encountered
BH06	1.20m	120	Firm Glacial Till	Strip & pad	Ground bearing	Not encountered

*Existing Ground Level

Based on the findings of the ground investigation, spread foundations (strip/pad and trench fill) are considered suitable with estimated allowable bearing pressures between 120kPa and 200kPa at depths between 1.20m and 2.00m on firm to stiff glacial till.

The base of foundation excavations should be thoroughly inspected in accordance with the Earthworks Specification; any soft soils should be removed with the resultant void backfilled with ST1 concrete. A consistent bearing stratum should be provided for any building unit to limit differential settlements.

Given the generally fine grained/cohesive nature of the soils throughout the proposed formation levels, excavations for foundations are likely to be relatively stable. However, any instability can be minimised by battering the side slopes at 2 vertical to 1 horizontal and by limiting the duration that the excavation is open. Groundwater control, where required, will be possible by pumping from sumps formed in the base of excavations.

7.2.4 Floor slabs

Floor slabs should not bear directly onto Made Ground or soft soils. Consequently, the use of ground bearing floor slabs is considered appropriate following the removal of any surface Made Ground and soft clay layers and their replacement using well-graded well-compacted granular fill. However, a suspended floor slab should be adopted where the difference in levels of the proposed floor and the base of Made Ground/soft soils is greater than 600mm.

7.2.5 Excavations for services

For the installation of services ducts/trenches, it is suggested that open trenching will be the most practicable construction method. Generally speaking, the ground conditions should render the use of open trenching by backhoe excavator possible.

Where working in open trenches, it is thought that trench support systems, by way of a trench box (or possibly sheet piles), will be required to maintain trench stability and safe working conditions. Groundwater control at these locations should be possible by means of sump pumping.

To preclude the eventuality of differential settlements in pipes, they should be laid on a consistent stratum of appropriate allowable bearing capacity and protected with appropriate fill cover.

Where ducts and chambers must be installed in areas where localised soft spots are encountered, the use of geogrid reinforcement along the base of the excavation is recommended. This will stiffen the base of the trench and help control longitudinal differential settlement.

Backfilling of trenches may be completed by using compacted Cl 804 granular fill and reinstated as appropriate.

7.2.6 Soil aggressivity

An assessment of the Aggressive Chemical Environment for Concrete (ACEC) was undertaken through reference to the Building Research Establishment (BRE) Special Digest 1 (2017).

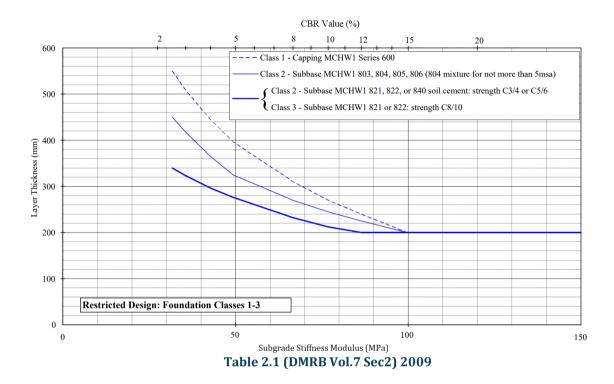
As noted by BRE Special Digest 1, sulphates in the soil and groundwater are the chemical agents most likely to attack concrete. The extent to which sulphates affect concrete is linked to their concentrations, the type of ground, the presence of groundwater, the type of concrete and the form of construction in which concrete is used.

BRE Special Digest 1 identifies four different categories of site which require specific procedures for investigation for aggressive ground conditions:

- Sites not subjected to previous industrial development and not perceived as containing pyrite;
- Sites not subjected to previous industrial development and perceived as containing pyrite;
- Brownfield sites not perceived as containing pyrite;
- Brownfield sites perceived as containing pyrite.

For the purposes of this report the site was classified as not having been subject to previous industrial development and not perceived as containing pyrite.

The results of chemical tests (pH and water soluble sulphate contents) on soil samples indicate Design Sulphate Class DS-1 and ACEC Class AC-1s – reference Table C1 of BRE Special Digest 1 (Building Research Establishment, 2005). The Special Digest does not require any measures to protect underground concrete elements greater than 140mm thick.


7.2.7 Access roads, car parks and hard standing

Based on a summary of the CBR test undertaken at the site, it is envisaged that the upper glacial till layers at the site would be suitable for the placement of road make up layers. The area tested on site has a CBR value in excess of 15%.

Table 2.1 of volume 7 section 2 of the Design Manual for Roads and Bridges (below), gives guidance on the average thickness of the pavement layers in relation to the CBR results. As can be seen, a CBR in excess of 15% does not require any capping layers, however a sub-base thickness of 200mm is suggested.

The above plot should be used to determine the thicknesses of any capping or sub-base layers that may need to be placed in these areas.

It is recommended that further testing be undertaken during the course of construction works at intervals as set out in the Earthworks Specification, and should any areas indicate lower than expected value, the above plot should be used to determine the thicknesses of any capping or sub-base layers that may need to be placed in these areas.

The use of geosynthetics in the construction of paved areas, will be beneficial, particularly in areas of Made Ground. These could include a geosynthetic (e.g., a geogrid) at subgrade level with further benefit gained by incorporating further layer(s) within the capping/sub-base layer. Road design should be undertaken by a specialist earthworks contractor/designer.

7.3 Infiltration drainage

Due to the absence of any significant outflow from the infiltration tests the low-permeability fine-grained soils are considered to be poor infiltration media and would be deemed unsuitable for the implementation of infiltration drainage systems.

7.4 Waste classification

For consideration of material to be removed from site, a waste classification of the solid soil laboratory results was completed using HazWasteOnline[™] software. A copy of the Waste Classification report is included at Appendix J. The Waste Classification report shows that the material tested can be classified as non-hazardous material considering the List of Wastes (LoW) code 17 for Construction and Demolition Wastes (including soils excavated from contaminated sites), specifically 17 05 03* and 17 05 04.

Following completion of the waste classification, and to determine a suitable disposal route for the soil, assessment of the WAC analysis of the samples was completed. The laboratory results of the WAC testing indicate that the soils from BH02 and BH04 may be suitable for disposal as inert waste to an appropriate licenced facility although there was a very slight exceedance of the inert waste criteria for antimony in the soil sample in BH04 at 2.0m. The Total Dissolved Solids (TDS) result for BH01 at 0.40m indicated that the soil from this location is not suitable for disposal as inert waste. It is recommended that these results are presented to appropriate licenced facilities to see if this material can be received at their facility.

It is noted that this waste classification assessment has been based solely on the available samples results and corresponding investigation findings. In making this assessment all due care and attention to available and relevant legislative and guidance frameworks has been taken in arriving at the conclusions.

Also, potential areas of localised contamination outside the areas of the investigation cannot be discounted. Any potential contamination identified during site development work by visual or olfactory means should be investigated, including further laboratory testing, and appropriate health & safety, waste disposal and remediation measures adopted. Additional testing of the soils to be disposed from site may also be requested by the individual landfill before acceptance at their facility.

8 **REFERENCES**

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland.

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. National Standards Authority of Ireland.

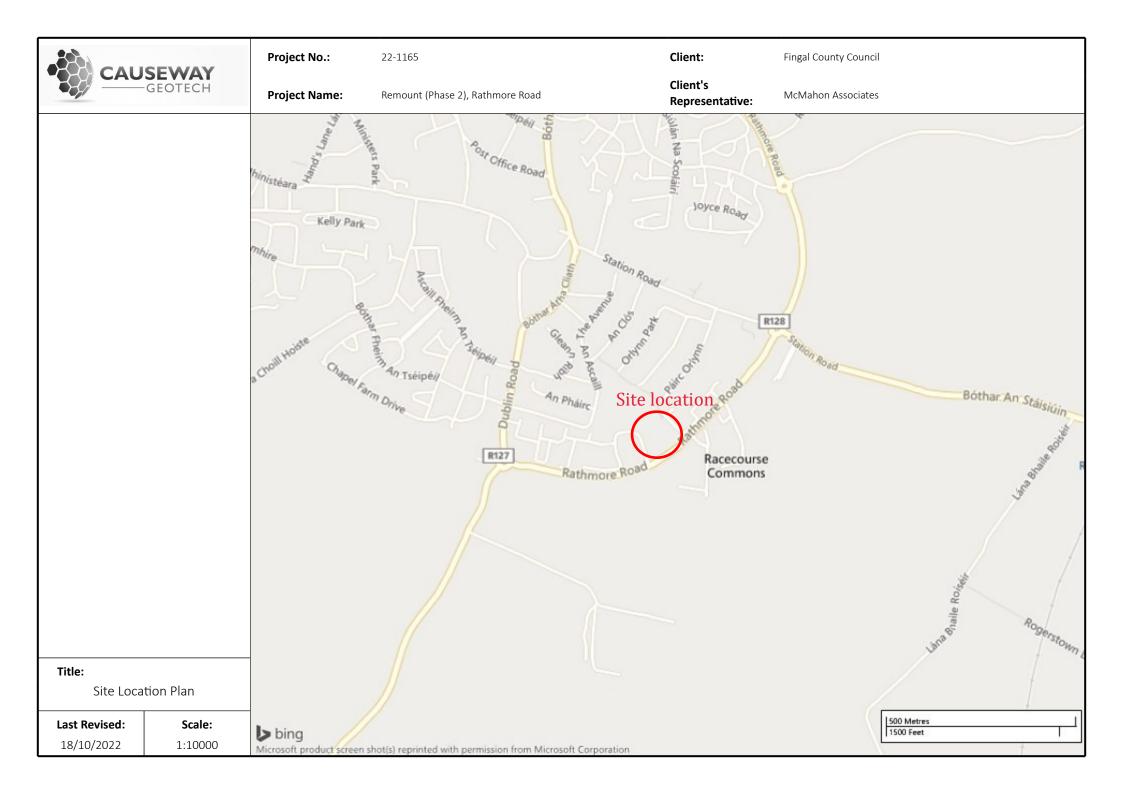
BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing. British Standards Institution.

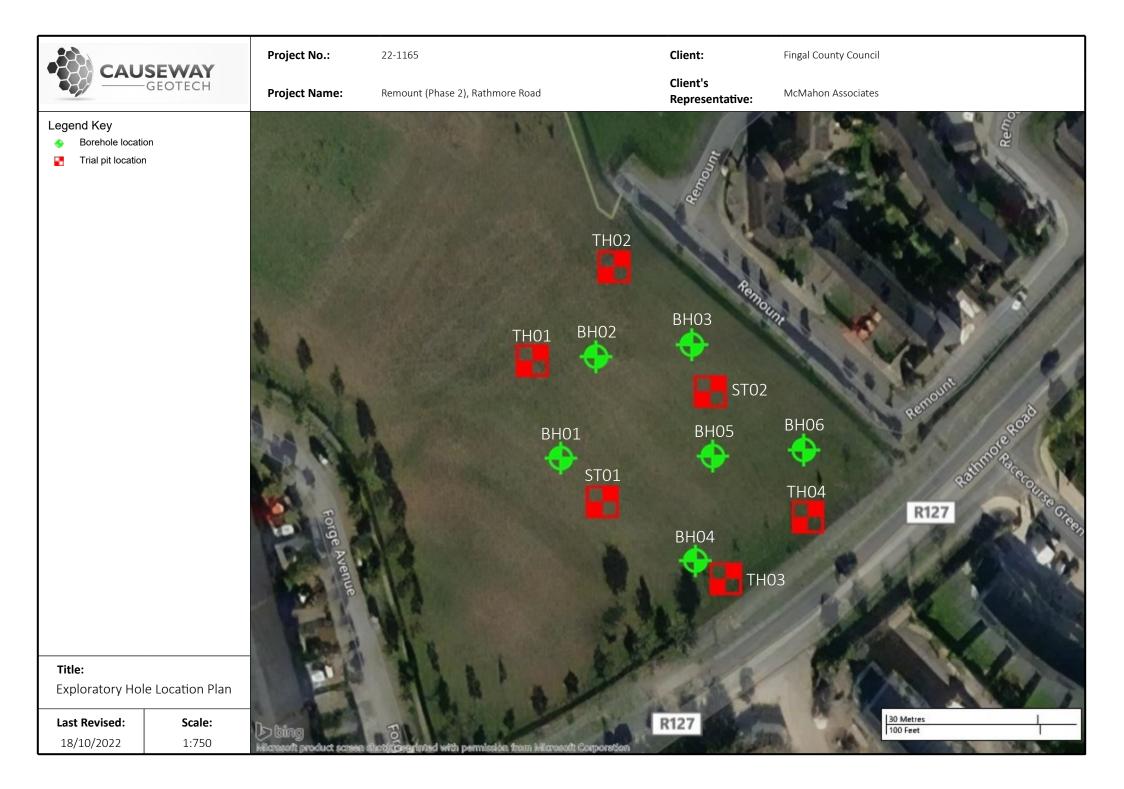
BS 5930: 2015+A1:2020: Code of practice for ground investigations. British Standards Institution.

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description.

BS EN ISO 14688-2:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.


BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard penetration test.


Building Research Establishment (2007), BRE Digest 365: Soakaways.

APPENDIX A EXPLORATORY HOLE LOCATION PLAN

APPENDIX B BOREHOLE LOGS

		GEOT	AY ECH			ect No. -1165	Project Client: Client'	bad	ad Boreh BH			
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (r 3.10	n) Cool	dinates	Final De	epth: 3.10 m	Start Date: 08/09/2022	Driller: JD		et 1 of 1
Dynamic Sa	impinig	Fremier 110	0.00	5.10		65.60 E 17.95 N	Elevatio	on: 20.90 mOD	End Date: 08/09/2022	Logger: SF		Ile: 1:50
Depth (m)	Sample / Tests	Field Records	;	Casing Wat Depth Dep (m) (m	th) mOD	Depth (m)	Legend		Description	4	Water	ackfill
0.40 0.50 0.50 1.20 1.20 - 1.65	ES1 B2 D4 B3 SPT (S)	N=13 (5,4/3,3,3,4) Hammer SN = 0.00 Dry Al2				0.10			slightly sandy slightly gravelly Id is fine to coarse. Gravel is su medium.			0.5
2.00 - 2.45	SPT (S)	N=24 (4,6/5,7,5,7) Har Al2	nmer SN =	0.00 Dr	19.20 Y	- 1.70 			ightly sandy gravelly CLAY. San r to subrounded fine to coarse		se.	1.5 2.0 - 2.5
2.80 - 3.10	SPT (C)	N=50 (10,10/50 for 15 Hammer SN = AI2	0mm)	0.00 0.0	17.80	- 3.10			End of Borehole at 3.10m			3.0 -
						-						3.5
						-						4.0 -
						-						4.5
												5.0 -
												5.5
						-						6.0 -
												7.0 -
												7.5
						-						8.0 -
						-						8.5
												9.0 -
	Wate	r Strikes	Cas	sing Det	ails I	Remarks					1	
truck at (m) Ca	asing to (m	ı) Time (min) Rose to (m) To (r	n) Dia	ameter	Hand dug in	ispection p	bit excavated to 1.20m	1			
						Terminatic Terminated					st Updated 4/10/2022	

•		GEOT	AY ECH			ect No. •1165	Projec Client: Client'	Fingal Co	t (Phase 2), Rathmore R punty Council pn Associates	bad		rehole IE BH02
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (n 2.85	n) Coor	dinates	Final De	epth: 2.85 m	Start Date: 08/09/2022	Driller: JD		eet 1 of 1 ale: 1:50
_ ,						73.16 E 35.37 N	Elevatio	on: 21.36 mOD	End Date: 08/09/2022	Logger: SF		FINAL
Depth (m)	Sample / Tests	Field Records	i	Casing Wat Depth Dep (m) (m	er th) mOD	Depth (m)	Legend		Description		Water	Backfill
0.30 0.50 0.50 0.50 1.20 1.20 - 1.65	ES1 B2 D5 D6 B3 SPT (S)	N=12 (2,2/3,3,3,3) Har Al2	nmer SN =	0.00 0.0	21.26	0.10			slightly sandy slightly gravelly d is fine to coarse. Gravel is si coarse.			0.5
2.00 2.00 - 2.45	B4 SPT (S)	N=23 (4,4/5,6,5,7) Har Al2	nmer SN =	0.00 Dr	19.46 y	- 1.90 -			ightly sandy slightly gravelly C bangular to subrounded fine t		:0	2.0
2.70 - 2.85	SPT (C)	N=50 (20,5/50 for 0mr Hammer SN = Al2	n)	0.00 Dr	y 18.51	- - - 2.85			End of Borehole at 2.85m			2.5
						-						3.5
												4.0
												4.5
												5.0
						-						5.5
						-						6.0
												7.0
						- - -						7.
						- - - -						8.
						- - - - -						8.
			- T -		<u> </u>							9.
uck at (m) Ca		r Strikes 1) Time (min) Rose to (1		n) Dia		Remarks Hand dug ir	ispection p	bit excavated to 1.20m	1			
						Ferminatio Ferminated					t Updated	

•		GEOT	AY ECH			ect No. -1165	Project Name: Remount (Phase 2), Rathmore Road Client: Fingal County Council Client's Rep: McMahon Associates	Borehole II BH03
Metho		Plant Used	Top (m)		-	rdinates	inal Depth: 2.65 m Start Date: 09/09/2022 Driller: JE	Sheet 1 of 1
Dynamic Sa	Impling	Premier 110	0.00	2.65	7218	892.16 E 941.44 N	Inal Depth: 2.65 m Start Date: 09/09/2022 Driller: JL Ievation: 21.40 mOD End Date: 09/09/2022 Logger: Sf	Scale: 1:50
Depth (m)	Sample / Tests	Field Records		Casing Wi Depth De (m) (i	nter pth n) mOD	Depth (m)	Legend Description	Backfill
).30).50).50	ES1 B3 D2			(m) (i	21.30	- 0.10 1.00	TOPSOIL Firm brown Slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	5 0.
.20 .20 - 1.65	B4 SPT (S)	N=14 (3,3/3,3,4,4) Har Al2	nmer SN =	0.00 D	rγ	- - - - - -	coble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium	1.
2.00 2.00 - 2.45		N=35 (6,5/7,8,10,10) H SN = Al2		0.00 D		- 2.00 - -	Very stiff greyish black slightly sandy gravelly CLAY with low cob statistic content. Sand is fine to coarse. Gravel is subangular to subroun fine to coarse.	led
2.50 - 2.65	SPT (C)	N=50 (20,5/50 for 0m Hammer SN = Al2	n)	0.00 0.	18.75	2.65	End of Borehole at 2.65m	2.:
						- - - -		3.
								4.
						-		4.
								5.0
						-		5.
						- - - - -		6.
						- - -		6.
						- - - -		7.
						- - - -		7.
								8.
								8.
								9.
uck at (m) Ca		r Strikes)) Time (min) Rose to ()		n) Di		Remarks Hand dug ir	ection pit excavated to 1.20m	
						Ferminatio		ast Updated

	/ -	GEOT	ECH			22-:	ct No. 1165	Project Name: Remount (Phase 2), Rathmore Road Client: Fingal County Council Client's Rep: McMahon Associates	Borehole ID BH04
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base 3.9		Coordinates 721894.07 E 753898.76 N		Final Depth: 3.90 m Start Date: 07/09/2022 Driller: JD Elevation: 20.85 mOD End Date: 07/09/2022 Logger: SF	Sheet 1 of 1 Scale: 1:50 FINAL
Depth	Sample /	Field Records		Casing Depth	Water Depth	Level	Depth	Legend Description	ਸ਼ੇ ਸ਼ਿੱ Backfill
(m) 0.40 0.50 0.50	Tests ES3 B1 D2		<u> </u>	Depth (m)	(m)	mOD 20.75	(m) - 0.10 	TOPSOIL MADE GROUND: Soft greyish brown slightly sandy slightly gravelly CLAY with low cobble content and fragments of metal and type 1. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse.	3 Common (10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
20 20 20 - 1.65	B4 D5 SPT (S)	N=6 (1,1/2,1,1,2) Ham Al2	mer SN =	0.00	Dry		-		1.5
2.00 2.00 2.00 - 2.45	B6 D7 SPT (S)	N=20 (2,3/4,5,5,6) Har Al2	nmer SN =	0.00	Dry	18.95	1.90	Stiff greyish black slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subangular to subrounded fine to medium	2.0
3.00 3.00 3.00 - 3.45	B8 D9 SPT (S)	N=23 (6,4/5,5,6,7) Har Al2	nmer SN =	0.00	Dry		-		3.0
3.60 - 3.90	SPT (S)	N=50 (10,10/50 for 15 Hammer SN = AI2	0mm)	0.00	Dry	16.95	- 3.90	End of Borehole at 3.90m	4.0
							-		4.5
									5.0
							- - - - -		6.0
							-		6.5
							-		7.5
							-		8.0
							-		9.0
ruck at (m) Ca		r Strikes I) Time (min) Rose to (I		n) I	etail Diam		emarks and dug pi	excavated from 0.0 to 1.20m	
							erminatic erminated		Jpdated

			/			-	ct No.			t (Phase 2), Rathmore R	oad		rehole II
		GEOT	ECH			22- 1	L165	Client:	-	ounty Council			BH05
				_		-		Client	s Rep: McMaho	on Associates			
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base		Coord	linates	Final De	epth: 4.50 m	Start Date: 07/09/2022	Driller: JD		neet 1 of 1 cale: 1:50
							7.25 E 4.98 N	Elevatio	on: 20.98 mOD	End Date: 07/09/2022	Logger: SF		FINAL
Depth (m)	Sample / Tests	Field Records	;	Casing Depth (m)	Water Depth (m)	Level mOD	Depth (m)	Legend		Description		Water	Backfill
						20.88	0.10		TOPSOIL Firm brown slightly	sandy slightly gravelly CLAY w	vith low cobble		
).30).50	ES1 B2						-			e to coarse. Gravel is subangu		led	0.5
.50	D3						-						
							-		- - 				1.0
.20	В4					10.00	1 20		- - -				
.20 .20 - 1.65	D5 SPT (S)	N=12 (3,2/2,3,3,4) Har	nmer SN =	0.00	Drv	19.68	- 1.30			slightly sandy slightly gravelly subangular to subrounded fir		ine	1.
		AI2			- ,		-						
.00	B6						-		- - 				2.0
.00	D7	N-21 (2 2/2 6 5 7)	nmer CN		Drei	18.88	2.10			ightly sandy gravelly CLAY. Sa		irse.	
.00 - 2.45	1261 (2)	N=21 (2,2/3,6,5,7) Har Al2	nmer SN =	0.00	υry		[Gravel is subangula	r to subrounded fine to coars	e		2.1
							-						
.00	B8						_						3.
.00	D9		nmer CN		0.00		L						
.00 - 3.45	371 (3)	N=17 (4,3/3,4,5,5) Har Al2	er SN =	0.00	υıγ		-						3.
							-						
.00	D10						_						4.
.00 - 4.22		N=50 (7,8/50 for 75m Hammer SN = AI2	m)	0.00	Dry	16.88	4.10		Possible weathered	BEDROCK			
.15 - 4.53	SPT (C)	N=50 (8,9/50 for 225n	חm)	0.00	Dry	16.48	- 4.50						4.
		Hammer SN = AI2					-			End of Borehole at 4.50m			
							-						5.0
							E						
							[5.5
							E						
							-						6.0
							-						
							-						6.5
							-						7.0
							-						7.
							-						
							-						8.
							-						
													8.
							-						
							-						9.
							-						
		r Strikes) Time (min) Rose to (sing D	Detail Diam		emarks						
uck at (m) Ca	asing to (m		m) To (n	'')	משות	eter Ha	and dug pi	t excavate	ed from 0.0 to 1.20m				
						Те	erminatio	on Reaso	n		La	ast Update	t I
				1		т.		on refusal				24/10/2022	

GEOTECH					22-	ect No. 1165	Project Name: Remount (Phase 2), Rathmore Road Client: Fingal County Council Client's Rep: McMahon Associates					Borehole ID BH06		
Metho Dynamic Sa		Plant Used Premier 110	Top (m) 0.00	Base (n 3.28	i) Coor	dinates	Final De	epth: 3.28 m	Start Date: 07/09/2022	Driller: JD		et 1 of 1		
·						12.19 E 19.32 N	Elevatio	on: 21.14 mOD	End Date: 07/09/2022	Logger: SF	Scale: 1:50 FINAL			
Depth (m)	Sample / Tests	Field Records		Casing Wat Depth Dept (m) (m)	h	Depth (m)	Legend		Description		Water Ba	ckfill		
	Tests ES1 B2 D3 B4 D5 SPT (S) B6 D7 SPT (S)	Field Records	nmer SN = nmer SN =	Depth (m) Depth (m) 0.000 Dr	19.24			fine to coarse. Grave	Description rown slightly sandy slightly gravelly Gravelly of the subrounded fine the	d fine to coarse	Ba	ckfiii		
						- - - - - - -						7.5		
						- - - -						8.5		
						-						9.0		
ruck at (m) Ca		r Strikes)) Time (min) Rose to (i		n) Dia		temarks land dug p	it excavate	d from 0.0 to 1.20m						
						erminatio					pdated			

APPENDIX C TRIAL PIT LOGS

	CAUS	FWAY		ect No. 1165	Remou	t Name: nt (Phase 2), Rathmore Road		Т	rial Pit ID	
Method:				dinates 68.77 E	Client: Fingal	ST01				
				10.38 N		s Representative:		Sheet 1 of Scale: 1:2		
Trial Pitting				/ation	Date:	McMahon Associates Date: Logger:				
Plant: 3t Tracked Excavator				mOD	09/09/		M	FINAL		
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description		Water		
			20.54	0.30		TOPSOIL Orangish brown slightly clayey slightly gravelly fine to coa Gravel is subangular to subrounded fine to coarse.	arse SAND.			
			20.04	- 0.80 - - -		Stiff brown slightly sandy slightly gravelly CLAY. Sand is fir Gravel is subangular to subrounded fine to coarse.	ne to coarse.	_	1.0	
				-					-	
			19.34	- 1.50 -	<u></u>	End of trial pit at 1.50m			1.5 —	
				-					-	
				- - -					2.0	
				-					-	
				-					-	
				-					- 2.5 —	
				-					-	
				-					_	
				- - 					3.0	
				- - - -					-	
				-					- 3.5 —	
				-						
									4.0	
				-					-	
				- - -					- 4.5 —	
				• • • •						
Wate Struck at (m)	r Strikes Remarks	Width: 0.50 Length: 2.40		arks:						
		Stability:		nination F		l-sal-	Last Up			
		Stable	Term	inated at s	cheduled (Jepth.	24/10	/2022	AGS	

	CALIC			e ct No. -1165		t Name: nt (Phase 2), Rathmore Road		Т	rial Pit ID	
CAUSEWAY GEOTECH Method:				dinates	Client: Fingal		ST02			
				95.71 E		s Representative:		Sheet 1 of		
Trial Pitting				33.69 N		non Associates		Scale: 1:2		
Plant: 3t Tracked Excavator				vation 7 mOD	Date: 09/09/		ger:		FINAL	
Depth	Sample /		Level	Depth				er		
(m)	Tests	Field Records	(mOD)	(m)	Legend	Description		Water		
			21.27	0.20		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine Gravel is subangular to subrounded fine to coarse	to coarse.		-	
				- - - - -					0.5 —	
			20.57	0.90		Stiff brown slightly sandy slightly gravelly CLAY. Sand is fine Gravel is subangular to subrounded fine to coarse	to coarse.			
			19.97	- 1.50					- - 1.5 —	
						End of trial pit at 1.50m			-	
				- - -					- 2.0	
				-					-	
				-					- 2.5 —	
				- - - -					-	
				- - - - - - - -					3.0	
				-					- 3.5 —	
				-					-	
				- 					4.0	
				-					-	
				-					4.5 —	
				-					-	
Water Struck at (m)	r Strikes Remarks	Depth: 1.50 Width: 0.50 Length: 2.30	 Rem	narks:	<u> </u>			<u> </u>		
		Stability: Stable		nination F		lepth	Last Up 24/10/			

	CALLS			e ct No. -1165		: Name: nt (Phase 2), Rathmore Road		Trial Pit ID	
GEOTECH		EOTECH	coordinates		Client: Fingal (TH01		
Method:				52.65 E 40.93 N	Client'	s Representative:		Sheet 1 of 1	
Trial Pitting						non Associates		Scale: 1:25	
Plant: 3t Tracked Exc	avator			vation 1 mOD	Date: 09/09/	2022 DM	er:	FINAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend	Description	Water		
0.20	ES1		21.59	0.25		TOPSOIL Orangish light brown slightly clayey gravelly fine to coarse SAN is subangular to subrounded fine to coarse.		-	
0.50	B2		20.64	1.20		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine to Gravel is subangular to subrounded fine to coarse.	coarse.	0.5 — — — — — — — — — — — — — — — — — — —	
1.50	В3			- - - - - - - - -					
2.00	В4		19.84	- 2.00		Stiff dark brown slightly sandy slightly gravelly CLAY. Sand is fin coarse. Gravel is subangular to subrounded fine to coarse.	ne to	2.0	
			19.34	- 2.50		End of trial pit at 2.50m		2.5	
				- - - - - - - - - - - -				3.0 — — —	
				- - - - - - - -				3.5	
				- 				4.0	
				- - - - -					
				- - - - - -					
Wate Struck at (m)	r Strikes Remarks	Depth: 2.50 Width: 0.50 Length: 2.50		narks:					
		Stability: Stable		nination R		each of excavator.	Last Updat 24/10/202		

	CAUS	EWAY	22-	ect No. 1165	Remou	t Name: int (Phase 2), Rathmore Road			al Pit ID
GEOTECH			Coordinates 721870.93 E		Client: Fingal		TH02		
Method:				59.44 N		s Representative: hon Associates			et 1 of 1
Trial Pitting Plant:			Floy	vation	Date:		ger:	Sca	ale: 1:25
3t Tracked Exc	avator			mOD	09/09/			F	INAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend			Water	
0.20 0.50	ES5 B1		21.49	0.30		TOPSOIL Light orangish brown slightly clayey gravelly fine to coarse s is subangular to subrounded fine to coarse.		_	
0.50 1.00 1.00	B2 B3 B4		20.59	1.20		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine	e to coarse.		
				-		Gravel is subangular to subrounded fine to coarse.			1.5 —
			19.39	2.40		End of trial pit at 2.40m			2.0
				- - - - - -					2.5 — — — 3.0 —
				-					 3.5
				- - - - - - - -					4.0
				-					-
				-					4.5 — — —
Wate Struck at (m)	r Strikes Remarks	Depth: 2.40 Width: 0.50 Length: 2.50		narks:					
		Stability: Stable		nination R		each of excavator.	Last Upd 24/10/20		AGS

	CAUS	EWAY EOTECH	22-	ect No. 1165 dinates		t Name: Int (Phase 2), Rathmore Road			Trial Pit ID
Method: Trial Pitting Plant: 3t Tracked Excavator			- 72189 75389	97.67 E 96.81 N	Fingal Client' McMa	Sheet 1 of 1 Scale: 1:25			
				vation 5 mOD	Date: Logger: 09/09/2022 DM				FINAL
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend			Water	
0.20 - 0.20	ES5		20.85	0.30		TOPSOIL with occasional fragments of rebar Orangish brown slightly clayey slightly gravelly fine to Gravel is subangular to subrounded fine to coarse.	o coarse SAND.	>	
0.50 - 0.50 0.50 - 0.50	B1 B2		20.35	0.80		Firm brown slightly sandy slightly gravelly CLAY. Sand Gravel is subangular to subrounded fine to coarse.	is fine to coarse.		0.5
1.00 - 1.00 1.00 - 1.00	B3 B4		19.85	1.30		Stiff dark brown slightly sandy gravelly CLAY. Sand is f	ine to coarse. Gravel		1.0
				-					1.5
				- - - - - - -					2.0
			18.65	2.50		End of trial pit at 2.50m			2.5 —
				- - - - - -					3.0
				- - - - -					3.5
				- - - - -					4.0
				- - - -					4.5
				- - - - -					
Wate Struck at (m)	er Strikes Remarks	Depth: 2.50 Width: 0.50 Length: 2.40	Rem	arks:					<u> </u>
		Stability: Stable		nination R		reach of excavator.	Last Uj 24/10		

CAUSEWAY GEOTECH		Project No. 22-1165 Coordinates 721909.14 E 753907.30 N			Project Name: Remount (Phase 2), Rathmore Road				
GEOTECH Method: Trial Pitting Plant:				Fingal Client'		TH04 Sheet 1 of 1			
				vation		hon Associates		Scale: 1:25	
3t Tracked Exc	cavator			mOD	Date: Logger: 09/09/2022 DM			FINAL	
Depth (m)	Sample / Tests	Field Records	Level (mOD)	Depth (m)	Legend		Water		
0.20	ES4		20.97	0.30		TOPSOIL Light orangish brown slightly clayey slightly gravelly fine to coars Gravel is subangular to subrounded fine to coarse.		-	
0.50 - 0.50	B1		20.52	0.75		Firm brown slightly sandy slightly gravelly CLAY. Sand is fine to cc Gravel is subangular to subrounded fine to coarse.	oarse.	0.5 —	
1.00 - 1.00	B2			- 				1.0	
1.50 - 1.50	В3		19.77	- 1.50		Stiff dark brown slightly sandy slightly gravelly CLAY. Sand is fine coarse. Gravel is subangular to subrounded fine to coarse.	to	1.5	
				- - - - - -					
			18.77	- 2.50		End of trial pit at 2.50m			
				- - - - - - -				3.0	
				- - - - - - -					
				- - - - - -				- 4.0 -	
				- - - - -				- - 4.5 — -	
				- - - - -				-	
Wate Struck at (m)	er Strikes Remarks	Depth: 2.50 Width: 0.50 Length: 2.40		arks:					
		Stability: Stable		nination F		each of excavator.	Last Update 24/10/2022		

APPENDIX D TRIAL PIT PHOTOGRAPHS

Remount Phase 2

Report No.: 22-1165

TH01

Remount Phase 2

Report No.: 22-1165

TH01

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

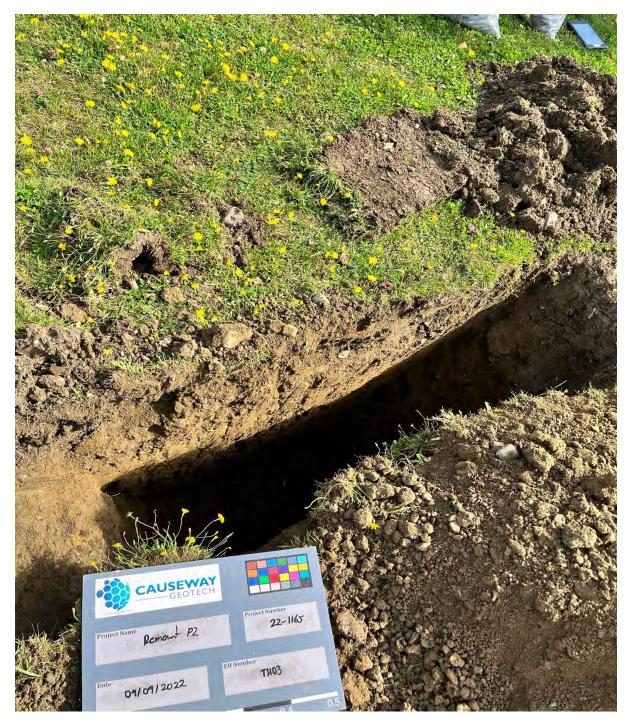
TH02

October 2022

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165



Report No.: 22-1165

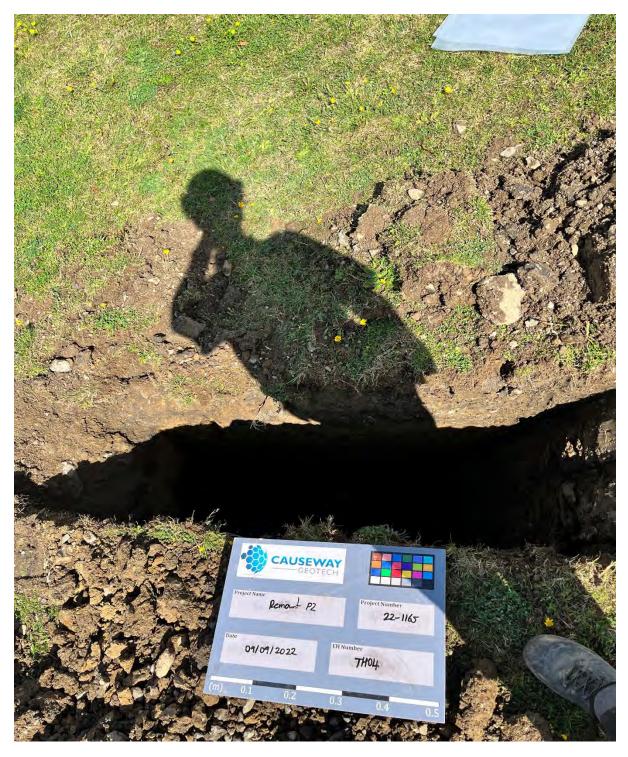
Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165



Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

TH04

October 2022

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

Report No.: 22-1165

ST01

October 2022

Report No.: 22-1165

APPENDIX E SOAKAWAY TEST RESULTS

Soakaway Infiltration Test

10

12

14 16

18

20

25 30

35

40

45 50

60

120

0.55

0.55

0.55

0.55

0.55

0.55

0.56

0.56

0.56

0.57

0.57

0.57

0.58

0.58

0.95

0.95

0.95

0.95

0.95

0.95

0.94

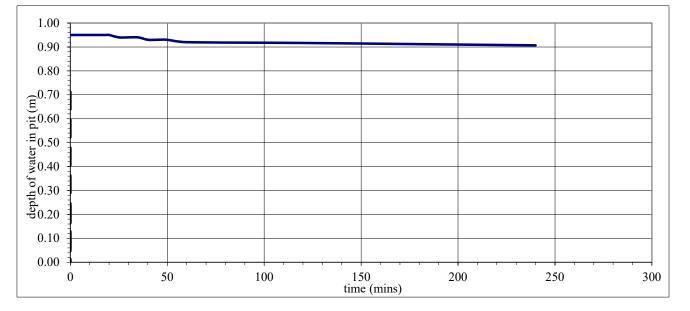
0.94 0.94

0.93

0.93

0.93

0.92


0.92

Project No.:	22-1165	5	
Site:	Remoun	t Phase 2	GEOTECH
Test Locatio	n: ST01		GEOTECH
Test Date:	09 Septe	ember 2022	
test pit base	dimensions dimensions it depth (m)	width (m) 0.50 0.50 1.50	length (m)Analysis using method as described in BRE Digest 3651.80and CIRIA Report C697-The SUDS Manual1.00depth to groundwater before adding water (m) = Dry
time (mins)	depth to water surface (m)	depth of water in pit (m)	
0	0.55	0.95	From graph below:
1	0.55	0.95	test start - 75% depth at
2	0.55	0.95	0.7125 m water depth
4	0.55	0.95	time is not determined
6	0.55	0.95	
8	0.55	0.95	test end - 25% depth at

test end - 25% depth at 0.2375 m water depth time is not determined

infiltration rate (q) is very low

180	0.59	0.91					
240	0.59	0.91					
	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m ²)	(m/min)	(m/h)
	0.79	0.7125		0.30	2.08		
	1.26	0.2375		0.50	2.00		

Soakaway Infiltration Test

From graph below:

test start - 75% depth at

test end - 25% depth at

Project No.:	22-1165			
Site:	Remount	t Phase 2		
Test Location:	ST02			
Test Date:	09 Septe	mber 2022		
		width (m)	length (m)	
test pit top dir	nensions	0.50	2.30	
test pit base dir	nensions	0.50	1.80	

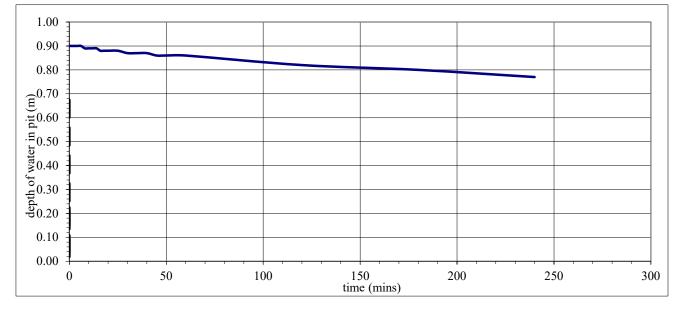
1.50

Analysis using method as described in BRE Digest 365 and CIRIA Report C697-The SUDS Manual depth to groundwater before adding water (m) = Dry

depth of depth to water water in pit time (mins) surface (m) (m) 0.60 0.90 0 0.60 0.90 1 2 0.60 0.90 4 0.60 0.90 0.60 0.90 6 0.89 8 0.61 10 0.61 0.89 12 0.61 0.89 0.89 14 0.61 16 0.62 0.88 0.62 0.88 18 20 0.62 0.88 0.88 25 0.62 30 0.63 0.87 0.87 35 0.63 40 0.63 0.87 45 0.64 0.86 50 0.64 0.86 60 0.64 0.86 120 0.68 0.82

test pit depth (m)

infiltration rate (q) is very low


0.675 m water depth

time is not determined

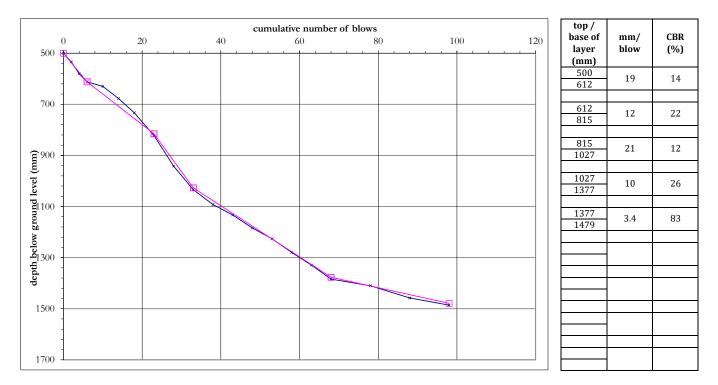
0.225 m water depth

time is not determined

180	0.70	0.80					
240	0.73	0.77					
	depth to	depth of	time	volume of	Area of walls and		
time	water	water in pit	elapsed	water lost	base at 50% drop	q	q
(mins)	(m)	(m)	(mins)	(m ³)	(m ²)	(m/min)	(m/h)
	0.83	0.675		0.44	3.05		
	1.28	0.225		0.44	5.05		

APPENDIX F INDIRECT IN-SITU CBR TEST RESULTS

Dynamic Cone Penetrometer (DCP) test results and estimated CBR


Project Name Remount Phase 2 Site Location Lusk, Co. Dublin	Project Number	22-1165	
Site Location Lusk, Co. Dublin GEOTECH	Project Name	Remount Phase 2	
	Site Location	Lusk, Co. Dublin	GEOTECH

Test Number	TH01	Date Tested	09/09/2022
Depth bgl (m)	0.50	Weather	Sunny

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

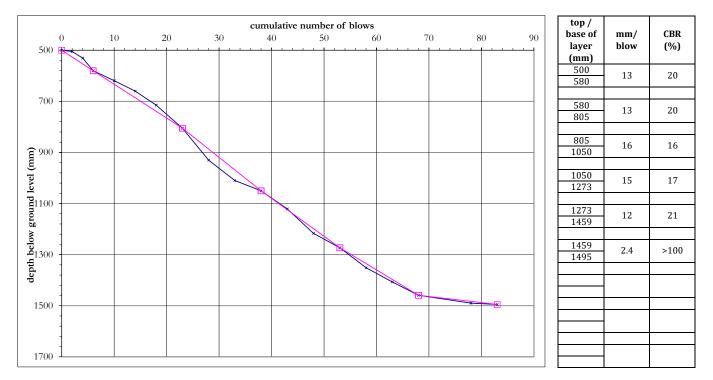
 Surface preparation
 Description of surface material at test depth

 None
 Clayey gravelly sand

CBR	Min: 12	The selection of layers is based on visual interpretation of the data.
Range	Max: 83	The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure	None	
Observations and comments		
	Approved Name and Appointment	*

	Approved Name and Appointment		
Darren O'Mahony Director	Jam O'll Man.	October 2022	


Dynamic Cone Penetrometer (DCP) test results and estimated CBR

Project Name Remount Phase 2 Site Location Lusk, Co. Dublin	Project Number	22-1165	
Site Location Lusk, Co. Dublin GEOTECH	Project Name	Remount Phase 2	
	Site Location	Lusk, Co. Dublin	GEOTECH

Test Number	TH04	Date Tested	09/09/2022
Depth bgl (m)	0.50	Weather	Sunny

Test conducted in accordance with Documented In-House Technical Procedure IMS TP7-4. CBR calculated using the TRL equation: log10(CBR) = 2.48 - 1.057 x log10(mm/blow) iaw IAN 73/06 Rev 1 2009.

Surface preparation	Description of surface material at test depth
None	Clayey gravelly sand

CBR Range	Min: 16	The selection of layers is based on visual interpretation of the data.
	Max: >100	The insitu DCP reading (mm/blow) and CBR values are valid at the time of testing; variation in moisture content or other factors may affect the insitu value.

Deviation(s) from standard procedure	None	
Observations and comments		
	Approved Name and Appointment	

	Approved Name and Appointment		
Darren O'Mahony Director	Jam O'llero.	October 2022	

APPENDIX G GEOTECHNICAL LABORATORY TEST RESULTS

HEAD OFFICE

Registered in Northern Ireland. Company Number: NI610766

REGIONAL OFFICE Causeway Geotech (IRL) Ltd

Unit 1 Fingal House Stephenstown Industrial Estate Balbriggan, Co Dublin, Ireland, K32 VR66 ROI: +353 (0)1 526 7465

> Registered in Ireland. Company Number: 633786

www.causewaygeotech.com

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

6 October 2022

Project Name: Remount (Phase 2), Rathmore Road, Lusk, Co. Dublin	
Project No.:	22-1165
Client:	Fingal County Council
Engineer:	McMAhon Associated

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and its attachments constitute a report of the results of tests as detailed in the Contents page(s). This testing was performed between 13/09/2022 and 06/10/2022.

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Hopen Wotin

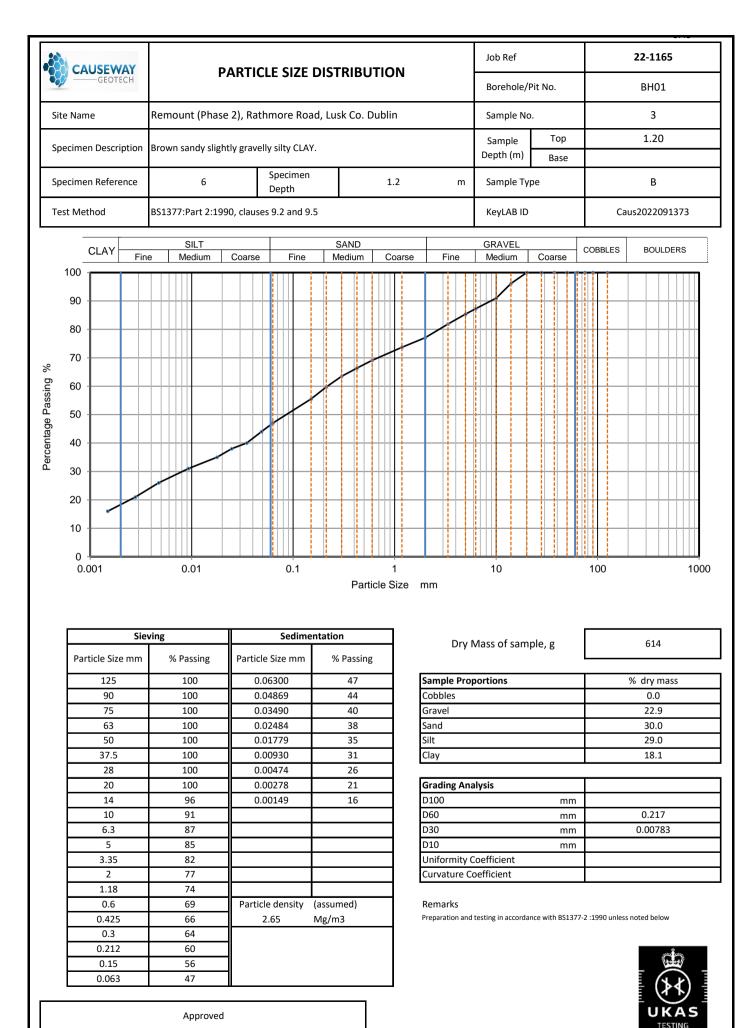
Stephen Watson Laboratory Manager Signed for and on behalf of Causeway Geotech Ltd

Project Name: Remount (Phase 2), Rathmore Road, Lusk, Co. Dublin

Report Reference: Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in this report. The results contained in this report relate to the sample(s) as received

Tests marked with* in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

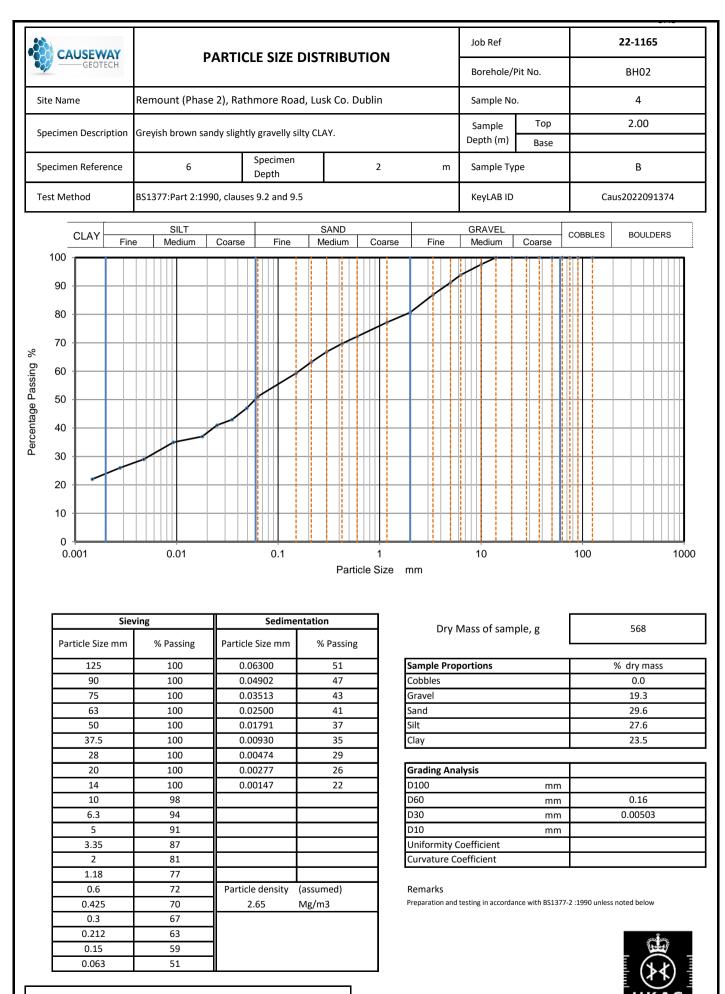

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	6
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	6
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: Cl 9.2	6
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990: Cl 9.5	6
SOIL	Dry density/moisture content relationship (2.5 kg rammer)	BS 1377-4: 1990: Cl 3.3 & 3.4	4
SOIL	Moisture Condition Value at natural moisture content	BS 1377-4: 1990: Cl 5.4	4
SOIL	California Bearing Ratio (CBR)	BS 1377-4: 1990: Cl 7	4

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All subcontracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL – Subcontracted to Eurofins Chemtest Ltd <i>(UKAS</i> 2183)	pH Value of Soil		6
SOIL – Subcontracted to Eurofins Chemtest Ltd <i>(UKAS</i> 2183)	Sulphate Content water extract		6

•	CAL	JSE'	WAY DTECH	Summary of Classification Test Results											
Project				Project	Name										
	22-1	165		Remount (Phase 2), Rathmore Road, Lusk Co. Dublin											
Hole	e No.	Ref	Sar Top	nple Base	Туре	Specimen Description	Dens bulk Mg/m	dry	W %	Passing 425µm %	LL %	PL %	PI %	Particle density Mg/m3	Casagrande Classification
BF	101	3	1.20		В	Brown sandy slightly gravelly silty CLAY.		-	12.0	67	35 -1pt	17	18		CL/CI
BH	102	4	2.00		в	Greyish brown sandy slightly gravelly silty CLAY.			11.0	69	34 -1pt	17	17		CL
BF	103	4	1.20		В	Brown sandy slightly gravelly silty CLAY.			11.0	69	38 -1pt	19	19		CI
В⊦	104	8	3.00		в	Brown sandy slightly gravelly silty CLAY.			12.0	64	34 -1pt	17	17		CL
BH	105	4	1.20		В	Greyish brown sandy slightly gravelly silty CLAY.			12.0	67	37 -1pt	18	19		CI
BH	106	6	2.00		в	Dark grey sandy slightly gravelly sitty CLAY.			12.0	66	36 -1pt	18	18		CI
All test	s perfor	med ii	n accord	lance wit	th BS1	377:1990 unless specified	otherwise	e						LAB	01R Version 6
Key Density test Lie Linear measurement unless : 4p wd - water displacement ca			cas - C				Date Printed 10/06/2022 00:00			Approved By Stephen.Watson			UKAS TESTING 10122		

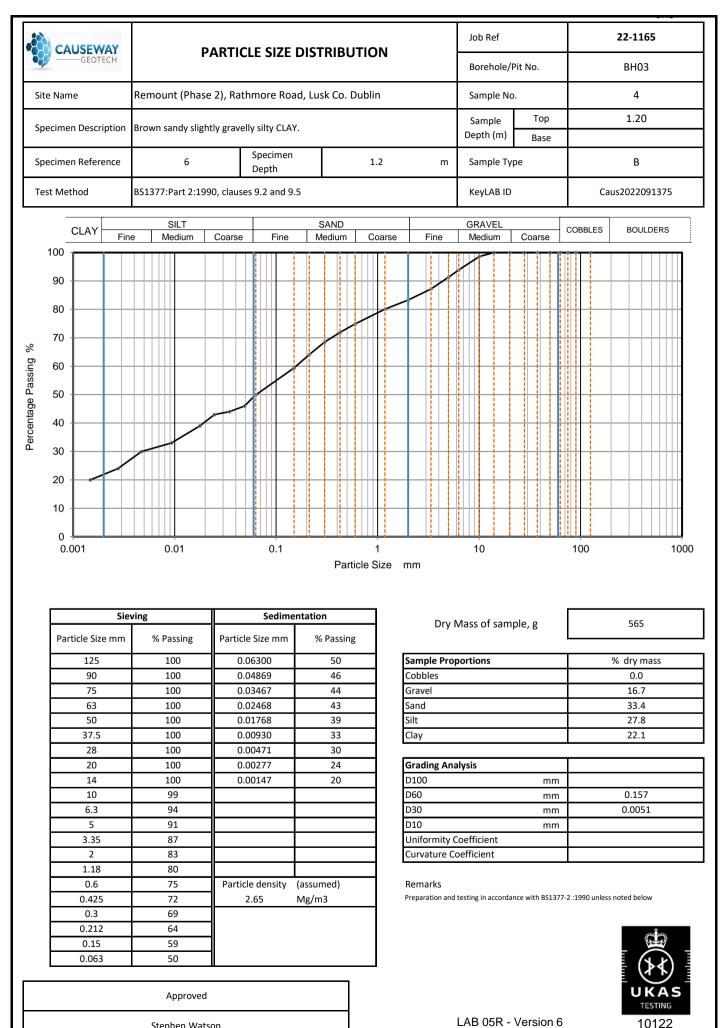


LAB 05R - Version 6

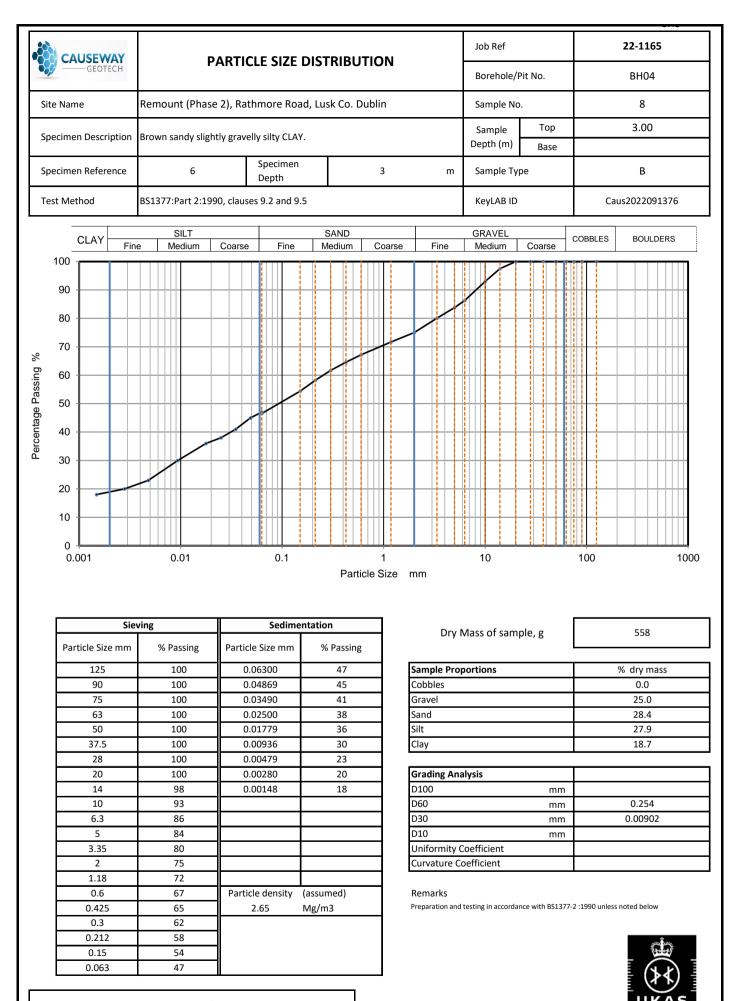
10122

. .

Stephen.Watson



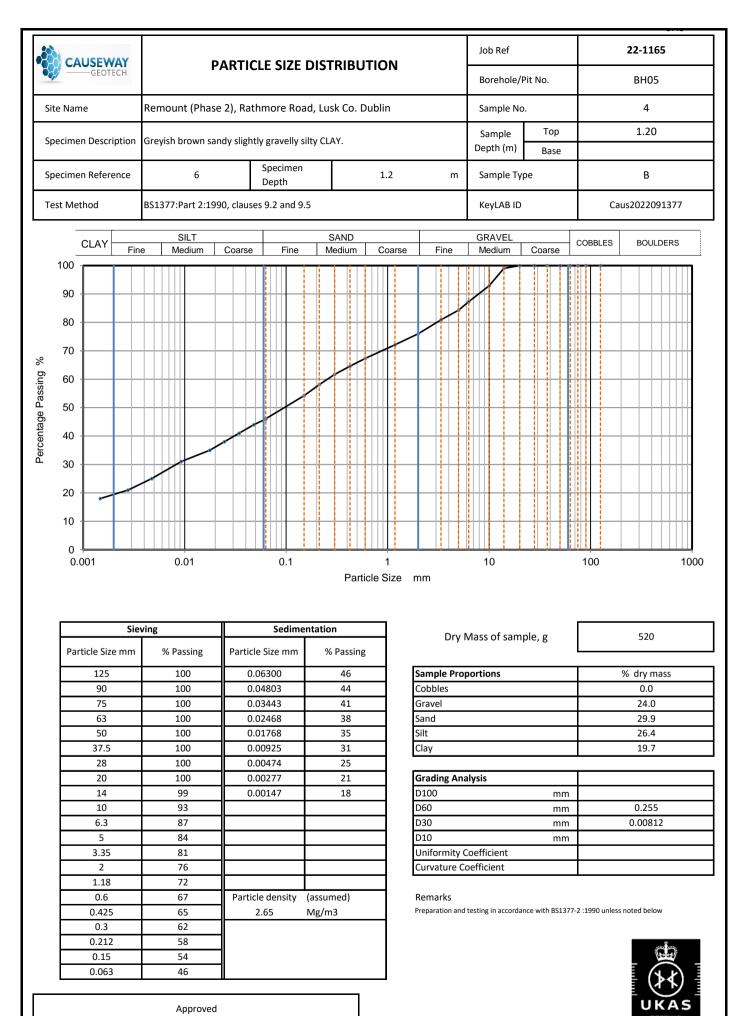
Approved


Stephen.Watson

LAB 05R - Version 6

10122

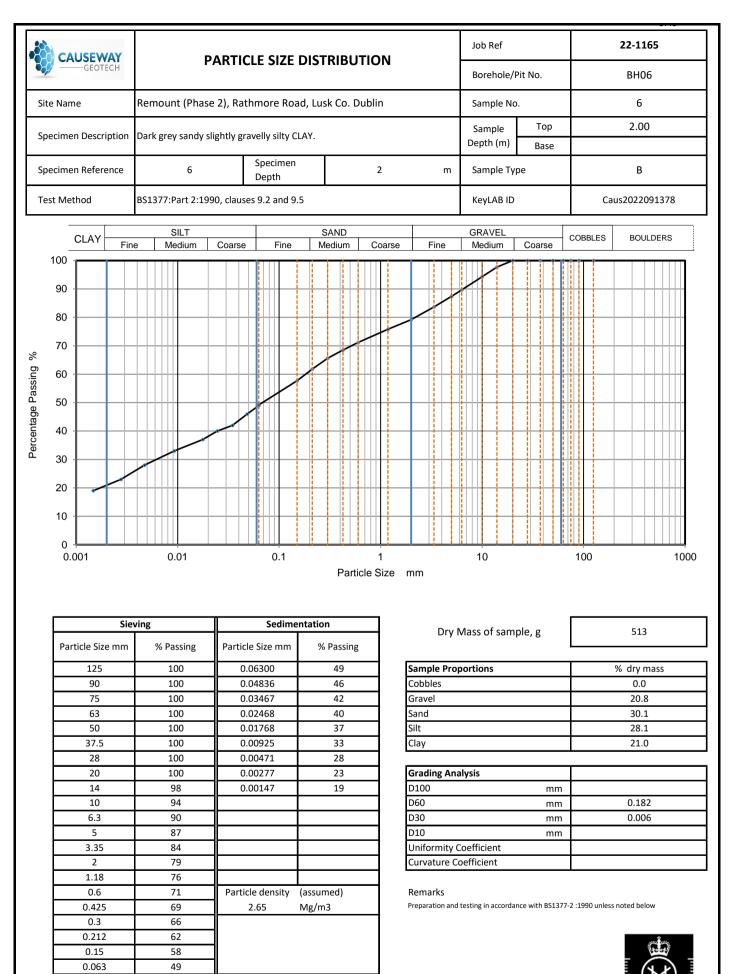
Stephen.Watson



Approved

Stephen.Watson

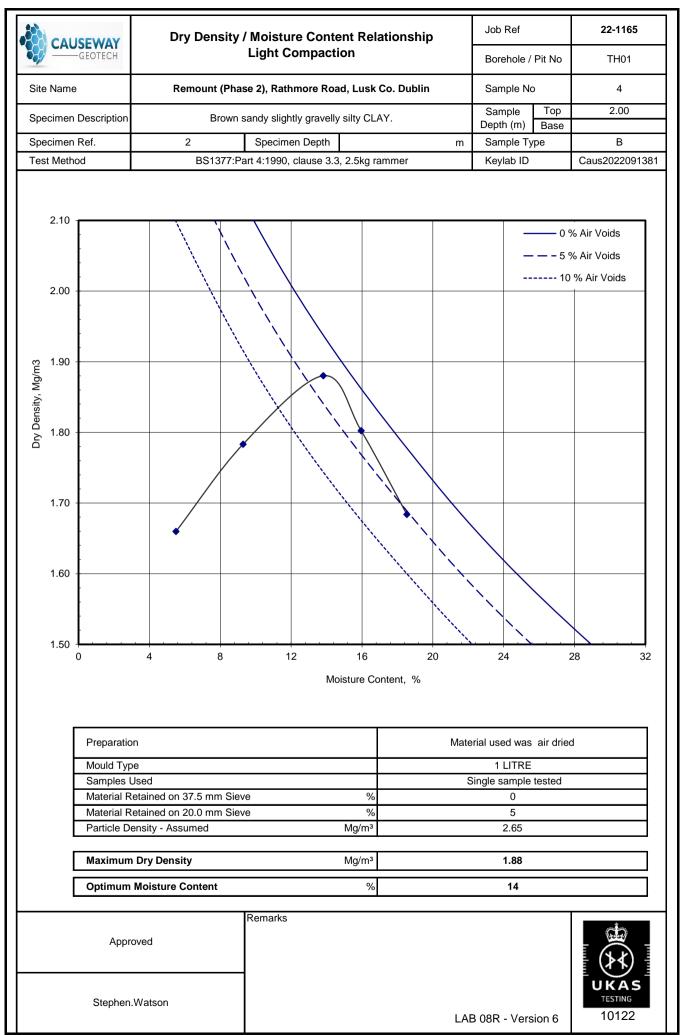
7

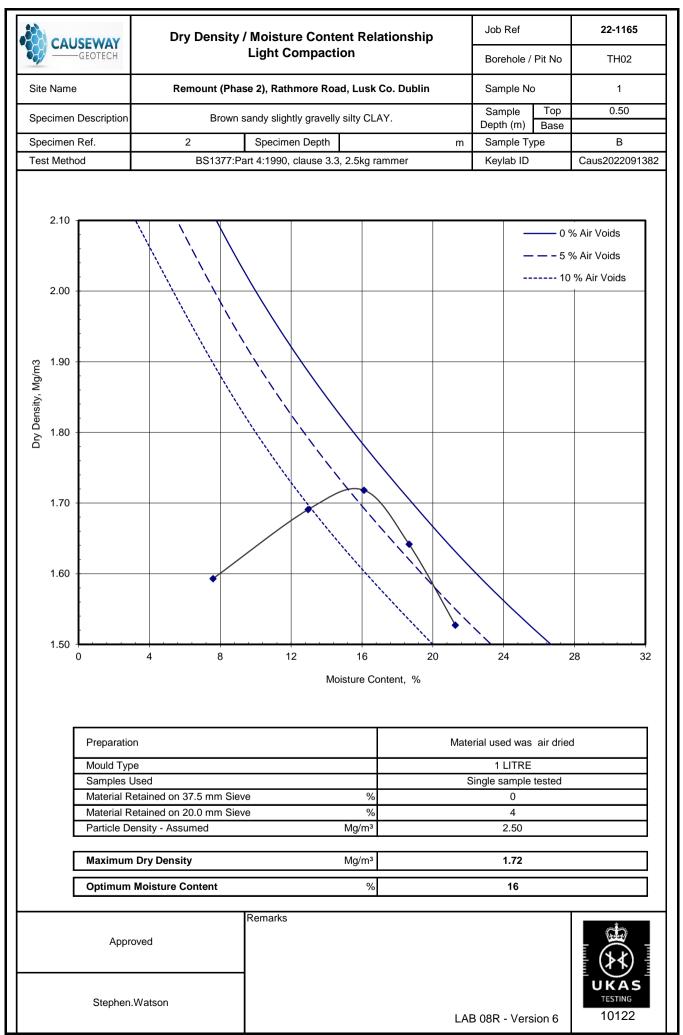

LAB 05R - Version 6

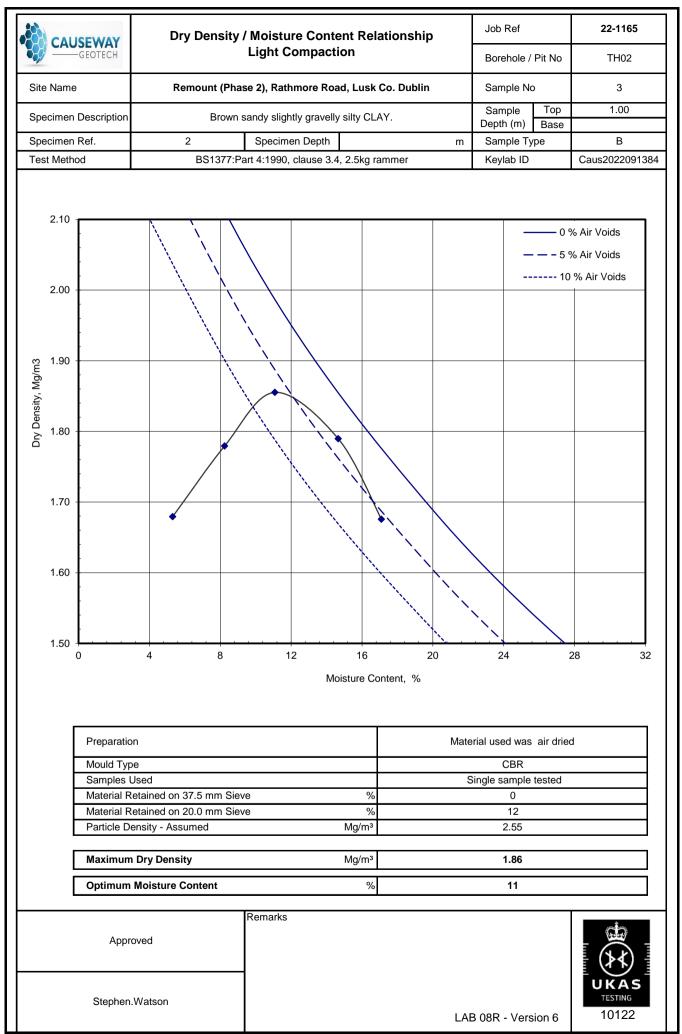
LAB 05R - Version 6

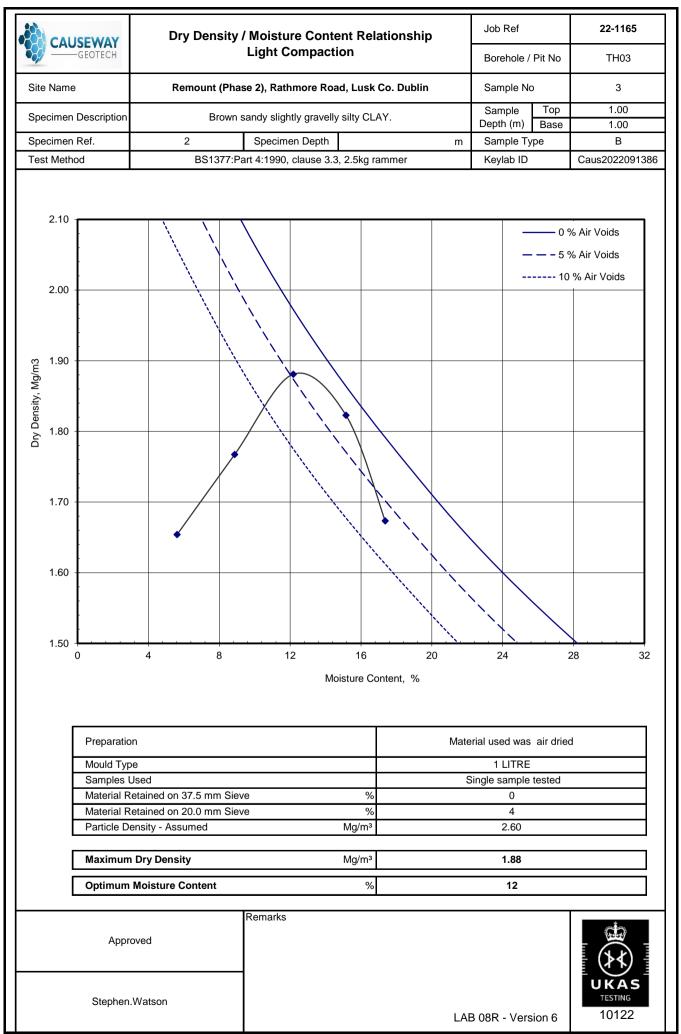
10122

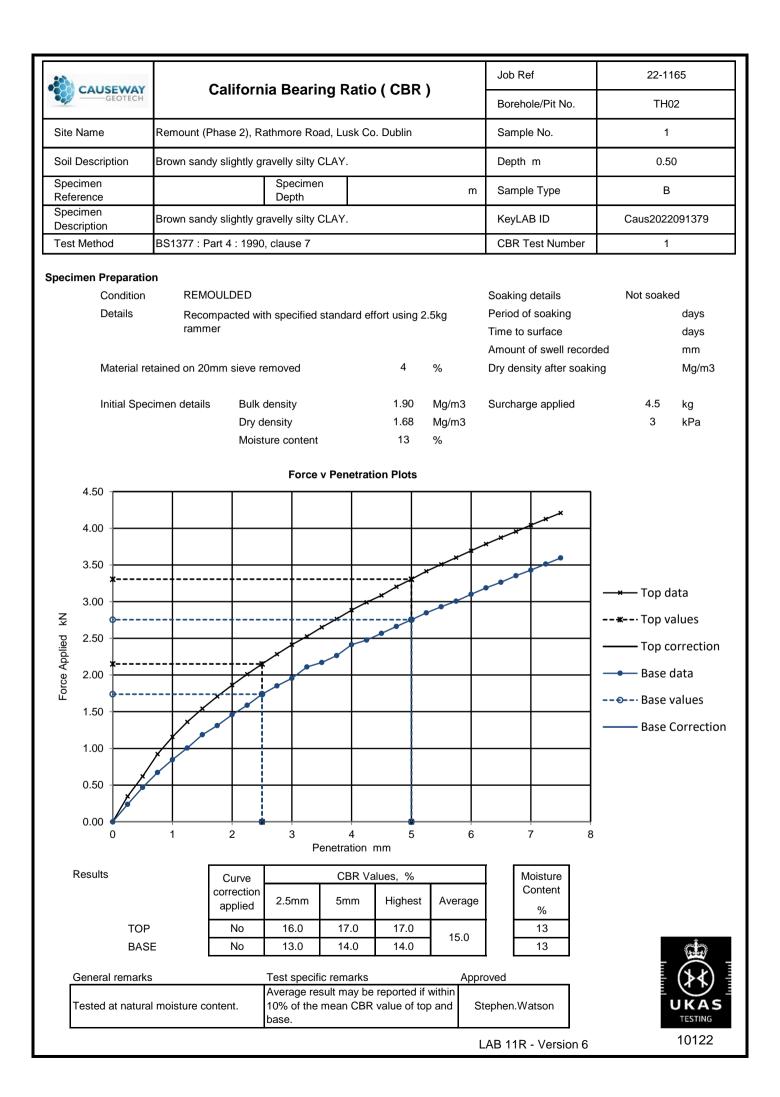
Stephen.Watson

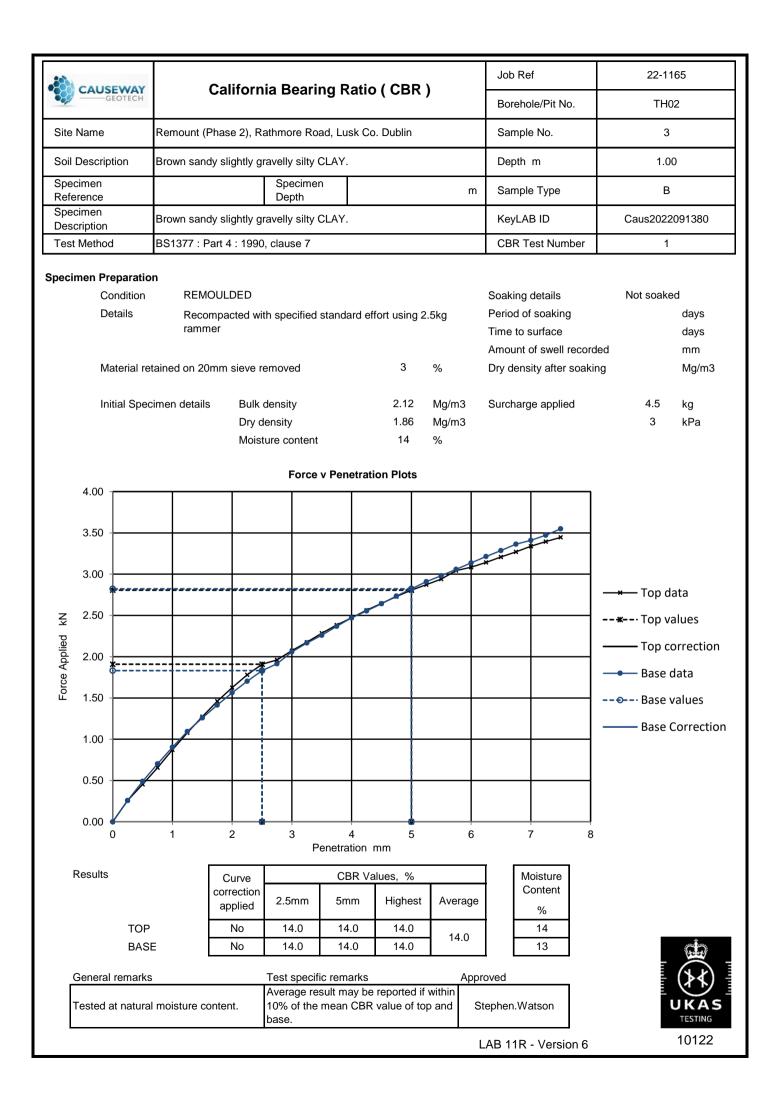


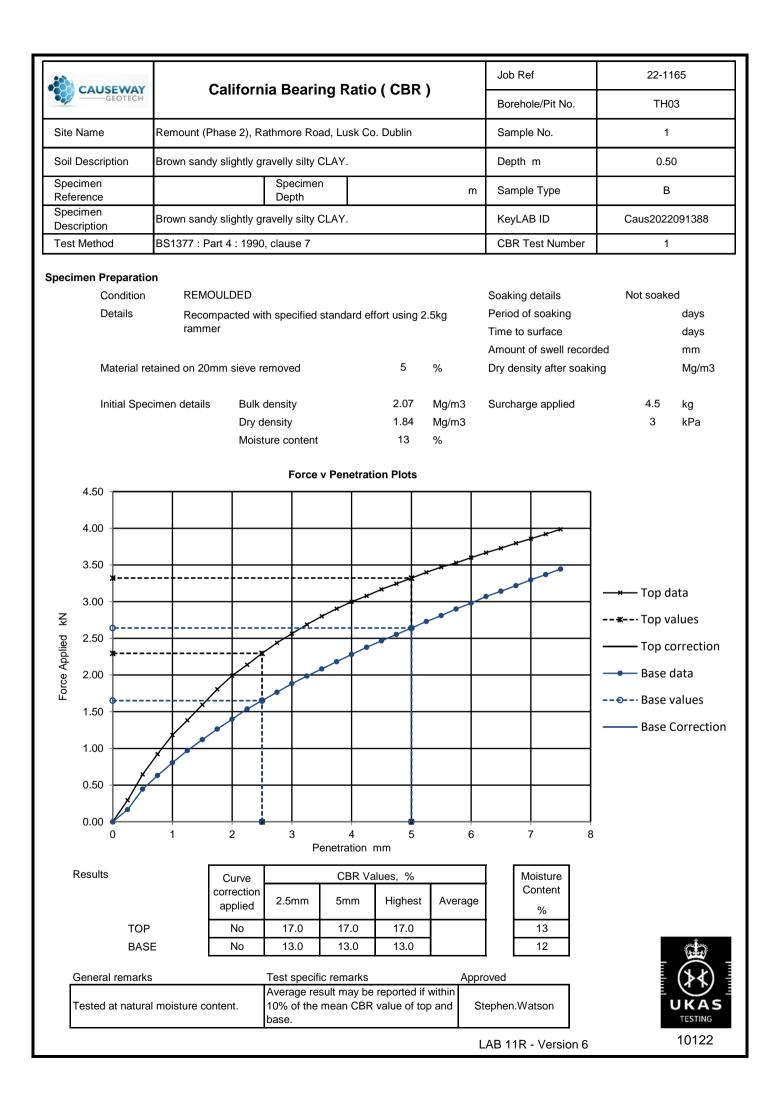


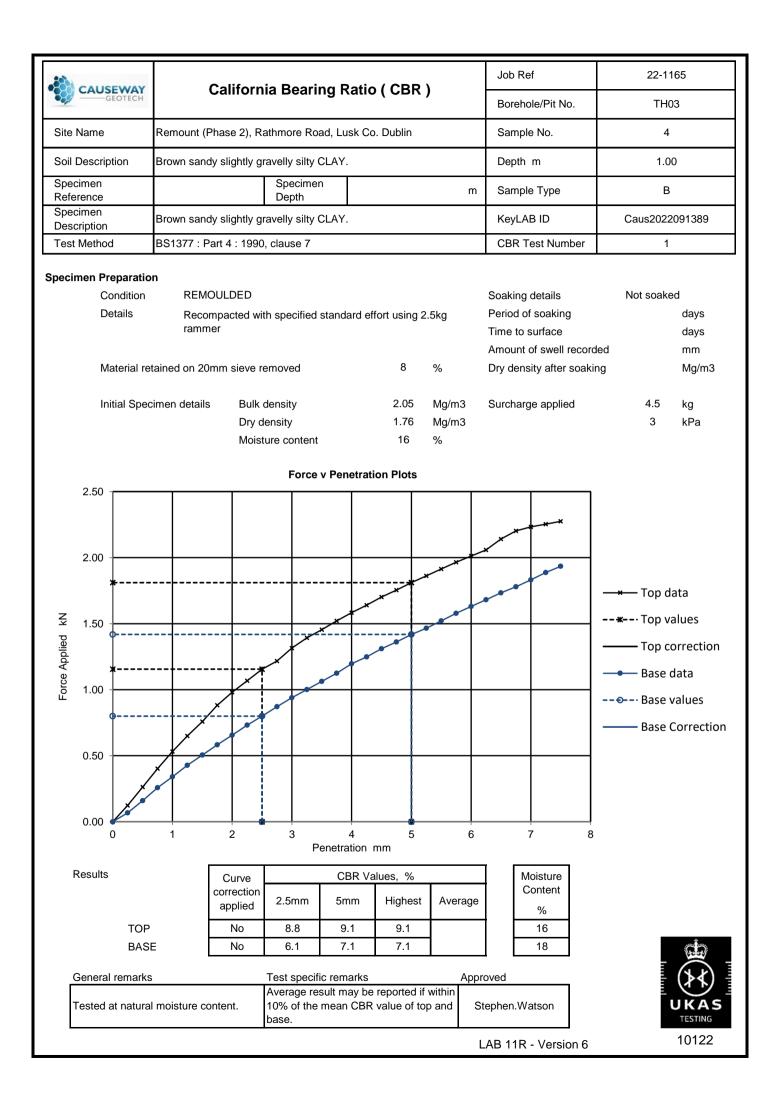

LAB 05R - Version 6


Approved Stephen.Watson


	JSEV	VAY TECH			Moisture Condi		e at Natu ry of Res		ure Conte	ent
Project No.			Project N	Name						
22-	1165				Remount	t (Phase 2), Ra	athmore Road	, Lusk Co. Du	blin	
Hole No.	Ref	Sar Top	nple Base	Туре	Specimen Description	Retained on 20mm sieve	Moisture Content <20mm	Moisture Condition Value	Method of Interpretation	Remarks
	Rei	төр	Dase	Type		%	%			
TH02	2	0.50		в	Brown sandy slightly gravelly silty CLAY.	6	11	17.9	Best fit line	
TH02	4	1.00		в	Brown sandy slightly gravelly silty CLAY.	9	10	16.7	Best fit line	
TH03	4	1.00	1.00	в	Brown sandy slightly gravelly silty CLAY.	7	12	11.9	Best fit line	
TH04	3	1.50	1.50	В	Brown sandy slightly gravelly silty CLAY.	2	14	9.4	Best fit line	
									LA	B 10R - Version 7
Key Test pe annotat			ance with I	BS1377	7:Part4:1990, clause 5.4 unless	Date Printed 10/06/20	22 00:00	Approved By Stephe	n.Watson	







🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Report No.:	22-36210-1		
Initial Date of Issue:	26-Sep-2022		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Alistair McQuat Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen McCracken Stephen Watson Stuart Abraham Thomas McAlli		
Project	22-1165 Remount Phase 2		
Quotation No.:		Date Received:	22-Sep-2022
Order No.:		Date Instructed:	22-Sep-2022
No. of Samples:	6		
Turnaround (Wkdays):	7	Results Due:	30-Sep-2022
Date Approved:	26-Sep-2022		
Approved By:			
sont			

Details:

Stuart Henderson, Technical Manager

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

<u>Results - Soil</u>

Client: Causeway Geotech Ltd		Cher	ntest Jo	ob No.:	22-36210	22-36210	22-36210	22-36210	22-36210	22-36210
Quotation No.:	Chemtest Sample ID.:		1510906	1510907	1510908	1510909	1510910	1510911		
Order No.:	Client Sample Ref.:		3	4	4	8	4	6		
		Sample Location:		BH01	BH02	BH03	BH04	BH05	BH06	
		Sample Type:			SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
		Top Depth (m):		1.2	2	1.2	3	1.2	2	
			Date Sa	mpled:	21-Sep-2022	21-Sep-2022	21-Sep-2022	21-Sep-2022	21-Sep-2022	21-Sep-2022
Determinand	Accred.	SOP	Units	LOD						
Moisture	N	2030	%	0.020	8.6	9.4	8.4	7.9	8.0	9.4
pH	U	2010		4.0	9.3	9.3	9.1	9.2	9.3	9.0
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/l	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Test Methods

SOP	Title	Parameters included	Method summary
2010	pH Value of Soils	рН	pH Meter
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX H ENVIRONMENTAL LABORATORY TEST RESULTS

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Final Report

Report No.:	22-34542-1		
Initial Date of Issue:	26-Sep-2022		
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Alistair McQuat Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen Watson Stuart Abraham Thomas McAllister Ciaran Dohert		
Project	22-1165 Remount Phase 2		
Quotation No.:		Date Received:	09-Sep-2022
Order No.:		Date Instructed:	14-Sep-2022
No. of Samples:	2		
Turnaround (Wkdays):	7	Results Due:	23-Sep-2022
Date Approved:	26-Sep-2022		
Approved By:			
and			

201

Details:

Stuart Henderson, Technical Manager

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Results - Leachate

Client: Causeway Geotech Ltd	Chemtest Job No.:			ob No.:	22-34542	22-34542	
Quotation No.:	Chemtest Sample ID.:			Chemtest Sample ID.: 1503594		1503594	1503595
			Sa	BH04	BH04		
				SOIL	SOIL		
	Top Depth (m):					0.4	2.0
				Date Sa	ampled:	07-Sep-2022	07-Sep-2022
Determinand	Accred.	SOP	Туре	Units	LOD		
Ammonium	U	1220	10:1	mg/l	0.050	< 0.050	< 0.050
Ammonium	Ν	1220	10:1	mg/kg	0.10	0.24	0.26

Client: Causeway Geotech Ltd			mtest Jo	22-34542	22-34542	
Quotation No.:	(est Sample ID.:		1503594	1503595
		Sa	ample Lo		BH04	BH04
				e Type:	SOIL	SOIL
			Top Dep		0.4	2.0
			Date Sa		07-Sep-2022	07-Sep-2022
				os Lab:	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	-	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	13	14
рН	U	2010		4.0	8.4	8.6
Boron (Hot Water Soluble)	U	2120	0	0.40	0.97	0.67
Sulphur (Elemental)	U	2180	0 0	1.0	< 1.0	1.2
Cyanide (Total)	U	2300	mg/kg	0.50	0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	1.2	1.3
Sulphate (Total)	U	2430	%	0.010	0.12	0.069
Arsenic	U	2455	mg/kg	0.5	16	12
Barium	U	2455	mg/kg	0	88	73
Cadmium	U	2455	0 0	0.10	0.38	0.68
Chromium	U	2455 2455	mg/kg	0.5	22	28
Molybdenum Antimony	N N	2455	mg/kg	0.5	5.0 < 2.0	1.8 < 2.0
Copper	U	2455	mg/kg mg/kg	0.50	1400	28
Mercury	U	2455	mg/kg	0.05	0.08	< 0.05
Nickel	U	2455	mg/kg	0.50	23	39
Lead	U	2455		0.50	120	27
Selenium	U	2455	mg/kg	0.25	1.4	0.90
Zinc	U	2455		0.50	50	52
Chromium (Trivalent)	N	2490	mg/kg	1.0	22	28
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Total Organic Carbon	U	2625	%	0.20	1.4	1.2
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0

Client: Causeway Geotech Ltd			mtest Jo	22-34542	22-34542	
Quotation No.:	(est Sam	-	1503594	1503595
		Sa	ample Lo		BH04	BH04
				e Type:	SOIL	SOIL
			Top Dep		0.4	2.0
	_		Date Sa		07-Sep-2022	07-Sep-2022
		Asbestos Lab		-	NEW-ASB	NEW-ASB
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C12-C16	U	2680	00		< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	0 0	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35 Aromatic TPH >C35-C44	UN	2680 2680	0 0	1.0 1.0	< 1.0	< 1.0
	N	2680	3 3	-	< 1.0 < 5.0	< 1.0 < 5.0
Total Aromatic Hydrocarbons Total Petroleum Hydrocarbons	N	2680	mg/kg mg/kg	10.0	< 10	< 10
Benzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Toluene	U	2760	µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	U	2760		1.0	< 1.0	< 1.0
o-Xylene	U	2760	. 0 0	1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	U	2760	µg/kg	1.0	< 1.0	< 1.0
Naphthalene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	N	2800			< 0.10	< 0.10
Acenaphthene	U	2800		0.10	< 0.10	< 0.10
Fluorene	U	2800			< 0.10	< 0.10
Phenanthrene	U	2800		-	< 0.10	< 0.10
Anthracene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Fluoranthene	U	2800	mg/kg	0.10	< 0.10	< 0.10
Pyrene	U	2800	5	0.10	< 0.10	< 0.10
Benzo[a]anthracene	U	2800			< 0.10	< 0.10
Chrysene	U	2800	0 0		< 0.10	< 0.10
Benzo[b]fluoranthene	U	2800	0 0	-	< 0.10	< 0.10
Benzo[k]fluoranthene	U	2800	0 0	0.10	< 0.10	< 0.10
Benzo[a]pyrene	U	2800	0 0	0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2800	0 0		< 0.10	< 0.10
Dibenz(a,h)Anthracene	N	2800	00	0.10	< 0.10	< 0.10
Benzo[g,h,i]perylene	U	2800	0 0		< 0.10	< 0.10
Coronene	N	2800		0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2800			< 2.0	< 2.0
PCB 28	U	2815	0 0		< 0.010	< 0.010
PCB 52	U	2815	00	-	< 0.010	< 0.010
PCB 90+101	U	2815	0 0		< 0.010	< 0.010
PCB 118 PCB 153	UU	2815 2815	00		< 0.010 < 0.010	< 0.010 < 0.010
PCB 153 PCB 138	U	2815			< 0.010	< 0.010
PCB 136 PCB 180	U	2815			< 0.010	< 0.010
Total PCBs (7 Congeners)	U	2815			< 0.010	< 0.010
Total Phenols	U	2015	00		< 0.10	< 0.10
rotal Phenois	U	2920	ing/kg	0.10	< 0.10	< 0.10

Chemtest Job No:	22-34542				LandfIII Waste Acceptance Criteria				
Chemtest Sample ID:	1503594					Limits			
Sample Ref:						Stable, Non-			
Sample ID:						reactive			
Sample Location:	BH04					hazardous	Hazardous		
Top Depth(m):	0.4				Inert Waste	waste in non-	Waste		
Bottom Depth(m):					Landfill	hazardous	Landfill		
Sampling Date:	07-Sep-2022				Landfill				
Determinand	SOP	Accred.	Units						
Total Organic Carbon	2625	U	%	1.4	3	5	6		
Loss On Ignition	2610	U	%	10			10		
Total BTEX	2760	U	mg/kg	< 0.010	6				
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1				
TPH Total WAC	2670	U	mg/kg	< 10	500				
Total (Of 17) PAH's	2800	Ν	mg/kg	< 2.0	100				
рН	2010	U		8.4		>6			
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.013		To evaluate	To evaluate		
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	for compliance	eaching test		
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg		
Arsenic	1455	U	0.0008	0.0079	0.5	2	25		
Barium	1455	U	< 0.005	< 0.050	20	100	300		
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5		
Chromium	1455	U	< 0.0005	< 0.0050	0.5	10	70		
Copper	1455	U	0.0016	0.016	2	50	100		
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2		
Molybdenum	1455	U	0.0045	0.045	0.5	10	30		
Nickel	1455	U	0.0009	0.0093	0.4	10	40		
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50		
Antimony	1455	U	0.0005	0.0052	0.06	0.7	5		
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7		
Zinc	1455	U	< 0.003	< 0.025	4	50	200		
Chloride	1220	U	< 1.0	< 10	800	15000	25000		
Fluoride	1220	U	0.24	2.4	10	150	500		
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000		
Total Dissolved Solids	1020	Ν	130	1200	4000	60000	100000		
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-		
Dissolved Organic Carbon	1610	U	2.5	< 50	500	800	1000		

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	13

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Chemtest Job No:	22-34542				LandfIII Waste Acceptance Criteria			
Chemtest Sample ID:	1503595				Limits			
Sample Ref:						Stable, Non-		
Sample ID:						reactive		
Sample Location:	BH04					hazardous	Hazardous	
Top Depth(m):	2.0				Inert Waste	waste in non-	Waste	
Bottom Depth(m):					Landfill	hazardous	Landfill	
Sampling Date:	07-Sep-2022					Landfill		
Determinand	SOP	Accred.	Units					
Total Organic Carbon	2625	U	%	1.2	3	5	6	
Loss On Ignition	2610	U	%	3.4			10	
Total BTEX	2760	U	mg/kg	< 0.010	6			
Total PCBs (7 Congeners)	2815	U	mg/kg	< 0.10	1			
TPH Total WAC	2670	U	mg/kg	< 10	500			
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100			
рН	2010	U		8.6		>6		
Acid Neutralisation Capacity	2015	N	mol/kg	0.0090		To evaluate	To evaluate	
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values	eaching test		
			mg/l	mg/kg	using B	S EN 12457 at L/	S 10 I/kg	
Arsenic	1455	U	0.0033	0.033	0.5	2	25	
Barium	1455	U	0.006	0.059	20	100	300	
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5	
Chromium	1455	U	0.0033	0.033	0.5	10	70	
Copper	1455	U	0.0063	0.063	2	50	100	
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2	
Molybdenum	1455	U	0.0017	0.017	0.5	10	30	
Nickel	1455	U	0.0038	0.038	0.4	10	40	
Lead	1455	U	0.010	0.10	0.5	10	50	
Antimony	1455	U	0.0067	0.067	0.06	0.7	5	
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7	
Zinc	1455	U	< 0.003	< 0.025	4	50	200	
Chloride	1220	U	1.3	13	800	15000	25000	
Fluoride	1220	U	0.34	3.4	10	150	500	
Sulphate	1220	U	1.1	11	1000	20000	50000	
Total Dissolved Solids	1020	N	67	670	4000	60000	100000	
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-	
Dissolved Organic Carbon	1610	U	3.1	< 50	500	800	1000	

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	14

Waste Acceptance Criteria

Project: 22-1165 Remount Phase 2

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
2030	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35– C44Aromatics: >C5–C7, >C7–C8, >C8– C10, >C10–C12, >C12–C16, >C16– C21, >C21– C35, >C35– C44	Dichloromethane extraction / GCxGC FID detection
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.

Test Methods

SOP	Title	Parameters included	Method summary
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Amended Re	port	Ema	Tel: 01638 60607 il: info@chemtest.con
Report No.:	22-34771-4		
Initial Date of Issue:	04-Oct-2022	Date of Re-Issue:	27-Oct-2022
Client	Causeway Geotech Ltd		
Client Address:	8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL		
Contact(s):	Alistair McQuat Colm Hurley Darren O'Mahony Gabriella Horan Joe Gervin John Cameron Lucy Newland Martin Gardiner Matthew Gilbert Neil Haggan Paul Dunlop Sean Ross Stephen Franey Stephen Watson Stuart Abraham Thomas McAllister Ciaran Dohert		
Project	22-1165 Remount Phase 2		
Quotation No.:		Date Received:	12-Sep-2022
Order No.:	STEPHEN FRANEY	Date Instructed:	12-Sep-2022
No. of Samples:	2		
Turnaround (Wkdays):	5	Results Due:	21-Oct-2022
Date Approved:	26-Oct-2022		
Approved By:			
and			

m

2183

Details:

Stuart Henderson, Technical Manager

🔅 eurofins

Chemtest

Eurofins Chemtest Ltd Depot Road Newmarket CB8 0AL Tel: 01638 606070 Email: info@chemtest.com

Results - Leachate

Client: Causeway Geotech Ltd	Chemtest Job No.:			22-34771	22-34771		
Quotation No.:	Chemtest Sample ID.:			1504717	1504718		
	Sample Location:			BH01	BH02		
	Sample Type:			SOIL	SOIL		
	Top Depth (m):			0.40	0.30		
	Date Sampled:			08-Sep-2022	08-Sep-2022		
Determinand	Accred. SOP Type Units LOD						
Ammonium	U	U 1220 10:1 mg/l 0.050		< 0.050	< 0.050		
Ammonium	N	1220	10:1	mg/kg	0.10	0.23	0.21

Client: Causeway Geotech Ltd		Chemtest Job No.:			22-34771	22-34771
Quotation No.:	(Chemtest Sample ID.:			1504717	1504718
		Sample Location:			BH01	BH02
		Sample Type:			SOIL	SOIL
		Top Depth (m):			0.40	0.30
			Date Sa		08-Sep-2022	08-Sep-2022
-				os Lab:	NEW-ASB	DURHAM
Determinand	Accred.	SOP	Units	LOD		
АСМ Туре	U	2192		N/A	- N. A	-
Asbestos Identification	U	2192		N/A	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	11	12
рН	М	2010		4.0	8.7	8.6
Boron (Hot Water Soluble)	М	2120	mg/kg	0.40	0.87	< 0.40
Sulphur (Elemental)	М	2180	mg/kg	1.0	< 1.0	< 1.0
Cyanide (Total)	М	2300	mg/kg	0.50	< 0.50	< 0.50
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	2.5	12
Sulphate (Total)	U	2430	%	0.010	0.026	0.022
Arsenic	M	2455	mg/kg	0.5	18	17
Barium	M	2455	mg/kg	0	76	82
Cadmium	M	2455		0.10	1.0	0.85
Chromium	M	2455	mg/kg	0.5	29	33
Molybdenum	M	2455 2455	mg/kg	0.5	2.9 < 2.0	2.9 < 2.0
Antimony Copper	M	2455	mg/kg mg/kg	0.50	< 2.0 32	33
Mercury	M	2455	mg/kg	0.05	0.08	0.09
Nickel	M	2455	mg/kg	0.50	40	42
Lead	M	2455	mg/kg	0.50	24	19
Selenium	M	2455	mg/kg	0.25	1.7	1.7
Zinc	M	2455	mg/kg	0.50	49	53
Chromium (Trivalent)	N	2490	mg/kg	1.0	29	33
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Total Organic Carbon	М	2625	%	0.20	0.49	1.0
Mineral Oil (TPH Calculation)	N	2670	mg/kg	10	< 10	< 10
Aliphatic TPH >C5-C6	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	Ν	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	М	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	M	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0

Project: 22-1165 Remount Phase 2

Client: Causeway Geotech Ltd			mtest Jo		22-34771	22-34771
Quotation No.:	(est Sam	-	1504717	1504718
		Sa	ample Lo		BH01	BH02
				e Type:	SOIL	SOIL
			Top Dep		0.40	0.30
			Date Sa		08-Sep-2022	08-Sep-2022
				os Lab:	NEW-ASB	DURHAM
Determinand	Accred.	SOP	Units	LOD		
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C21-C35	M	2680	0	1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0 5.0	< 1.0 < 5.0	< 1.0
Total Aromatic Hydrocarbons	N	2680 2680	mg/kg	5.0 10.0	< 5.0 < 10	< 5.0 < 10
Total Petroleum Hydrocarbons Benzene	M	2000	mg/kg µg/kg	1.0	< 1.0	< 1.0
Toluene	M	2760	µg/kg µg/kg	1.0	< 1.0	< 1.0
Ethylbenzene	M	2760	µg/kg	1.0	< 1.0	< 1.0
m & p-Xylene	M	2760	µg/kg	1.0	< 1.0	< 1.0
o-Xylene	M	2760	µg/kg	1.0	< 1.0	< 1.0
Methyl Tert-Butyl Ether	M	2760	µg/kg	1.0	< 1.0	< 1.0
Naphthalene	M	2800	mg/kg	0.10	< 0.10	< 0.10
Acenaphthylene	N	2800		0.10	< 0.10	< 0.10
Acenaphthene	М	2800	mg/kg	0.10	< 0.10	< 0.10
Fluorene	М	2800		0.10	< 0.10	< 0.10
Phenanthrene	М	2800	mg/kg	0.10	0.15	< 0.10
Anthracene	М	2800		0.10	0.37	< 0.10
Fluoranthene	М	2800	mg/kg	0.10	0.28	< 0.10
Pyrene	М	2800	mg/kg	0.10	0.50	< 0.10
Benzo[a]anthracene	М	2800	mg/kg	0.10	1.6	< 0.10
Chrysene	М	2800	0 0	0.10	1.9	< 0.10
Benzo[b]fluoranthene	М	2800	mg/kg	0.10	1.7	< 0.10
Benzo[k]fluoranthene	М	2800	mg/kg	0.10	1.6	< 0.10
Benzo[a]pyrene	М	2800	mg/kg	0.10	1.6	< 0.10
Indeno(1,2,3-c,d)Pyrene	М	2800	9	0.10	1.6	< 0.10
Dibenz(a,h)Anthracene	N	2800	00	0.10	2.0	< 0.10
Benzo[g,h,i]perylene	М	2800	0 0	0.10	1.7	< 0.10
Coronene	N	2800	00	0.10	< 0.10	< 0.10
Total Of 17 PAH's	N	2800	mg/kg	2.0	15	< 2.0
PCB 28	U	2815	mg/kg	0.010	< 0.010	< 0.010
PCB 52	U	2815	mg/kg	0.010	< 0.010	< 0.010
PCB 90+101	U	2815			< 0.010	< 0.010
PCB 118	U	2815	mg/kg	0.010	< 0.010	< 0.010
PCB 153 PCB 138	U	2815		0.010	< 0.010	< 0.010
PCB 138 PCB 180	U	2815			< 0.010	< 0.010
	U	2815 2815			< 0.010	< 0.010
Total PCBs (7 Congeners) Total Phenols	M	2815	mg/kg	0.10	< 0.10 < 0.10	< 0.10
rotar Phenois	IVI	2920	mg/kg	0.10	< 0.10	< 0.10

Chemtest Job No:	22-34771 1504717				Landfill \	Waste Acceptanc	e Criteria
Chemtest Sample ID: Sample Ref: Sample ID:	1504717					Limits Stable, Non- reactive	
Sample Location: Top Depth(m):	BH01 0.40				Inert Waste	hazardous waste in non-	Hazardous Waste
Bottom Depth(m):	0.40				Landfill	hazardous	Landfill
Sampling Date:	08-Sep-2022				Lanum	Landfill	Lanum
Determinand	SOP	Accred.	Units			Lunum	
Total Organic Carbon	2625	M	%	0.49	3	5	6
Loss On Ignition	2610	М	%	8.3			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	Ν	mg/kg	15	100		
pH	2010	М		8.7		>6	
Acid Neutralisation Capacity	2015	Ν	mol/kg	0.025		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	Limit values for compliance lead		eaching test	
			mg/l	mg/kg	using BS EN 12457 at L/S 10 I/kg		
Arsenic	1455	U	< 0.0002	< 0.0020	0.5	2	25
Barium	1455	U	< 0.005	< 0.050	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	< 0.0005	< 0.0050	0.5	10	70
Copper	1455	U	< 0.0005	< 0.0050	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0023	0.023	0.5	10	30
Nickel	1455	U	< 0.0005	< 0.0050	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455	U	< 0.0005	< 0.0050	0.1	0.5	7
Zinc	1455	U	< 0.003	< 0.025	4	50	200
Chloride	1220	U	< 1.0	< 10	800	15000	25000
Fluoride	1220	U	0.11	1.1	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	Ν	1200	12000	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	4.4	< 50	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	11

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Project: 22-1165 Remount Phase	2						
Chemtest Job No:	22-34771	22-34771			Landfill	Waste Acceptanc	e Criteria
Chemtest Sample ID:	1504718	1504718			Limits		
Sample Ref:						Stable, Non-	
Sample ID:						reactive	
Sample Location:	BH02					hazardous	Hazardous
Top Depth(m):	0.30				Inert Waste	waste in non-	Waste
Bottom Depth(m):					Landfill	hazardous	Landfill
Sampling Date:	08-Sep-2022					Landfill	
Determinand	SOP	Accred.	Units				
Total Organic Carbon	2625	М	%	1.0	3	5	6
Loss On Ignition	2610	М	%	6.6			10
Total BTEX	2760	М	mg/kg	< 0.010	6		
Total PCBs (7 Congeners)	2815	М	mg/kg	< 0.10	1		
TPH Total WAC	2670	М	mg/kg	< 10	500		
Total (Of 17) PAH's	2800	N	mg/kg	< 2.0	100		
рН	2010	М		8.6		>6	
Acid Neutralisation Capacity	2015	N	mol/kg	< 0.0020		To evaluate	To evaluate
Eluate Analysis			10:1 Eluate	10:1 Eluate	Limit values for compliance leaching test		eaching test
			mg/l	mg/kg	using BS EN 12457 at L/S 10 l/kg		6 10 l/kg
Arsenic	1455	U	0.0014	0.014	0.5	2	25
Barium	1455	U	0.008	0.080	20	100	300
Cadmium	1455	U	< 0.00011	< 0.0011	0.04	1	5
Chromium	1455	U	0.0013	0.013	0.5	10	70
Copper	1455	U	0.0032	0.032	2	50	100
Mercury	1455	U	< 0.00005	< 0.00050	0.01	0.2	2
Molybdenum	1455	U	0.0016	0.016	0.5	10	30
Nickel	1455	U	0.0012	0.012	0.4	10	40
Lead	1455	U	< 0.0005	< 0.0050	0.5	10	50
Antimony	1455	U	< 0.0005	< 0.0050	0.06	0.7	5
Selenium	1455	U	0.0006	0.0063	0.1	0.5	7
Zinc	1455	U	0.004	0.038	4	50	200
Chloride	1220	U	4.4	44	800	15000	25000
Fluoride	1220	U	0.44	4.4	10	150	500
Sulphate	1220	U	< 1.0	< 10	1000	20000	50000
Total Dissolved Solids	1020	Ν	85	840	4000	60000	100000
Phenol Index	1920	U	< 0.030	< 0.30	1	-	-
Dissolved Organic Carbon	1610	U	7.2	72	500	800	1000

Solid Information	
Dry mass of test portion/kg	0.090
Moisture (%)	12

Waste Acceptance Criteria

Landfill WAC analysis (specifically leaching test results) must not be used for hazardous waste classification purposes. This analysis is only applicable for hazardous waste landfill acceptance and does not give any indication as to whether a waste may be hazardous or non-hazardous.

Test Methods

SOP	Title	Parameters included	Method summary
1010	pH Value of Waters	рН	pH Meter
1020	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Electrical Conductivity and Total Dissolved Solids (TDS) in Waters	Conductivity Meter
1220	Anions, Alkalinity & Ammonium in Waters	Fluoride; Chloride; Nitrite; Nitrate; Total; Oxidisable Nitrogen (TON); Sulfate; Phosphate; Alkalinity; Ammonium	Automated colorimetric analysis using 'Aquakem 600' Discrete Analyser.
1455	Metals in Waters by ICP-MS	Metals, including: Antimony; Arsenic; Barium; Beryllium; Boron; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Tin; Vanadium; Zinc	determination by inductively coupled plasma
1610	Total/Dissolved Organic Carbon in Waters	Organic Carbon	TOC Analyser using Catalytic Oxidation
1920	Phenols in Waters by HPLC	Phenolic compounds including: Phenol, Cresols, Xylenols, Trimethylphenols Note: Chlorophenols are excluded.	Determination by High Performance Liquid Chromatography (HPLC) using electrochemical detection.
2010	pH Value of Soils	рН	pH Meter
2015	Acid Neutralisation Capacity	Acid Reserve	Titration
	Moisture and Stone Content of Soils(Requirement of MCERTS)	Moisture content	Determination of moisture content of soil as a percentage of its as received mass obtained at <37°C.
2040	Soil Description(Requirement of MCERTS)	Soil description	As received soil is described based upon BS5930
2120	Water Soluble Boron, Sulphate, Magnesium & Chromium	Boron; Sulphate; Magnesium; Chromium	Aqueous extraction / ICP-OES
2180	Sulphur (Elemental) in Soils by HPLC	Sulphur	Dichloromethane extraction / HPLC with UV detection
2192	Asbestos	Asbestos	Polarised light microscopy / Gravimetry
2300	Cyanides & Thiocyanate in Soils	Free (or easy liberatable) Cyanide; total Cyanide; complex Cyanide; Thiocyanate	Allkaline extraction followed by colorimetric determination using Automated Flow Injection Analyser.
2325	Sulphide in Soils	Sulphide	Steam distillation with sulphuric acid / analysis by 'Aquakem 600' Discrete Analyser, using N,N–dimethyl-p-phenylenediamine.
2430	Total Sulphate in soils	Total Sulphate	Acid digestion followed by determination of sulphate in extract by ICP-OES.
2455	Acid Soluble Metals in Soils	Metals, including: Arsenic; Barium; Beryllium; Cadmium; Chromium; Cobalt; Copper; Lead; Manganese; Mercury; Molybdenum; Nickel; Selenium; Vanadium; Zinc	Acid digestion followed by determination of metals in extract by ICP-MS.
2490	Hexavalent Chromium in Soils	Chromium [VI]	Soil extracts are prepared by extracting dried and ground soil samples into boiling water. Chromium [VI] is determined by 'Aquakem 600' Discrete Analyser using 1,5-diphenylcarbazide.
2610	Loss on Ignition	loss on ignition (LOI)	Determination of the proportion by mass that is lost from a soil by ignition at 550°C.
2625	Total Organic Carbon in Soils	Total organic Carbon (TOC)	Determined by high temperature combustion under oxygen, using an Eltra elemental analyser.
2670	Total Petroleum Hydrocarbons (TPH) in Soils by GC-FID	TPH (C6–C40); optional carbon banding, e.g. 3- band – GRO, DRO & LRO*TPH C8–C40	Dichloromethane extraction / GC-FID
2680	TPH A/A Split	Aliphatics: >C5–C6, >C6–C8,>C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21– C35, >C35–C44Aromatics: >C5–C7, >C7–C8, >C8–C10, >C10–C12, >C12–C16, >C16–C21, >C21–C35, >C35–C44	Dichloromethane extraction / GCxGC FID detection

Test Methods

SOP	Title	Parameters included	Method summary
2760	Volatile Organic Compounds (VOCs) in Soils by Headspace GC-MS	Volatile organic compounds, including BTEX and halogenated Aliphatic/Aromatics.(cf. USEPA Method 8260)*please refer to UKAS schedule	Automated headspace gas chromatographic (GC) analysis of a soil sample, as received, with mass spectrometric (MS) detection of volatile organic compounds.
2800	Speciated Polynuclear Aromatic Hydrocarbons (PAH) in Soil by GC-MS	Acenaphthene*; Acenaphthylene; Anthracene*; Benzo[a]Anthracene*; Benzo[a]Pyrene*; Benzo[b]Fluoranthene*; Benzo[ghi]Perylene*; Benzo[k]Fluoranthene; Chrysene*; Dibenz[ah]Anthracene; Fluoranthene*; Fluorene*; Indeno[123cd]Pyrene*; Naphthalene*; Phenanthrene*; Pyrene*	Dichloromethane extraction / GC-MS
2815	Polychlorinated Biphenyls (PCB) ICES7Congeners in Soils by GC-MS	ICES7 PCB congeners	Acetone/Hexane extraction / GC-MS
2920	Phenols in Soils by HPLC	Phenolic compounds including Resorcinol, Phenol, Methylphenols, Dimethylphenols, 1- Naphthol and TrimethylphenolsNote: chlorophenols are excluded.	60:40 methanol/water mixture extraction, followed by HPLC determination using electrochemical detection.
640	Characterisation of Waste (Leaching C10)	Waste material including soil, sludges and granular waste	ComplianceTest for Leaching of Granular Waste Material and Sludge

Report Information

Key	
U	UKAS accredited
М	MCERTS and UKAS accredited
Ν	Unaccredited
S	This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis
SN	This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
Т	This analysis has been subcontracted to an unaccredited laboratory
I/S	Insufficient Sample
U/S	Unsuitable Sample
N/E	not evaluated
<	"less than"
>	"greater than"
SOP	Standard operating procedure
LOD	Limit of detection
	Comments or interpretations are beyond the scope of LIKAS appreditation

Comments or interpretations are beyond the scope of UKAS accreditation The results relate only to the items tested

Uncertainty of measurement for the determinands tested are available upon request None of the results in this report have been recovery corrected All results are expressed on a dry weight basis

The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis TPH, BTEX, VOCs, SVOCs, PCBs, Phenols

For all other tests the samples were dried at < 37°C prior to analysis All Asbestos testing is performed at the indicated laboratory

Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1

Sample Deviation Codes

- A Date of sampling not supplied
- B Sample age exceeds stability time (sampling to extraction)
- C Sample not received in appropriate containers
- D Broken Container
- E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 30 days from the date of receipt All water samples will be retained for 14 days from the date of receipt Charges may apply to extended sample storage

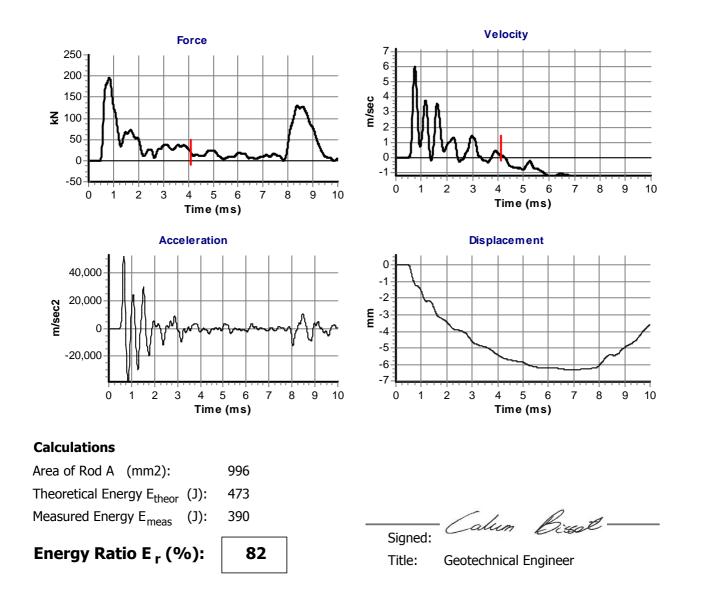
If you require extended retention of samples, please email your requirements to: <u>customerservices@chemtest.com</u>

APPENDIX I SPT HAMMER ENERGY MEASUREMENT REPORT

SPT Hammer Energy Report

BAM Ritchies Glasgow Road Kilsyth G65 9BL

Instrumented Rod Data

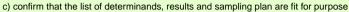

Diameter d_r (mm):54Wall Thickness t_r (mm):6.7Assumed Modulus E_a (GPa):208Accelerometer No.1:5844Accelerometer No.2:5845

SPT Hammer Ref:	AI2	
Test Date:	20/12/2021	10:41
Report Date:	21/12/2021	
File Name:	AI2.spt	
Test Operator:	PH	

SPT Hammer Information

Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 SPT String Length L (m): 17.0

Comments / Location


APPENDIX J WASTE CLASSIFICATION REPORT

Waste Classification Report

HazWasteOnline™ classifies waste as either **hazardous** or **non-hazardous** based on its chemical composition, related legislation and the rules and data defined in the current UK or EU technical guidance (Appendix C) (note that HP 9 Infectious is not assessed). It is the responsibility of the classifier named below to:

- a) understand the origin of the waste
- b) select the correct List of Waste code(s)

- d) select and justify the chosen metal species (Appendix B)
- e) correctly apply moisture correction and other available corrections
- f) add the meta data for their user-defined substances (Appendix A)
- g) check that the classification engine is suitable with respect to the national destination of the waste (Appendix C)

To aid the reviewer, the laboratory results, assumptions and justifications managed by the classifier are highlighted in pale yellow.

Job name

22-1165 Remount Phase2

Description/Comments

Assessment of soil samples collected during September 2022 GI

Project 22-1165

Classified by

·····			
Name: Stephen Franey	Company: Causeway Geotech Ltd	HazWasteOnline™ provides a two day, hazardous waste class of the software and both basic and advanced waste classificati be renewed every 3 years.	
Date: 27 Oct 2022 10:33 GMT	8 Drumahiskey Road Ballymoney	HazWasteOnline™ Certification:	CERTIFIED
Telephone:	BT53 7QL	Course	Date
028 2766 6640		Hazardous Waste Classification	06 Aug 2020

Site

Remount Phase 2

Next 3 year Refresher due by Aug 2023

Job summary

#	# Sample name	Depth [m]	Classification Result	Hazard properties	WAC Results		– Page
#		Deptir [iii] Classification Result	Tiazard properties	Inert	Non Haz		
1	BH04-07/09/2022-0.4	0.4	Non Hazardous		Pass	Pass	2
2	BH04-07/09/2022-2.0	2.0	Non Hazardous		Fail	Pass	6
3	BH01-08/09/2022-0.40	0.40	Non Hazardous		Fail	Pass	10
4	BH02-08/09/2022-0.30	0.30	Non Hazardous		Pass	Pass	14

Related documents

# Name	Description
1 22-1165_RemountPhase2_Env.batch	Eurofins Chemtest .batch file used to populate the Job
2 HWOL_22-34542-20220926 151748.hwol	Eurofins Chemtest .hwol file used to populate the Job
3 HWOL_22-34771-20221027 110918.hwol	Eurofins Chemtest .hwol file used to populate the Job
4 Example waste stream template for contaminated soils	waste stream template used to create this Job

WAC results

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate the samples in this Job: "Ireland"

The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

Report

Created by: Stephen Franey

Created date: 27 Oct 2022 10:33 GMT

Appendices	Page
Appendix A: Classifier defined and non EU CLP determinands	18
Appendix B: Rationale for selection of metal species	19
Appendix C: Version	20

HazWasteOnline[™]

Classification of sample: BH04-07/09/2022-0.4

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

Sample details

Sample name:	LoW Code:
BH04-07/09/2022-0.4	Chapter:
Sample Depth:	
0.4 m	Entry:
Moisture content:	
13%	
(wet weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 13% Wet Weight Moisture Correction applied (MC)

#		EU CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	l data	Conv. Factor	Compound o	conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimon 051-005-00-X	ny trioxide } 215-175-0	1309-64-4		<2	mg/kg	1.197	<2.394	mg/kg	<0.000239 %		<lod< td=""></lod<>
2	4	-	<mark>ioxide</mark> } 215-481-4	1327-53-3		16	mg/kg	1.32	18.379	mg/kg	0.00184 %	\checkmark	
-	•			1327-33-3	-								
3	44	boron { diboron trioxide } 005-008-00-8 215-125-8 1303-86-2				0.97	mg/kg	3.22	2.717	mg/kg	0.000272 %	\checkmark	
-	•			1303-00-2									
4	4		215-146-2	1306-19-0	{	0.38	mg/kg	1.142	0.378	mg/kg	0.0000378 %	\checkmark	
5	4	chromium in chrom <mark>oxide (worst case)</mark>	nium(III) compounds			22	mg/kg	1.462	27.974	mg/kg	0.0028 %	~	
6	4	compounds, with th	ium(VI) compounds ne exception of bariu cified elsewhere in t	um chromate and		<0.5	mg/kg	2.27	<1.135	mg/kg	<0.000113 %		<lod< td=""></lod<>
	A	copper { dicopper oxide; copper (I) oxide }									a 40 7 a/		
7	•••		215-270-7	1317-39-1	{	1400	mg/kg	1.126	1371.332	mg/kg	0.137 %	\checkmark	
	æ	lead { lead chroma	te }			400		4.50	100.045		0.0101.0/		
8	~		231-846-0	7758-97-6	1	120	mg/kg	1.50	162.845	mg/kg	0.0104 %	\checkmark	
9	æ	mercury { mercury	dichloride }	1		0.00		4 252	0.00.10		0.00000040.0/	,	
9			231-299-8	7487-94-7	1	0.08	тід/кд	1.353	0.0942	mg/kg	0.00000942 %	\checkmark	
10	æ	molybdenum { moly	ybdenum(VI) oxide	}		5	mg/kg	1.5	6.526	mg/kg	0.000653 %	,	
			215-204-7	1313-27-5	1	5	iiig/kg	1.5	0.520	шу/ку	0.0000000 /8	\checkmark	
11	4	nickel { <mark>nickel chro</mark> r	mate }			23	ma/ka	2.976	59.555	mg/kg	0.00596 %	\checkmark	
		028-035-00-7	238-766-5	14721-18-7	1							ľ	
12	4			45000 00 5		1.4	mg/kg	2.554	3.111	mg/kg	0.000311 %	\checkmark	
<u> </u>	0		239-125-2	15060-62-5	-								
13	44		<mark>e</mark> } 236-878-9	13530-65-9		50	mg/kg	2.774	120.675	mg/kg	0.0121 %	\checkmark	
14		tert-butyl methyl etl 2-methoxy-2-methy	her; MTBE; /lpropane	1		<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
-		603-181-00-X benzene	216-653-1	1634-04-4	-								
15			200-753-7	71-43-2		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ethylbenzene 601-023-00-4 xylene 601-022-00-9 cyanides { salts exception of compli- ferricyanides and m specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	ex cyanides such a nercuric oxycyanide	as ferrocyanides,	CLP Note	User entered <0.001 <0.002 0.5	mg/kg mg/kg mg/kg	Factor		value kg <0.0000001 % kg <0.0000001 % kg <0.0000002 %	MC Applied	<lod <lod <lod< th=""></lod<></lod </lod
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	601-021-00-3 ethylbenzene 601-023-00-4 xylene 601-022-00-9 cyanides { salts exception of compli- ferricyanides and m specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanide ex cyanides such a hercuric oxycyanide e in this Annex }	100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the is ferrocyanides, e and those		<0.001	mg/kg		<0.001 mg	kg <0.0000001 %		<lod< th=""></lod<>
$\begin{array}{c} 7 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 8 \\ \hline \\ 6 \\ \hline \\ 6 \\ \hline \\ 6 \\ \hline \\ 7 \\ \hline \hline \hline \hline$	ethylbenzene 601-023-00-4 xylene 601-022-00-9 cyanides { salts exception of comple ferricyanides and m specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	202-849-4 202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanide ex cyanides such a hercuric oxycyanide e in this Annex }	100-41-4 95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the is ferrocyanides, e and those		<0.002	mg/kg					
$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$	601-023-00-4 xylene 601-022-00-9 cyanides { salts exception of compli- ferricyanides and n specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanide ex cyanides such a hercuric oxycyanide e in this Annex }	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides, e and those		<0.002	mg/kg					
$\begin{array}{c} 2 \\ 3 \\ 6 \\ 6 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7 \\ 7$	xylene 601-022-00-9 cyanides { salts exception of compli- ferricyanides and ri- specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanide ex cyanides such a hercuric oxycyanide e in this Annex }	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides, e and those					<0.002 mg	kg <0.0000002 %		<lod< td=""></lod<>
	cyanides { salts exception of comple ferricyanides and m specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	203-396-5 [2] 203-576-3 [3] 215-535-7 [4] of hydrogen cyanid ex cyanides such a tercuric oxycyanide e in this Annex }	106-42-3 [2] 108-38-3 [3] 1330-20-7 [4] de with the as ferrocyanides, e and those					<0.002 mg	kg <0.0000002 %		<lod< td=""></lod<>
19 1 20 1 21 6 22 2 23 2	exception of compli- ferricyanides and m specified elsewhere 006-007-00-5 pH naphthalene 601-052-00-2 acenaphthylene	ex cyanides such a rercuric oxycyanide e in this Annex }	as ferrocyanides, e and those		0.5	mg/kg					
20 • 1 21 • 6 222 • 6 233 • 6	pH naphthalene 601-052-00-2 acenaphthylene	202-049-5	PH				1.884	0.82 mg	kg 0.000082 %	~	
20 22 21 1 6 22 2 2 4 23 2 4	naphthalene 601-052-00-2 acenaphthylene	202-049-5	PH								
21 22 • 6 22 • 6 23 • 6	601-052-00-2 acenaphthylene	202-049-5	ΡΗ		8.4	pН		8.4 pH	8.4 pH		
21 22 • 6 22 • 6 23 • 6	601-052-00-2 acenaphthylene	202-049-5									
22 • · · · · · · · · · · · · · · · · · ·	acenaphthylene	202-049-5	04.00.0		<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
23			91-20-3	_							
23		205-917-1	208-96-8	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
					<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
. ₀ 1		201-469-6	83-32-9	+						\square	
-4	fluorene	201-695-5	86-73-7	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	phenanthrene	1									
25		201-581-5	85-01-8	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
26 • 6	anthracene				<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
		204-371-1	120-12-7								
27	fluoranthene	205-912-4	206-44-0	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
28 • 1	pyrene				<0.1	mg/kg		<0.1 mg	/kg <0.00001 %		<lod< td=""></lod<>
		204-927-3	129-00-0	_							
9	benzo[a]anthracen				<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
		200-280-6	56-55-3								
30	chrysene 601-048-00-0	205-923-4	218-01-9	_	<0.1	mg/kg		<0.1 mg	'kg <0.00001 %		<lod< td=""></lod<>
	benzo[b]fluoranthei	ne						0.4			
31 6	601-034-00-4	205-911-9	205-99-2	-	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	benzo[k]fluoranther			1	0.4			.0.1	ling 10 00004 0/		.1.00
32		205-916-6	207-08-9	-	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	benzo[a]pyrene; be			1	0.4			.0.4	ling 10 00004 0/		.1.00
33		200-028-5	50-32-8	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	indeno[123-cd]pyre			1	0.4			6.1			
34 "		205-893-2	193-39-5	_	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	dibenz[a,h]anthrace			1	0.4			<u></u>			
35		200-181-8	53-70-3	-	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	benzo[ghi]perylene			-				<u></u>			
86 "		205-883-8	191-24-2	-	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
,_ _ I	polychlorobiphenyl			1	2.4			6.4			
37		215-648-1	1336-36-3	-	<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
38 🔏 🤅	sulfur { <mark>sulfur</mark> }				<1	mg/kg		<1 mg	/kg <0.0001 %		<lod< td=""></lod<>
	016-094-00-1	231-722-6	7704-34-9	_							
	barium { [®] barium		21100 05 5		88	mg/kg	1.233	94.436 mg	′kg 0.00944 %	\checkmark	
		244-214-4	21109-95-5	-							
10 0	coronene		4.04.07.4		<0.1	mg/kg		<0.1 mg	′kg <0.00001 %		<lod< td=""></lod<>
	monohydric phenol	205-881-7 s	191-07-1	+					-	\vdash	
1	, and phonon	-	P1186		<0.1	mg/kg		<0.1 mg	/kg <0.00001 % :al: 0.182 %		<lod< td=""></lod<>

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: BH04-07/09/2022-0.4

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	ptance Criteria Limits
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.4	3	5
2	LOI (loss on ignition)	%	10	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	рН	pН	8.4	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	0.013	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.0079	0.5	2
10	barium	mg/kg	<0.05	20	100
11	cadmium	mg/kg	<0.0011	0.04	1
12	chromium	mg/kg	<0.005	0.5	10
13	copper	mg/kg	0.016	2	50
14	mercury	mg/kg	<0.0005	0.01	0.2
15	molybdenum	mg/kg	0.045	0.5	10
16	nickel	mg/kg	0.0093	0.4	10
17	lead	mg/kg	<0.005	0.5	10
18	antimony	mg/kg	0.0052	0.06	0.7
19	selenium	mg/kg	<0.005	0.1	0.5
20	zinc	mg/kg	<0.025	4	50
21	chloride	mg/kg	<10	800	15,000
22	fluoride	mg/kg	2.4	10	150
23	sulphate	mg/kg	<10	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	<50	500	800
26	TDS (total dissolved solids)	mg/kg	1200	4,000	60,000

Key

User supplied data

Classification of sample: BH04-07/09/2022-2.0

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.....

Sample details

Sample name:	LoW Code:
BH04-07/09/2022-2.0	Chapter:
Sample Depth:	
2.0 m	Entry:
Moisture content:	
14%	
(wet weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 14% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony {		<2	mg/kg	1.197	<2.394 mg	<g %<="" <0.000239="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
	-								-	
2	4	033-003-00-0 215-481-4 1327-53-3		12	mg/kg	1.32	13.626 mg	kg 0.00136 %	\checkmark	
	æ		+						+	
3	66	005-008-00-8 215-125-8 1303-86-2		0.67	mg/kg	3.22	1.855 mg	kg 0.000186 %	\checkmark	
	æ								+	
4	•••	048-002-00-0 215-146-2 1306-19-0	-	0.68	mg/kg	1.142	0.668 mg	kg 0.0000668 %	\checkmark	
5	4			28	mg/kg	1.462	35.194 mg	(g 0.00352 %)	~	
6	4	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.5	mg/kg	2.27	<1.135 mg	<g %<="" <0.000113="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
		copper { dicopper oxide; copper (I) oxide }	-						-	
7	44	029-002-00-X 215-270-7 1317-39-1	-	28	mg/kg	1.126	27.111 mg	kg 0.00271 %	\checkmark	
	æ								+	
8	•••	082-004-00-2 231-846-0 7758-97-6	1	27	mg/kg	1.56	36.219 mg	kg 0.00232 %	\checkmark	
	æ	mercury { mercury dichloride }		0.05		4.050	0.0077	0.0000077.0/	i -	1.00
9	~	080-010-00-X 231-299-8 7487-94-7	1	<0.05	mg/kg	1.353	<0.0677 mg	<g %<="" <0.0000677="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
10	æ	molybdenum { molybdenum(VI) oxide }		1.8	ma/ka	1.5	2.322 ma	(g 0.000232 %	Τ,	
10		042-001-00-9 215-204-7 1313-27-5	1	1.0	mg/kg	1.5	2.322 mg	kg 0.000232 %	\checkmark	
11	4	nickel { nickel chromate }		39	ma/ka	2.976	99.824 mg	(g 0.00998 %	\checkmark	
		028-035-00-7 238-766-5 14721-18-7				2.070			Ň	
12	4			0.9	ma/ka	2.554	1.977 mg	(g 0.000198 %	1	
		028-031-00-5 239-125-2 15060-62-5						3	Ľ	
13	4	zinc { zinc chromate }		52	mg/kg	2.774	124.06 mg	kg 0.0124 %	\checkmark	
		024-007-00-3 236-878-9 13530-65-9	_						1	
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4							_	
15		benzene 601-020-00-8 200-753-7 71-43-2	-	<0.001	mg/kg		<0.001 mg	<g %<="" <0.000001="" td=""><td></td><td><lod< td=""></lod<></td></g>		<lod< td=""></lod<>

#		Determinand			Note	User entered o		Conv. Factor	Compound conc.		Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLPI			Factor			value	MC A	Used
16		toluene	1			<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	_	601-021-00-3	203-625-9	108-88-3	_							_	
17		ethylbenzene	boo 840 4	400 44 4	_	<0.001	mg/kg		<0.001	mg/kg	<0.000001 %		<lod< td=""></lod<>
	_	601-023-00-4 xylene	202-849-4	100-41-4	+								
18		601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.000002 %		<lod< td=""></lod<>
19	4	exception of compl ferricyanides and r specified elsewher	of hydrogen cyanid ex cyanides such a nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
		006-007-00-5			_							_	
20	۲	рН	1	DU		8.6	pН		8.6	pН	8.6 pH		
		nonhthologo		PH	+								
21		naphthalene 601-052-00-2	202 040 F	91-20-3		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		acenaphthylene	202-049-5	51-20-3	+							⊢	
22	۵	acenapriciyiene	205-917-1	208-96-8	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	acenaphthene		200 00 0		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
24	۵	fluorene	201-695-5	86-73-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		nhananthrana	201-033-3	00-73-7	-							-	
25	•	phenanthrene	201-581-5	85-01-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	-	anthracene	201-361-3	05-01-0	+							-	
26		anandoene	204-371-1	120-12-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	0	fluoranthene	2040711	120 12 1	+								
27	-		205-912-4	206-44-0	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
28		pyrene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20			204-927-3	129-00-0		<0.1	шу/ку		<0.1	шу/ку	<0.00001 /8		LOD
29		benzo[a]anthracen	e			<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
25		601-033-00-9	200-280-6	56-55-3		NO.1	iiig/kg			ing/kg			
30		chrysene				<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-048-00-0	205-923-4	218-01-9	_								
31		benzo[b]fluoranthe			_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-034-00-4	205-911-9	205-99-2	_							_	
32		benzo[k]fluoranthe		007.00.0	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-036-00-5	205-916-6	207-08-9	+							-	
33		benzo[a]pyrene; be 601-032-00-3	200-028-5	50.32.9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		indeno[123-cd]pyre		50-32-8	+								
34	8		205-893-2	193-39-5	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		dibenz[a,h]anthrac	1		+								
35		601-041-00-2	200-181-8	53-70-3	-	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[ghi]perylene		1	+	0.4			<u> </u>		0.00001.01		
36			205-883-8	191-24-2	-	<0.1	mg/kg		<0.1	ing/kg	<0.00001 %		<lod< td=""></lod<>
37		polychlorobiphenyl	s; PCB			<0.1	mg/kg		<0.1	malka	<0.00001 %		<lod< td=""></lod<>
51		602-039-00-4	215-648-1	1336-36-3		<0.1	mg/kg		<0.1	ing/kg	<0.00001 %		
38	4	sulfur { <mark>sulfur</mark> }	004 700 0	7704 6 4 6		1.2	mg/kg		1.032	mg/kg	0.000103 %	\checkmark	
_	•	016-094-00-1	231-722-6	7704-34-9	+							-	
39		barium { [®] barium		[73	mg/kg	1.233	77.439	mg/kg	0.00774 %	\checkmark	
_		016-002-00-X	244-214-4	21109-95-5	+-								
40	۲	coronene	bor 004 -	404.07.4		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
_		monologist	205-881-7	191-07-1	_							-	
41	۲	monohydric pheno	IS	P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			1								0.0415 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
Θ	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: BH04-07/09/2022-2.0

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample FAILS the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis	Landfill Waste Acce	ptance Criteria Limits		
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill
1	TOC (total organic carbon)	%	1.2	3	5
2	LOI (loss on ignition)	%	3.4	-	-
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-
7	рН	pН	8.6	-	>6
8	ANC (acid neutralisation capacity)	mol/kg	0.009	-	-
	Eluate Analysis 10:1				
9	arsenic	mg/kg	0.033	0.5	2
10	barium	mg/kg	0.059	20	100
11	cadmium	mg/kg	<0.0011	0.04	1
12	chromium	mg/kg	0.033	0.5	10
13	copper	mg/kg	0.063	2	50
14	mercury	mg/kg	<0.0005	0.01	0.2
15	molybdenum	mg/kg	0.017	0.5	10
16	nickel	mg/kg	0.038	0.4	10
17	lead	mg/kg	0.1	0.5	10
18	antimony	mg/kg	0.067	0.06	0.7
19	selenium	mg/kg	<0.005	0.1	0.5
20	zinc	mg/kg	<0.025	4	50
21	chloride	mg/kg	13	800	15,000
22	fluoride	mg/kg	3.4	10	150
23	sulphate	mg/kg	11	1,000	20,000
24	phenol index	mg/kg	<0.3	1	-
25	DOC (dissolved organic carbon)	mg/kg	<50	500	800
26	TDS (total dissolved solids)	mg/kg	670	4,000	60,000

Key

User supplied data

Inert WAC criteria fail

Classification of sample: BH01-08/09/2022-0.40

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
BH01-08/09/2022-0.40	Chapter:
Sample Depth:	
0.40 m	Entry:
Moisture content:	
11%	
(wet weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 11% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound con-	c.	Classification value	MC Applied	Conc. Not Used
1	4	antimony {		<2	mg/kg	1.197	<2.394 m	g/kg	<0.000239 %		<lod< td=""></lod<>
	•		-							-	
2	4	033-003-00-0 215-481-4 1327-53-3	-	18	mg/kg	1.32	21.152 m	g/kg	0.00212 %	\checkmark	
			-							+	
3	4	005-008-00-8 215-125-8 1303-86-2	-	0.87	mg/kg	3.22	2.493 m	g/kg	0.000249 %	\checkmark	
	æ									-	
4	•••	048-002-00-0 215-146-2 1306-19-0		1	mg/kg	1.142	1.017 m	g/kg	0.000102 %	\checkmark	
5	4			29	mg/kg	1.462	37.723 m	g/kg	0.00377 %	~	
6	*	chromium in chromium(VI) compounds { chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex } 024-017-00-8		<0.5	mg/kg	2.27	<1.135 m	g/kg	<0.000113 %		<lod< td=""></lod<>
	•	copper { dicopper oxide; copper (I) oxide }	-							-	
7	4	029-002-00-X 215-270-7 1317-39-1		32	mg/kg	1.126	32.065 m	g/kg	0.00321 %	\checkmark	
	æ				mg/kg				-		
8	•••	082-004-00-2 231-846-0 7758-97-6	1	24		1.56	33.318 m	mg/kg	0.00214 %	\checkmark	
	æ	mercury { mercury dichloride }				1.353		mg/kg	0.00000964 %		
9	•	080-010-00-X 231-299-8 7487-94-7		0.08	mg/kg		0.0964 m			\checkmark	
10	æ	molybdenum { molybdenum(VI) oxide }		2.9		1.5	3.872 m	~///~	0.000387 %		
10	-	042-001-00-9 215-204-7 1313-27-5		2.9	mg/kg	1.5	3.872 11	g/kg	0.000387 %	\checkmark	
11	4	nickel { nickel chromate }		40	ma/ka	2.976	105.955 m	mg/kg	0.0106 %	\checkmark	
		028-035-00-7 238-766-5 14721-18-7			ing/itg	2.570	100.000		0.0100 /0	~	
12	4			1.7	ma/ka	2.554	3.864 m	g/kg	0.000386 %	1	
		028-031-00-5 239-125-2 15060-62-5						0 0		-	
13	4	zinc { zinc chromate }		49	mg/kg	2.774	120.981 m	g/kg	0.0121 %	\checkmark	
		024-007-00-3 236-878-9 13530-65-9									
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>
		603-181-00-X 216-653-1 1634-04-4								_	
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 m	g/kg	<0.0000001 %		<lod< td=""></lod<>

EU CLP Index EC Number CAS Number G Control S 18 EU Outone	Conv. Factor Compound conc.		Classification	Applied	Conc. Not
10 501-021-00-3 203-625-9 100-88-3 -0.001 mg/kg 17 e thyberzene			value	MC A	Used
17 a bitybenzene	<0.001 mg/kg		<0.000001 %		<lod< td=""></lod<>
17 501-023-00-4 202-849-4 100-41-4 20001 mgkg < 18 501-023-00-9 202-422-2 [1] 106-42-3 [2] 203-396-5 [3] 106-43-3 [2] 200-376-5 [3] 106-42-3 [2] 200-376-5 [3] 106-42-3 [2] 200-376-5 [3] 106-42-3 [2] 200-376-5 [3] 200-376-5 [3] 106-42-3 [2] 200-376-5 [3]				-	
xylene xylene<	<0.001 mg/kg		<0.0000001 %		<lod< td=""></lod<>
18 \$01-022-00-9 202-422-2[1] 35-47-6[1] 106-36-3[3] <0.002		<u> </u>		-	
19 Spanoc 1 and the control of complex symiles such as ferrocyanides, specified elsewhere in this Annex } <0.5	<0.002 mg/kg		<0.0000002 %		<lod< td=""></lod<>
20 pH PH 8.7 pH 21 naphthalene 601-052-00-2 202-049-5 91-20-3 <0.1	<0.942 mg/kg	1.8	<0.0000942 %		<lod< td=""></lod<>
20 i i PH 8.7 PH i i 21 inaphthalene inaphthalene inaphthalene inaphthalene i				<u>+</u>	
21 naphthalene <0.1	8.7 pH		8.7 pH		
21 601-052-00-2 202-049-5 91-20-3 <0.1				+-	
B01-052-00-2 PD2-049-5 P1-20-3 - </td <td><0.1 mg/kg</td> <td></td> <td><0.00001 %</td> <td></td> <td><lod< td=""></lod<></td>	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
22 205-917-1 $206-917-1$ $206-96-8$ < 0.1 mg/kg < 0.1 23 a cenaphthene $201-469-6$ $83-32-9$ < 0.1 mg/kg < 0.1 24 fluorene $201-695-5$ $86-73-7$ < 0.1 mg/kg < 0.1 25 $phenanthrene$ $201-581-5$ $85-01-8$ 0.15 mg/kg < 0.1 26 anthracene $204-371-1$ $120-12-7$ 0.37 mg/kg < 0.1 27 fluoranthene $205-912-4$ $206-44-0$ 0.28 mg/kg < 0.1 28 pVrene $205-912-4$ $206-44-0$ 0.5 mg/kg < 0.1 29 benzo[a]anthracene 0.5 mg/kg < 0.5 mg/kg < 0.5 30 chrysne $56-55-3$ 1.6 mg/kg < 0.5 mg/kg < 0.5 31 benzo[a]princhene 1.9 mg/kg < 0.5 mg/kg < 0.5 < 0.5 $ 0.5 0.5 0.5 0.5 0.5 0.5 0.5 $				4	
23 acenaphthene 201-469-6 \$3-32-9 <0.1	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
24 • fluorene <0.1	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
24 201-695-5 86-73-7 <0.1				-	
25 phenanthrene 0.15 mg/kg 26 anthracene 0.37 mg/kg 27 fluoranthene 0.37 mg/kg 27 fluoranthene 0.28 mg/kg 28 pyrene 0.5 mg/kg 28 pyrene 0.5 mg/kg 29 benzo[a]anthracene 0.5 mg/kg 601-033-00-9 200-280-6 56-55-3 1.6 mg/kg 30 chrysene 1.9 mg/kg 1.9 601-048-00-0 205-923-4 218-01-9 1.9 mg/kg 31 benzo[k]fluoranthene 1.7 mg/kg 601-034-00-4 205-914-6 207-08-9 1.6 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 1.6 601-034-00-5 205-916-6 207-08-9 1.6 mg/kg 33 benzo[k]fluoranthene 1.6 mg/kg 1.6 601-032-00-5 205-916-6 207-08-9 1.6 mg/kg	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		-		1	
26 anthracene 204-371-1 $ 20-12-7$ 0.37 mg/kg 27 fluoranthene 205-912-4 $206-44-0$ 0.28 mg/kg 28 pyrene 0.5 mg/kg 129-00-0 29 benzo[a]anthracene 129-00-0 0.5 mg/kg 30 chrysene 1.6 mg/kg 601-033-00-9 205-923-4 218-01-9 1.6 mg/kg 31 benzo[b]fluoranthene 1.9 mg/kg 601-034-00-4 205-91-9 205-99-2 1.7 mg/kg 32 benzo[k]fluoranthene 205-91-6 207-08-9 1.6 mg/kg 33 benzo[k]fluoranthene 1.6 mg/kg 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 1.6 mg/kg 35 dibenz[a,h]anthracene 53-70-3 2 mg/kg 1.7 mg/kg 36 benzo[qhi]prylene 1.7 mg/kg <	0.134 mg/kg		0.0000134 %	\checkmark	
27 fluoranthene 0.28 mg/kg 28 pyrene 0.5 mg/kg 28 pyrene 0.5 mg/kg 29 benzo[a]anthracene 1.6 mg/kg 30 chrysene 1.6 mg/kg 601-033-00-9 205-923-4 218-01-9 1.9 mg/kg 31 benzo[b]fluoranthene 1.7 mg/kg 601-034-00-4 205-911-9 205-99-2 1.7 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 601-032-00-3 205-916-6 207-08-9 1.6 mg/kg 33 benzo[k]fluoranthene 1.6 mg/kg 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 1.6 mg/kg 34 idbenz[a,h]anthracene 50-32-8 1.6 mg/kg 1.6 mg/kg 35 dibenz[a,h]anthracene 50-32-8 1.6 mg/kg 1.7 mg/kg 1.7 mg/kg 1.8 1.8 mg/kg 1.6 mg/kg 1.7 mg/kg 1.8 1.6 </td <td>0.329 mg/kg</td> <td></td> <td>0.0000329 %</td> <td>\checkmark</td> <td></td>	0.329 mg/kg		0.0000329 %	\checkmark	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				+	
28 pyrene 0.5 mg/kg 29 benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3 1.6 mg/kg 30 chrysene 601-048-00-0 205-923-4 218-01-9 1.9 mg/kg 31 benzo[b]fluoranthene 601-034-00-4 205-914-9 205-99-2 1.7 mg/kg 32 benzo[k]fluoranthene 601-032-00-5 205-916-6 207-08-9 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 601-041-00-2 200-181-8 53-70-3 2 mg/kg 35 dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB 602-039-00-4 215-648-1 136-36-3 <0.1	0.249 mg/kg		0.0000249 %	\checkmark	
29 benzo[a]anthracene 1.6 mg/kg 30 chrysene 1.6 mg/kg 31 benzo[b]fluoranthene 1.9 mg/kg 31 benzo[b]fluoranthene 1.7 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 33 benzo[k]fluoranthene 1.7 mg/kg 34 benzo[a]anthracene 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 35 dibenz[a,h]anthracene 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB <0.1	0.445 mg/kg		0.0000445 %	\checkmark	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		<u> </u>		+	
30 chrysene 601-048-00-0 205-923-4 218-01-9 1.9 mg/kg 31 benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2 1.7 mg/kg 32 benzo[k]fluoranthene 601-034-00-4 205-911-9 205-99-2 1.6 mg/kg 33 benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9 1.6 mg/kg 1.6 33 benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8 1.6 mg/kg 1.6 34 indeno[123-cd]pyrene 205-893-2 193-39-5 1.6 mg/kg 1.6 1.6 35 dibenz[a,h]anthracene 601-041-00-2 200-181-8 53-70-3 2 mg/kg 1.7 mg/kg 1.7 36 benzo[ghi]perylene 601-041-00-2 200-181-8 53-70-3 1.7 mg/kg <	1.424 mg/kg		0.000142 %	\checkmark	
30 601-048-00-0 205-923-4 218-01-9 1.9 mg/kg 31 benzo[b]fluoranthene 1.7 mg/kg 1.7 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 1.6 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 1.6 mg/kg 33 benzo[k]fluoranthene 1.6 mg/kg 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 1.6 mg/kg 34 indeno[123-cd]pyrene 103-39-5 1.6 mg/kg 1.6 mg/kg 35 idibenz[a,h]anthracene 20-028-5 50-32-8 1.6 mg/kg 1.6 mg/kg 36 benzo[ghi]perylene 1.6 mg/kg 1.6 mg/kg 1.7 mg/kg 1.7 1.7 mg/kg 1.7 1.6 1.6 1.6 1.7 <				+	
31 benzo[b]fluoranthene 1.7 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 35 indeno[123-cd]pyrene 1.6 mg/kg 36 iolenz[a,h]anthracene 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 36 benzo[ghi]perylene 1.6 mg/kg 37 polychlorobiphenyls; PCB 0.1 mg/kg 38 sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9 39 barium { barium sulphide } 76 mg/kg <	1.691 mg/kg		0.000169 %	\checkmark	
31 $0.1-0.34-0.0-4$ $205-911-9$ $205-99-2$ 1.7 mg/kg 32 benzo[k]fluoranthene 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 35 indeno[123-cd]pyrene 1.6 mg/kg 36 benzo[gh]perylene 1.6 mg/kg 37 benzo[gh]perylene 1.7 mg/kg 38 sulfur { sulfur } 001-001 231-722-6 7704-34-9 <				+	
32 benzo[k]fluoranthene 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene; benzo[def]chrysene 1.6 mg/kg 35 indeno[123-cd]pyrene 1.6 mg/kg 36 indeno[123-cd]pyrene 1.6 mg/kg 36 benzo[ghi]perylene 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3 38 sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9 76 mg/kg <	1.513 mg/kg		0.000151 %	\checkmark	
32 01-03-00-5 205-916-6 207-08-9 1.6 mg/kg 33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene 1.6 mg/kg 35 idbenz[a,h]anthracene 2 mg/kg 36 benzo[gh]perylene 1.7 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB 602-039-00-4 215-648-1 1336-36-3 38 sulfur { sulfur } 39 barium { barium sulphide } 76 mg/kg 40 coronene 205-881-7 191-07-1 <				+	
33 benzo[a]pyrene; benzo[def]chrysene 1.6 mg/kg 34 indeno[123-cd]pyrene 1.6 mg/kg 35 idbenz[a,h]anthracene 2 mg/kg 36 benzo[gh]perylene 1.7 mg/kg 36 benzo[gh]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB <0.1	1.424 mg/kg		0.000142 %	\checkmark	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				+	
34 indeno[123-cd]pyrene 1.6 mg/kg 35 $205-893-2$ 193-39-5 2 mg/kg 36 $601-041-00-2$ $200-181-8$ $53-70-3$ 2 mg/kg 36 $benzo[ghi]perylene$ 1.7 mg/kg 1.7 mg/kg 37 $polychlorobiphenyls; PCB$ <0.1	1.424 mg/kg		0.000142 %	\checkmark	
35 dibenz[a,h]anthracene 2 mg/kg 36 dibenz[a,h]anthracene 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 polychlorobiphenyls; PCB <0.1	1.424 mg/kg		0.000142 %	\checkmark	
35 01-041-00-2 200-181-8 53-70-3 2 mg/kg 36 benzo[ghi]perylene 1.7 mg/kg 37 go5-883-8 191-24-2 <0.1				\perp	
601-041-00-2 200-181-8 53-70-3 1	1.78 mg/kg		0.000178 %	\checkmark	
36 205-883-8 191-24-2 1.7 mg/kg 37 polychlorobiphenyls; PCB <0.1			<u> </u>	+	
37 polychlorobiphenyls; PCB 602-039-00-4 polychlorobiphenyls; PCB sulfur { sulfur } sulfur { sulfur } olf-094-00-1 polychlorobiphenyls; PCB c1 mg/kg c1 mg/kg mg/kg 38 sulfur { sulfur } rang/kg <1	1.513 mg/kg		0.000151 %	\checkmark	
37 602-039-00-4 215-648-1 1336-36-3 <0.1				+	
38 sulfur { sulfur } 016-094-00-1 231-722-6 7704-34-9 <1	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
39 ⁴ barium { ⁹ barium sulphide } ¹⁶⁻⁰⁹⁴⁻⁰⁰⁻¹ ²³¹⁻⁷²²⁻⁶ ⁷⁷⁰⁴⁻³⁴⁻⁹ ⁷⁶				⊢	
39 ^a barium { ^b barium sulphide } 016-002-00-X 244-214-4 21109-95-5 40 76 mg/kg 1.233 8 -0.1 mg/kg 1.233 8 -0.1 mg/kg - 40 <u>0</u> -000-00-X -00-00-X	<1 mg/kg		<0.0001 %		<lod< td=""></lod<>
40 coronene <0.1 mg/kg < 205-881-7 191-07-1 <0.1				1	
40 coronene <a> 205-881-7 191-07-1 < 0.1 mg/kg < 	83.434 mg/kg	1.2	0.00834 %	\checkmark	
40 205-881-7 191-07-1 < mg/kg				+	
monohydric phenols	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
	<0.1 mg/kg		<0.00001 %		<lod< td=""></lod<>
P1186	Total:			4	00

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: BH01-08/09/2022-0.40

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample FAILS the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acce	Acceptance Criteria Limits			
#	Determinand		User entered data	Inert waste landfill	Non hazardous waste landfill			
1	TOC (total organic carbon)	%	0.49	3	5			
2	LOI (loss on ignition)	%	8.3	-	-			
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-			
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-			
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-			
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	15	100	-			
7	рН	pН	8.7	-	>6			
8	ANC (acid neutralisation capacity)	mol/kg	0.025	-	-			
	Eluate Analysis 10:1			·				
9	arsenic	mg/kg	<0.002	0.5	2			
10	barium	mg/kg	<0.05	20	100			
11	cadmium	mg/kg	<0.0011	0.04	1			
12	chromium	mg/kg	<0.005	0.5	10			
13	copper	mg/kg	<0.005	2	50			
14	mercury	mg/kg	<0.0005	0.01	0.2			
15	molybdenum	mg/kg	0.023	0.5	10			
16	nickel	mg/kg	<0.005	0.4	10			
17	lead	mg/kg	<0.005	0.5	10			
18	antimony	mg/kg	<0.005	0.06	0.7			
19	selenium	mg/kg	<0.005	0.1	0.5			
20	zinc	mg/kg	<0.025	4	50			
21	chloride	mg/kg	<10	800	15,000			
22	fluoride	mg/kg	1.1	10	150			
23	sulphate	mg/kg	<10	1,000	20,000			
24	phenol index	mg/kg	<0.3	1	-			
25	DOC (dissolved organic carbon)	mg/kg	<50	500	800			
26	TDS (total dissolved solids)	mg/kg	12000	4,000	60,000			

Key

User supplied data

Inert WAC criteria fail

Classification of sample: BH02-08/09/2022-0.30

Non Hazardous Waste Classified as 17 05 04 in the List of Waste

.

Sample details

Sample name:	LoW Code:
	Chapter:
Sample Depth:	
0.30 m	Entry:
Moisture content:	
12%	
(wet weight correction)	

17: Construction and Demolition Wastes (including excavated soil from contaminated sites) 17 05 04 (Soil and stones other than those mentioned in 17 05 03)

Hazard properties

None identified

Determinands

Moisture content: 12% Wet Weight Moisture Correction applied (MC)

#		Determinand EU CLP index EC Number CAS Number number CAS Number CAS Number	CLP Note	User entered	data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
1	4	antimony { antimony trioxide } 051-005-00-X 215-175-0 1309-64-4		<2	mg/kg	1.197	<2.394 mg/kg	<0.000239 %		<lod< td=""></lod<>
2	4	arsenic { arsenic trioxide }		17	mg/kg	1.32	19.752 mg/kg	0.00198 %	~	
3	4			<0.4	mg/kg	3.22	<1.288 mg/kg	<0.000129 %		<lod< td=""></lod<>
4	4		T	0.85	mg/kg	1.142	0.854 mg/kg	0.0000854 %	~	
5	4			33	mg/kg	1.462	42.444 mg/kg	0.00424 %	~	
6	4			<0.5	mg/kg	2.27	<1.135 mg/kg	<0.000113 %		<lod< td=""></lod<>
7	4			33	mg/kg	1.126	32.696 mg/kg	0.00327 %	~	
8	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6	1	19	mg/kg	1.56	26.08 mg/kg	0.00167 %	\checkmark	
9	4	mercury { mercury dichloride } 080-010-00-X 231-299-8 7487-94-7		0.09	mg/kg	1.353	0.107 mg/kg	0.0000107 %	\checkmark	
10	4	molybdenum {		2.9	mg/kg	1.5	3.828 mg/kg	0.000383 %	\checkmark	
11	4	nickel { nickel chromate } 028-035-00-7 238-766-5 14721-18-7		42	mg/kg	2.976	110.003 mg/kg	0.011 %	\checkmark	
12	4	selenium { nickel selenate } 028-031-00-5 239-125-2 15060-62-5		1.7	mg/kg	2.554	3.821 mg/kg	0.000382 %	\checkmark	
13	4	zinc { zinc chromate } 024-007-00-3 236-878-9 13530-65-9		53	mg/kg	2.774	129.386 mg/kg	0.0129 %	\checkmark	
14		tert-butyl methyl ether; MTBE; 2-methoxy-2-methylpropane 603-181-00-X 216-653-1 1634-04-4		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>
15		benzene 601-020-00-8 200-753-7 71-43-2		<0.001	mg/kg		<0.001 mg/kg	<0.0000001 %		<lod< td=""></lod<>

#		Determinand			CLP Note	User entered data		Conv.	Compound conc.		Classification	Applied	Conc. Not
		EU CLP index number	EC Number	CAS Number	CLPI			Factor			value	MC A	Used
16		toluene				<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_	_	601-021-00-3	203-625-9	108-88-3									
17		ethylbenzene		1000 11 1		<0.001	mg/kg		<0.001	mg/kg	<0.0000001 %		<lod< td=""></lod<>
_		601-023-00-4	202-849-4	100-41-4	_							_	
18		xylene 601-022-00-9	202-422-2 [1] 203-396-5 [2] 203-576-3 [3] 215-535-7 [4]	95-47-6 [1] 106-42-3 [2] 108-38-3 [3] 1330-20-7 [4]		<0.002	mg/kg		<0.002	mg/kg	<0.0000002 %		<lod< td=""></lod<>
19	*	exception of compl ferricyanides and n specified elsewher	of hydrogen cyanid lex cyanides such a nercuric oxycyanide e in this Annex }	s ferrocyanides,		<0.5	mg/kg	1.884	<0.942	mg/kg	<0.0000942 %		<lod< td=""></lod<>
\rightarrow		006-007-00-5			_							-	
20	۲	рН	1			8.6	pН		8.6	pН	8.6 pH		
-		nonhtkalan-		PH									
21		naphthalene	202 040 F	01 20 2		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		601-052-00-2	202-049-5	91-20-3	_							-	
22	•	acenaphthylene	205-917-1	208-96-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
23	0	acenaphthene		1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
			201-469-6	83-32-9									
24	•	fluorene	201-695-5	86-73-7	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		phenanthrene	201-033-3	00-73-7							. <u>.</u>		
25	•	phenanthiene	201-581-5	85-01-8	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	anthracene	201-301-3	05-01-0									
26			204-371-1	120-12-7		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
27		fluoranthene		1		<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-912-4	206-44-0									
28	•	pyrene	604 007 0	400.00.0		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
\rightarrow	_	hanzalalanthraaan	204-927-3	129-00-0	_								
29		benzo[a]anthracen 601-033-00-9	200-280-6	56-55-3	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-	_	chrysene	200-200-0	00-00-0								-	
30		601-048-00-0	205-923-4	218-01-9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
-		benzo[b]fluoranthe	1	210-01-3									
31		601-034-00-4	205-911-9	205-99-2	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
		benzo[k]fluoranthe	1										
32		601-036-00-5	205-916-6	207-08-9	_	<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
20		benzo[a]pyrene; be		<u>.</u>		0.4			0.4	m c /l	.0.00004.01		1.00
33			200-028-5	50-32-8	_	<0.1	mg/kg		<0.1	rng/kg	<0.00001 %		<lod< td=""></lod<>
	8	indeno[123-cd]pyre	1	λ		.0.4			-0.1	m m //	.0.00004.0/		.1.00
34			205-893-2	193-39-5		<0.1	mg/kg		<0.1	пд/кд	<0.00001 %		<lod< td=""></lod<>
35		dibenz[a,h]anthrac	1	*		-0.1	malka		-0.1	ma/ka	<0.00001.9/		
55		601-041-00-2	200-181-8	53-70-3		<0.1	mg/kg		<0.1	пу/кд	<0.00001 %		<lod< td=""></lod<>
36		benzo[ghi]perylene	9			<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			205-883-8	191-24-2			ing/kg			iiig/kg			~200
37		polychlorobiphenyl				<0.1	mg/kg		<0.1	ma/ka	<0.00001 %		<lod< td=""></lod<>
			215-648-1	1336-36-3	1_					39			
38	4	sulfur { <mark>sulfur</mark> } 016-094-00-1	231-722-6	7704-34-9		<1	mg/kg		<1	mg/kg	<0.0001 %		<lod< td=""></lod<>
	•			1.101040								-	
39		barium { ^e barium		21100 05 5		82	mg/kg	1.233	89.009	mg/kg	0.0089 %	\checkmark	
			244-214-4	21109-95-5								-	
40	•	coronene	005 881 7	101 07 1		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
	_	monohydric pheno	205-881-7 Is	191-07-1	+								
41	Θ			P1186		<0.1	mg/kg		<0.1	mg/kg	<0.00001 %		<lod< td=""></lod<>
					•					Total:	0.0457 %	1	

Key	
	User supplied data
	Determinand values ignored for classification, see column 'Conc. Not Used' for reason
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
<lod< th=""><th>Below limit of detection</th></lod<>	Below limit of detection
ND	Not detected
CLP: Note 1	Only the metal concentration has been used for classification

WAC results for sample: BH02-08/09/2022-0.30

WAC Settings: samples in this Job constitute a single population.

WAC limits used to evaluate this sample: "Ireland" The WAC used in this report are the WAC defined for the inert and non-hazardous classes of landfill in the Republic of Ireland. You should check the actual acceptance criteria when the disposal site is identified as they may differ from the generic WAC used in this report.

The sample PASSES the Inert (Inert waste landfill) criteria.

The sample PASSES the Non Haz (Non hazardous waste landfill) criteria.

WAC Determinands

	Solid Waste Analysis			Landfill Waste Acceptance Criteria Limit				
#	Determinand	Determinand		Inert waste landfill	Non hazardous waste landfill			
1	TOC (total organic carbon)	%	1	3	5			
2	LOI (loss on ignition)	%	6.6	-	-			
3	BTEX (benzene, toluene, ethylbenzene and xylenes)	mg/kg	<0.01	6	-			
4	PCBs (polychlorinated biphenyls, 7 congeners)	mg/kg	<0.1	1	-			
5	Mineral oil (C10 to C40)	mg/kg	<10	500	-			
6	PAHs (polycyclic aromatic hydrocarbons)	mg/kg	<2	100	-			
7	рН	pН	8.6	-	>6			
8	ANC (acid neutralisation capacity)	mol/kg	<0.002	-	-			
	Eluate Analysis 10:1							
9	arsenic	mg/kg	0.014	0.5	2			
10	barium	mg/kg	0.08	20	100			
11	cadmium	mg/kg	<0.0011	0.04	1			
12	chromium	mg/kg	0.013	0.5	10			
13	copper	mg/kg	0.032	2	50			
14	mercury	mg/kg	<0.0005	0.01	0.2			
15	molybdenum	mg/kg	0.016	0.5	10			
16	nickel	mg/kg	0.012	0.4	10			
17	lead	mg/kg	<0.005	0.5	10			
18	antimony	mg/kg	<0.005	0.06	0.7			
19	selenium	mg/kg	0.0063	0.1	0.5			
20	zinc	mg/kg	0.038	4	50			
21	chloride	mg/kg	44	800	15,000			
22	fluoride	mg/kg	4.4	10	150			
23	sulphate	mg/kg	<10	1,000	20,000			
24	phenol index	mg/kg	<0.3	1	-			
25	DOC (dissolved organic carbon)	mg/kg	72	500	800			
26	TDS (total dissolved solids)	mg/kg	840	4,000	60,000			

Key

User supplied data

Report created by Stephen Franey on 27 Oct 2022

Appendix A: Classifier defined and non EU CLP determinands

• chromium(III) oxide (worst case) (EC Number: 215-160-9, CAS Number: 1308-38-9)

Description/Comments: Data from C&L Inventory Database Data source: https://echa.europa.eu/information-on-chemicals/cl-inventory-database/-/discli/details/33806 Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H332 , Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Resp. Sens. 1; H334 , Skin Sens. 1; H317 , Repr. 1B; H360FD , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• ethylbenzene (EC Number: 202-849-4, CAS Number: 100-41-4)

EU CLP index number: 601-023-00-4 Description/Comments: Additional Hazard Statement(s): Carc. 2; H351 Reason for additional Hazards Statement(s): 03 Jun 2015 - Carc. 2; H351 hazard statement sourced from: IARC Group 2B (77) 2000

• salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex

EU CLP index number: 006-007-00-5 Description/Comments: Conversion factor based on a worst case compound: sodium cyanide Additional Hazard Statement(s): EUH032 >= 0.2 % Reason for additional Hazards Statement(s): 14 Dec 2015 - EUH032 >= 0.2 % hazard statement sourced from: WM3, Table C12.2

• pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 25 May 2015 Hazard Statements: None.

• acenaphthylene (EC Number: 205-917-1, CAS Number: 208-96-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Acute Tox. 4; H302 , Acute Tox. 1; H330 , Acute Tox. 1; H310 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315

acenaphthene (EC Number: 201-469-6, CAS Number: 83-32-9)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Aquatic Chronic 2; H411

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 06 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Carc. 2; H351 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410 , Skin Irrit. 2; H315

• anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 17 Jul 2015 Hazard Statements: Eye Irrit. 2; H319 , STOT SE 3; H335 , Skin Irrit. 2; H315 , Skin Sens. 1; H317 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 21 Aug 2015 Hazard Statements: Acute Tox. 4; H302 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410

Report created by Stephen Franey on 27 Oct 2022

pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 21 Aug 2015
Hazard Statements: Skin Irrit. 2; H315 , Eye Irrit. 2; H319 , STOT SE 3; H335 , Aquatic Acute 1; H400 , Aquatic Chronic 1; H410
• indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 06 Aug 2015
Hazard Statements: Carc. 2; H351
benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 23 Jul 2015
Hazard Statements: Aquatic Acute 1; H400, Aquatic Chronic 1; H410
polychlorobiphenyls; PCB (EC Number: 215-648-1, CAS Number: 1336-36-3)
EU CLP index number: 602-039-00-4
Description/Comments: Worst Case: IARC considers PCB Group 1; Carcinogenic to humans; POP specific threshold from ATP1
(Regulation 756/2010/EU) to POPs Regulation (Regulation 850/2004/EC). Where applicable, the calculation method laid down in
European standards EN 12766-1 and EN 12766-2 shall be applied. Additional Hazard Statement(s): Carc. 1A; H350
Reason for additional Hazards Statement(s):
29 Sep 2015 - Carc. 1A; H350 hazard statement sourced from: IARC Group 1 (23, Sup 7, 100C) 2012
barium sulphide (EC Number: 244-214-4, CAS Number: 21109-95-5)
EU CLP index number: 016-002-00-X
Description/Comments:
Additional Hazard Statement(s): EUH031 >= 0.8 %
Reason for additional Hazards Statement(s):
14 Dec 2015 - EUH031 >= 0.8 % hazard statement sourced from: WM3, Table C12.2
^e coronene (EC Number: 205-881-7, CAS Number: 191-07-1)
Description/Comments: Data from C&L Inventory Database; no entries in Registered Substances or Pesticides Properties databases; SDS: Sigma
Aldrich, 1907/2006 compliant, dated 2012 - no entries; IARC – Group 3, not carcinogenic.
Data source: http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=17010&HarmOnly=no?fc=true⟨=en Data source date: 16 Jun 2014
Hazard Statements: STOT SE 2; H371

• monohydric phenols (CAS Number: P1186)

Description/Comments: Combined hazards statements from harmonised entries in CLP for phenol, cresols and xylenols (604-001-00-2, 604-004-00-9, 604-006-00-X) Data source: CLP combined data

Data source date: 26 Mar 2019

Hazard Statements: Muta. 2; H341, Acute Tox. 3; H331, Acute Tox. 3; H311, Acute Tox. 3; H301, STOT RE 2; H373, Skin Corr. 1B; H314, Skin Corr. 1B; H314 >= 3 %, Skin Irrit. 2; H315 1 £ conc. < 3 %, Eye Irrit. 2; H319 1 £ conc. < 3 %, Aquatic Chronic 2; H411

Appendix B: Rationale for selection of metal species

antimony {antimony trioxide}

Worst case CLP species based on hazard statements/molecular weight and low solubility. Industrial sources include: flame retardants in electrical apparatus, textiles and coatings

arsenic {arsenic trioxide}

Reasonable case CLP species based on hazard statements/molecular weight and most common (stable) oxide of arsenic. Industrial sources include: smelting; main precursor to other arsenic compounds (edit as required)

boron {diboron trioxide}

Reasonable case CLP species based on hazard statements/ molecular weight, physical form and low solubility. Industrial sources include: fluxing agent for glass/enamels; additive for fibre optics, borosilicate glass

cadmium {cadmium oxide}

Reasonable case CLP species based on hazard statements/molecular weight, very low solubility in water. Industrial sources include: electroplating baths, electrodes for storage batteries, catalysts, ceramic glazes, phosphors, pigments and nematocides.

Report created by Stephen Franey on 27 Oct 2022

chromium in chromium(III) compounds {chromium(III) oxide (worst case)}

Reasonable case species based on hazard statements/molecular weight. Industrial sources include: tanning, pigment in paint, inks and glass

chromium in chromium(VI) compounds {chromium (VI) compounds, with the exception of barium chromate and of compounds specified elsewhere in this Annex}

Worst case species based on hazard statements/molecular weight (edit as required)

copper {dicopper oxide; copper (I) oxide}

Reasonable case CLP species based on hazard statements/molecular weight and insolubility in water. Industrial sources include: oxidised copper metal, brake pads, pigments, antifouling paints, fungicide.

lead {lead chromate}

Worst case CLP species based on hazard statements/molecular weight

mercury {mercury dichloride}

Worst case CLP species based on hazard statements/molecular weight

molybdenum {molybdenum(VI) oxide}

Worst case CLP species based on hazard statements/molecular weight

nickel {nickel chromate}

Worst case CLP species based on hazard statements/molecular weight

selenium {nickel selenate}

Worst case CLP species based on hazard statements/molecular weight

zinc {zinc chromate}

Worst case CLP species based on hazard statements/molecular weight

cyanides {salts of hydrogen cyanide with the exception of complex cyanides such as ferrocyanides, ferricyanides and mercuric oxycyanide and those specified elsewhere in this Annex}

Harmonised group entry used as most reasonable case as complex cyanides and those specified elsewhere in the annex are not likely to be present in this soil: [Note conversion factor based on a worst case compound: sodium cyanide]

sulfur {sulfur}

chemtest reports Elemental sulfur using this CAS

barium {barium sulphide}

No Cr VI in samples therefore worst case scenario not applicable.

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition v1.1.NI - Jan 2021 HazWasteOnline Classification Engine Version: 2022.263.5340.9974 (20 Sep 2022) HazWasteOnline Database: 2022.273.5362.10003 (03 Oct 2022)

This classification utilises the following guidance and legislation: WM3 v1.1.NI - Waste Classification - 1st Edition v1.1.NI - Jan 2021 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 3rd ATP - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Waste 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 HP14 amendment - Regulation (EU) 2017/997 of 8 June 2017 13th ATP - Regulation (EU) 2018/1480 of 4 October 2018 14th ATP - Regulation (EU) 2020/217 of 4 October 2019 15th ATP - Regulation (EU) 2020/1182 of 19 May 2020 The Chemicals (Health and Safety) and Genetically Modified Organisms (Contained Use)(Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1567 of 16th December 2020 The Waste and Environmental Permitting etc. (Legislative Functions and Amendment etc.) (EU Exit) Regulations 2020 - UK: 2020 No. 1540 of 16th December 2020 17th ATP - Regulation (EU) 2021/849 of 11 March 2021 18th ATP - Regulation (EU) 2022/692 of 16 February 2022