

The Mill Building, Newtown Link Rd, Greenhills, Drogheda, Co. Louth Tel: 041 2137050 www.mcmahonengineers.com info@mcmahonengineers.com

Engineering Report

Proposed 13Unit Housing Development at 30-32 North Street, Swords Co. Dublin

Project Ref:P3626Issued By:P McGinnityChecked By:M KerrDate:01.09.22Rev:B

Comhairle Contae Fhine Gall Fingal County Council

Consulting Civil & Structural Engineers - Environmental & Traffic Engineers - Project Managers - PSDP

Document Control Sheet

Client	Fingal County Council (FCC)
Project Title	Proposed 13Unit Housing Development at 30-32 North Street, Swords, Co. Dublin
Document Title	Engineering Report
Document No.	P3626

Rev.	Status	Author(s)	Reviewed By	Approved By	Issue Date
-	Approval	РМ	МК	PMcM	04.08.22
А	Planning	РМ	МК	PMcM	26.08.22
В	Planning	РМ	МК	PMcM	01.09.22

Table of Contents

1.0 Introduction	. 3
2.0 Existing Site and Services	.4
2.1 Foul Water	.4
2.2 Surface Water	.4
2.3 Watermain	. 5
3.0 Foul Water Strategy	.6
4.0 Surface Water Strategy	.7
4.1 Surface Water Runoff Rate	.7
4.2 Attenuation Storage Calculation	.9
4.2 SuDS Selection	10
5.0 Flood Summary	1
6.0 Watermain Design	11
7.0 Traffic Management	12
7.1 Existing Traffic Management	12
7.2 Justification of the Courtyard & Parking Layout	12
7.3 Provision of Bicycle Parking	13
7.4 Provision of Car Parking	13
8.0 Conclusion	14
Appendix A:	15
Appendix B:	16
Appendix C:	17
Appendix D:1	18

1.0 Introduction

McMahon Associates have prepared this Engineering Report to address the following;

- Foul & Surface Water Drainage
- SuDS
- Flood Risk Identification
- Water supply Strategy
- Strategy for vehicular access to the site

for the proposed development at 30-32 North Street, Swords, Co. Dublin. The proposed development will consist of the construction of 13No residential apartment units and associated infrastructure.

This report is to be read in conjunction with the engineering & architectural planning drawings to provide a high level overview of the drainage strategy for this development. It is envisaged that at detailed design stage the methodology and rationale outlined in this report will be adhered to ensure a consistency in the final design.

Figure 1: Site Location

2.0 Existing Site and Services

The proposed development site is located on North Street in Swords. It is bounded to the west by North Street, to the south and east by Fingal Community College and by a commercial property (Des Kelly Interior's) to the north. The site is brownfield and currently has 2No. 2-storey properties and single storey outbuildings within the site. As part of the works the outbuildings will be demolished and a portion of the existing 2-storey buildings, with the remaining buildings being incorporated into the proposed development.

The topography of the site is sloping from east to west with a level difference of approximately 1.0m between the east and west boundaries falling at a gradient of approximately 1:40. Given the nature of the development as apartment units with access to the upper units from an external terrace, the finished levels of the Units will all be set at the same level for practical & aesthetic reasons. This will result I, level reductions on the eastern and northern boundaries, below their existing levels, requiring portions of the existing eastern and northern boundary walls to either be underpinned or reconstructed.

A site investigation has been procured & due to be complete by the end of August. It will establish the ground conditions within the site in terms of strength and stability and will also establish if any environmental contamination has occurring during its previous use. Infiltration testing will be carried out to establish the suitability for certain Sustainable Urban Drainage System (SuDS) features that will form a key part of the drainage strategy.

Topographical and Ground Penetrating Radar Surveys were carried out and made available to us to ascertain the location and quantity of existing services currently located in the site and along North Street.

2.1 Foul Water

The foul wastewater from the existing dwelling is carried by a 100mm diameter connection and discharges into an existing 600mm diameter concrete foul sewer in North Street. This 100mm sewer is a combined sewer and conveys foul & surface water from the site.

2.2 Surface Water

The runoff from the roofs of the existing properties discharges to the combined sewer onsite before discharging to the existing 600mm diameter concrete foul sewer in North Street.

2.3 Watermain

Fingal County Council provided record mapping of Irish Water infrastructure which is located around the site. It indicated that there is an existing Irish Water watermain infrastructure available within North Street. There is a 510mm diameter trunk main which was confirmed by GPR survey and a 150mm diameter ductile iron watermain on the opposite side of North Street. This was picked up in places by the GPR survey but not along the full expected route shown by the record mapping.

3.0 Foul Water Strategy

As part of this development the foul water drainage network for the proposed apartment units will be separated from the surface water sewers, and will comply with the latest *"Technical Guidance Document H - Drainage and Waste Water Disposal"*.

A proposed 150mm diameter foul gravity sewer will collect the wastewater via soil vent pipes and inspection chambers from the proposed units and discharge into the existing 600mm concrete foul sewer within North Street. A foul demarcation manhole chamber will be provided at the entrance to the site within 1m of the boundary. Given the brownfield nature of the development and the desire to retain existing walls and properties the current layout does not provide sufficient distance at the site entrance to satisfy Irish Water's wayleave requirements as set out in the "*Code of Practise for Wastewater Infrastructure*". The size & extent of the wayleave is shown on drawing C-02. A total of 6.225m is required and only 4.0m provided. This will require agreement from Irish Water.

The pipes are designed with a roughness coefficient (ks) of 1.5mm and designed to achieve a minimum self-cleansing velocity of 0.75m/s when flowing half full. Details of the foul drainage pipe design can be found in Appendix B.

All drainage pipes will need to be supported off firm bearing. This may require all soft material to be excavated underneath the pipe runs and backfilled with stone. The depth of this will vary depending on location and invert level of pipe. A geotextile membrane should also be incorporated into the drainage trenches and also to the hardstanding areas.

4.0 Surface Water Strategy

The proposed drainage strategy has been designed to ensure surface water is captured and controlled on site and ensure the proposed development will not have a detrimental impact on Flood Risk on and offsite.

The surface water strategy follows the principle of Sustainable Drainage Systems (SuDS), whereby surface water is collected at source and the rate, volume and quality of runoff controlled and improved. The use of SuDS is discussed further in the sections below.

In accordance with the hierarchy for discharging surface water, infiltration testing will be undertaken to establish the viability of discharging surface water generated by the development directly to the ground. The soakaway testing will be completed to the requirements of BRE Digest 365. From information available on the Geological Survey Ireland website, it is envisaged that the there will be approximately 3-4m of overburden of made ground and clay with poor infiltration potential, before encountering shallow limestone bedrock. This will be confirmed by the Site Investigation.

The next preferred means of discharging surface water is to a watercourse. The proposed site is not located close to any watercourse or ditches. Therefore, the discharge from the site will need to be via an existing surface water sewer located to the west of the proposed development within North Street. Record mapping indicates that there is a 750mm diameter concrete storm sewer that flows in a northern direction. A ground penetrating radar (GPR) survey provided by FCC confirmed the presence of same. On the assumption that infiltration potential within the site will be limited at best, it it is proposed to connect into this existing storm sewer in North Street

The proposed discharge rate is outlined in Section 4.1 below.

4.1 Surface Water Runoff Rate

As outlined above, the proposed development site was formerly residential units with outbuildings. The hardstanding area associated with same is still in place and currently runs off without attenuation. The site is therefore considered brownfield and considered to have a peak runoff rate as outlined overleaf.

Based on the Modified Rational Method: Qp = 2.78 CiA

where,

Qp = Peak Discharge Rate (l/s) C = Dimensionless coefficient, assumed to be 1 i = Intensity (mm/hr), typically assumed to be 50mm/hr A = Area of catchment (ha)

Therefore, for the existing buildings on the site which currently have $382m^2$ of hardstanding, the brownfield runoff rate is as follows:

Qp = 2.78 x 1 x 50 x 0.0382

Qp = 5.31 l/s

The total overall site area is $1,400m^2$; therefore a total of $1,008m^2$ of the site is considered to be greenfield. This equates to 0.101ha of greenfield area.

Using the IH 124 method for calculating QBar which is as follows;

 $QBar_{urban} = 0.00108 \text{ x AREA}^{0.89} \text{ x SAAR}^{1.17} \text{ x SOIL}^{2.17}$

Where, Area = 50 hectares SAAR = 741 (Taken from historic Met Eireann Data for Grid Reference 318000, 247000 <u>http://archive.met.ie/climate/IE_AAR_8110_V1.txt</u>) SOIL = 0.3 (based on ground investigations and to be confirmed)

QBar_{urban} =97.4 l/s (for 50 hectares, see Appendix B for calculation)

Therefore QBar for the greenfield part of the site is (97.4/50)*0.101 = 0.197 l/s. = 0.2 l/s

Based on this, the existing runoff rate from the site is 5.5 l/s (the sum of brownfield and greenfield runoff rates).

However, in order to provide an overall betterment for the site in terms of the rate of runoff leaving the proposed development, it is proposed to reduce the runoff from the site by over 50%. Therefore, runoff leaving the development will be restricted to 2.5 l/s.

By reducing the runoff rate leaving the site by over 50%, the proposed development will provide a significant reduction in the rate of runoff leaving the development and consequently provide a significant betterment in terms of flood risk offsite, in accordance with local and national guidance.

4.2 Attenuation Storage Calculation

The volume of attenuation storage to be provided within the site has been calculated using Microdrainage software, which models the individual drainage elements such as manhole, pipes and attenuation tanks as an entire system using site specific rainfall data.

The rainfall data for the site has been accessed from the Met Eireann website and is included with Appendix B. From this rainfall data, the M5-60 (5 Year, 60 minute event) and R value (ratio of the M5-60 to the M5 – 2day) are calculated and inputted into the software. From this information, Microdrainage scales the values to run multiple rainfall simulation for a range of events and durations, identify the critical storm duration for the site.

The contributing area for the proposed development was calculated and a runoff coefficient applied to each surface type with 10% urban creep added as required by the Greater Dublin regional Code of Practise for Drainage Works. The runoff for each surface type and the applied runoff coefficient is summarised below.

Area Deservition	Area	Runoff	Contributing		
Area Description	(ha)	Coefficient	Area (ha)		
Roof	0.058	0.950	0.055		
Landscape	0.023	0.100	0.003		
Permeable Paving	0.022	0.600	0.013		
Paved Area (Footway,	0.037	0.900	0.033		
terrace, paved areas)					
Total	0.140	-	0.104		
Total + 10% urban			0.114		
creep					

 Table 1: Proposed Development Contributing Area

Based on the above contributing areas, the attenuation storage to be provided for the 1 in 100 year event plus 10% climate change is 30m³. The Microdrainage calculations are included in Appendix B.

The attenuation will be provided within the permeable stone layer under the permeable paving. This stone has 30% void ratio which is sufficient to attenuate the 1 in 100year flood event + 10% climate change.

The proposed surface water strategy drawings are shown in Appendix A.

4.2 SuDS Selection

In accordance with local and national guidance, the use of SuDS have been considered as part of the development and implemented where possible.

An important consideration when evaluating the suitability of the various SuDS techniques is the site-specific constraints for a specific development, such as the site layout, the geology and topography of the site and the willingness of the local authority to take a SuDS element in charge.

In the case of the proposed development, infiltration testing has not yet been completed to establish whether the underlying geology is suitable for infiltration or not. However it is assumed based on data from the Geological Survey of Ireland that infiltration potential will be limited and the current design reflects that. Given that the site was previously occupied, the site investigation will also establish whether there are any contamination issues from its previous use. This may impact the type of SuDS elements that may be feasible. Open SuDS systems proposed such as filter drains and infiltration zones (trenches) have the potential to mobilise contaminates into the water cycle. These SuDS techniques may have to be reconsidered and deemed unsuitable for the proposed development if contamination is found to be present.

As part of the surface water drainage strategy, it is proposed to provide the surface water attenuation in the northwest of the development. The site levels will be such that this area will be largely flat and will somewhat replicate the existing falls of the site to mirror what groundwater currently does. The attenuation will be located within the permeable paving area under the courtyard. The site is too small to consider any above ground storage features such as basins, swales or wetlands.

Therefore it is proposed to utilise permeable paving within the courtyard that will be used for parking and tree pits used in the communal greenspace area to collect and treat surface water runoff before it enters the public storm network in North Street. Sump manholes will be provided in manhole S4 to ensure sediment is caught and collected prior to leaving the site.

A detailed breakdown of the SuDS considered is included in Appendix D and outlines the rationale for their use or exclusion based on specific site conditions.

5.0 Flood Summary

Given the extensive modelling of the CFRAM Flood studies mapping and that there is no historical flooding at the site on the OPW website it is considered than flood risk is minimal for this site. Please refer to the Flood Map in Appendix C.

6.0 Watermain Design

The watermain for this development will be connected to the 150mm diameter ductile iron watermain located in North Street, subject to Irish Water approval. This 100mm diameter watermain connection will be taken into the development and provide water to the units via boundary box meters, with the 4No. 1st floor apartments being served by a communal manifold boundary box. From here each unit will be provided with a metered connection and distributed via 25mm diameter flexible pipes to the units.

An additional boundary box meter will be provided on a sluice valve at the entrance to allow monitoring of night time flows as per the Code of Practice requirements.

A fire hydrant will be located in the courtyard at a minimum 6m distance from all properties.

As with the foul sewer the watermain will not be provided with the full 6.225mm wayleave required by Irish Water. This will require agreement from Irish Water.

7.0 Traffic Management

7.1 Existing Traffic Management

The existing dwellings and outbuildings within the site have no private vehicular parking spaces and there is no vehicular entrance to the site. Access into the site is via the dwelling and via a pedestrian only gate within the boundary wall The existing public footpath adjacent the site is approximately 4m wide and the kerb is cast in-situ as part of the footpath.

7.2 Justification of the Courtyard & Parking Layout

This planning application proposes to construct a vehicular access point at the northwest of the site along North Street. This access will be 4.0m wide at its narrowest to allow conservation of as much of the existing stone boundary wall as possible, in line with FCC's Development Plan.

Externally from the site entrance to the public road it is proposed to construct block paving to provide a contrasting surface to help visually impaired pedestrians determine that there is the potential interaction with vehicular traffic at this location. It is proposed to construct kerb radii of 1m at the entrance between the public road & footpath to minimise the approach / entry speeds to the development. The Design Manual for Urban Roads & Streets (DMURS) recommends a radius of 1-3m for areas with few large vehicles, therefore this proposal complies with the requirements.

Internally there will be a shared surface between pedestrians & vehicles, with the use of block paving to highlight the shared nature of the environs. For local roads in a development, *DMURS* specifies that the maximum carriageway width should be a 4.8m for a shared surface. The entry is 4m wide and therefore compliant with the DMURS. A carriageway width of 6.0m has been provided within the main parking area which is recommended when providing perpendicular parking. Wheel stops and bollards are proposed to prevent vehicles entering pedestrian only areas within the site

No speed control measures are deemed necessary within the site due to the arrangement of the proposed courtyard and small length of internal roadway. A 15 km/h speed limit should be enforced given the shared nature of the courtyard and its access across the public footpath. A stop sign and road marking should be provided at the exit from the site onto the public footpath to ensure drivers minimise potential risk to pedestrians when leaving the site.

There is insufficient space within the development to provide a turning area that complies with the standards set out in *"Recommendations for Site Development Works for Housing Areas"* within the site that would not compromise the unit numbers. Drawing C-08 shows how a car can manoeuvre

within the site and complete parking and turning. As no turning area will be provided the communal bin stores have been located at the entrance to facilitate easy access for collection. The refuse vehicles will be able to temporarily stop along the public road and empty these bins, as they do along the rest of North Street. FCC have discussed the proposed layout with the local fire authority who have confirmed they will drive in / reverse out of the site to gain access in the event of an emergency. Auto-tracking of a fire engine confirming that this manoeuvre is achievable can be seen on drawing C-07.

7.3 Provision of Bicycle Parking

The Fingal County Council Development Plan 2017 - 2023 Table 12.9 was referenced when specifying the number of parking spaces required. 1No. space is required per unit, with 1 No. visitor space provided for every 5 units. Therefore 15No. bicycle parking spaces are required.

A total of 43 bicycle parking spaces have been provided and the layout is therefore deemed compliant.

7.4 Provision of Car Parking

The Fingal County Council Development Plan 2017 - 2023 Table 12.8 was referenced when specifying the number of parking spaces required. Table 12.8 specifies that 1No. parking space is required per apartment / house with 1No. Bed, 1.5No. parking spaces per apartment / house with 2No. beds, and 2No. parking spaces required for every apartment / house with 3No. beds. 1No. visitor space is required for every 5No. Units in the development. Therefore the 13 units require 20 parking spaces.

North Street is located centrally in Swords which is a Major Town Centre in the FCC Development Plan and it is classified as Zone 1. Zone 1 allows fewer parking spaces to be provided than the standards set out in Table 12.8. Therefore the proposed layout with only 6No. car parking bays, one being a disabled parking bay, is deemed to be in compliance with the Development Plan.

The site has been provided with bicycle parking numbers exceeding the requirements of the Development Plan, and it is located within 100m of a bus stops travelling north or south in a major town. Therefore the site is served by ample sustainable travel and public transport facilities to compensate for lower car parking spaces.

The parking bays within the development comply with the minimum standards set out in DMURS i.e. spaces should be a minimum of 4.8m long x 2.4m wide.

8.0 Conclusion

The proposed development will incorporate a robust surface water drainage strategy to ensure flood risk off and on site will not be affected by the proposed development.

Surface water falling on the development will be collected by gullies, downpipes, filter drains, tree pits and permeable paving and conveyed to the dedicated surface water pipe network. Flow will be conveyed to the northwest corner of the site to the permeable paving that will have sufficient storage volume within its stone layer to accommodate up to the 1 in 100 year event plus 10% for climate change.

Flow leaving the site will be controlled by a flow control device which will limit runoff to less than 50% of the current the equivalent brownfield runoff rate. Currently it is estimated that the flow rate leaving the site (combined runoff from the Brownfield area the remaining greenfield area) is 5.5 l/s. Post development, the overall runoff from the site will be reduced by 54% to 2.5 l/s and will therefore provide a significant betterment on the existing scenario. This will reduce downstream flows and help contribute to a reduction of flood risk elsewhere.

A detailed review of possible SuDS techniques has been undertaken in the overall context of the site and implemented where appropriate. Permeable paving will be implemented within the courtyard area of the development to be used for parking. Tree pits and filter drains will be used to collect runoff from footpaths in external areas. Flow conveyed to the surface water attenuation area will pass through a sump manhole prior to entering the attenuation area to remove any sediment, ensuring the quality of surface water leaving the development will be maintained.

Through this mixture of source control and water improvement elements of SuDS the surface water runoff from this site post development will be both significantly reduced but also be of improved quality. It is concluded that the proposed strategy is beneficial to the site and greater area.

The layout of the entrance, courtyard and provision of parking have been reviewed and are deemed to be in compliance with the requirements as set out in the Fingal County Council Development Plan 2017 - 2023 and also by DMURS.

Appendix A:

- C-01 Site Layout
- C-02 Drainage Layout
- C-03 Watermain Layout
- C-04 Site Levels
- C-05 Drainage Longsections
- C-06 Proposed Road Profile
- C-07 Proposed Fire Engine Swept Path Analysis
- C-08 Proposed Private Car Swept Path Analysis

<u>GENERAL NOTES:</u>							
1. ALL DIMENSIONS AND LEVELS TO BE VERIFIED ON SITE PRIOR TO COMMENCEMENT OF THE WORKS. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER.							
2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT ARCHITECT'S AND OTHER ENGINEERING DRAWINGS.							
EXISTING FOOTPATH							
EXISTING ROAD (NORTH STREET)							
PROPOSED APARTMENT UNITS							
PROPOSED PERMEABLE PAVING TO ARCHITECT'S SPECIFICATION							
PROPOSED PAVING (NON PERMEABLE) TO ARCHITECT'S SPECIFICATION							
PROPOSED CONCRETE SURFACING							
PROPOSED LANDSCAPE AREA							
PROPOSED WHEEL STOPS IN PARKING BAYS							
PROPOSED 125mm HALF BATTERED CONCRETE KERB							
PROPOSED HALF BATTERED INSITU CONCRETE KERB (DROPPED)							
PROPOSED 125mm FLUSH CONCRETE KERB							
13.300 PROPOSED FINISHED FLOOR LEVEL							
EXISTING BOUNDARY WALL TO BE RECONSTRUCTED AS A MASONRY WALL							
EXISTING BOUNDARY WALL TO BE RECONSTRUCTED AS A RETAINING WALL							
EXISTING BOUNDARY WALL TO BE RETAINED (UNDERPINNING MAY BE REQUIRED)							
PROPOSED PLATE LOAD TEST LOCATION							

── 33No. BICYCLE PARKING BAYS WITHIN SECURE COMMUNAL AREA. 13No. LOCKERS PROVIDED

				Γ
А	01.09.22	UPDATED WITH LATEST LAYOUT	PM]
REV	DATE	DESCRIPTION	BY	A

PART_8_PLANNING

FINGAL COUNTY COUNCIL

JOB DESCRIPTION: 13No. DWELLING HD AT 30-32 NORTH STREET, SWORDS, Co. DUBLIN DRAWING TITLE:

PROPOSED SITE LAYOUT

PROJECT No.: DRAWING No .: C-01 P-3626 REV. No.: Α SCALE DATE 1:100 A1 25.07.22 CHECKED BY: APPROVED BY: DRAWN B PM MK PMCM M^cMahon

Associates

Consulting Civil & Structural Engineers, Project Managers Environmental Engineers, PSDP & Traffic Engineers The Mill Building, Newtown Link Road, Greenhills, Drogheda, Co. Louth t: 041 2137 050 e: info@mcmahonengineers.com

<u> </u>					
А	01.09.22	UPDATED WITH LA	TEST LAYOUT	PM	МК
REV	DATE	DESCRIPTION		BY	APPR
DRAWI	NG STATUS:				
F	PART_	_8_PLANN	ING		
CLIENT	:				
FI	NGAL	COUNTY CO	OUNCIL		
JOB DE	SCRIPTION:				
13	No. DWE	ELLING HD AT 30)-32 NORTH ST	REET,	
S٧	ORDS, O	Co. DUBLIN		,	
DRAWI	NG TITLE:				
P	ROPC	SED WATE	ERMAIN L	AYOI	JT
	TNo		DRAWING	No :	
			Diversite		
	-	> > < > <	(2-03	5
	ŀ	'- 3626	REV. No.	:	
				Α	
SCALE:		SHEET:	DATE:		
	1:10	0	A1	25.07	.22
DRAWN	BY:	CHECKED BY:	APPROVE	ED BY:	
	P۸	۸	MK	P۸	ACM
	N	CMaho Associa	on ates	-	
	Consulting Enviro	Civil & Structural E onmental Engineers, F	ingineers, Project PSDP & Traffic Engin	Manager neers	S
	The Mi	ll Building, Newtow Drogheda, (n Link Road, Gree Co. Louth	nhills,	
	t: 041	2137 050 e: info@i	mcmahonengineer	s.com	

GENERAL NOTES:

- 1. ALL DIMENSIONS AND LEVELS TO BE VERIFIED ON SITE PRIOR TO COMMENCEMENT OF THE WORKS. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER.
- 2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT ARCHITECT'S AND OTHER ENGINEERING

N

- THIS SECTION OF EXISTING BOUNDARY WALL IS TO BE DEMOLISHED AND RECONSTRUCTED AS A REINFORCED CONCRETE / BLOCK RETAINING WALL

> -LOW LEVEL RETAINING WALL WITH PLANTED AREA BEHIND IT

V/W

DRA	WINGS.
SITE LE	VELS_LEGEND
▼ 10	.00 PROPOSED ROAD LEVEL
- 10	.00 PROPOSED FOOTPATH LEVEL
 	.00 PROPOSED LANDSCAPE LEVEL
× 10	.00 EXISTING SITE LEVELS
-	PROPOSED SURFACE GRADIENT
-	EXISTING BOUNDARY WALL TO BE RECONSTRUCTED AS A MASONRY WALL
-	EXISTING BOUNDARY WALL TO BE RECONSTRUCTED AS A RETAINING WALL
-	EXISTING BOUNDARY WALL TO BE RETAINED (UNDERPINNING MAY BE REQUIRED)
	LOW LEVEL BLOCK RETAINING WALL TO BE MAXIMUM OF 500mm HIGH
<u>NOTES:</u>	
1.	REAR GARDEN LEVELS WITHIN CURTILAGE OF UNITS 4 – 8 GRADED AT MAX 1:25 (5%)
2.	ACCESS FROM PUBLIC FOOTWAY TO GROUND FLOOR OF DWELLING TO COMPLY WITH BUILDING REGULATIONS PART M 1:20 (5%); AS A MAXIMUM
3.	PUBLIC FOOTWAY CROSSFALL 1:40 (2.5%)

4. PUBLIC FOOTWAY MAX LONGITUDINAL 1:20 (5%)

					1	
А	01.09.22	UPDATED WITH		OUT	PM	МК
REV	DATE	DESCRIPTION		001	BY	APPR
TCE V	DITL	Decolul Holy			DI	71111
DRAWI	NG STATUS					
F	PART_	8_PLAN	VING			
CLIENT	:					
FI	NGAL	COUNTY	COUNC	IL		
JOB DE	SCRIPTION:					
13			30-32 NO		FT	
SM	VORDS, (Co. DUBLIN	50 52 110		.∟١,	
DRAWI	NG TITLE:					
Ρ	ROPC	SED SITE	LEVE	LS		
PROJEC	CT No.:			DRAWING No	.:	
				C-	02	
	F	2-3626			0	•
	I	3020		REV. No.:		
					A	
SCALE:		SHEET:		DATE:		
	1:10	10	A1		25.07	.22
DRAWN	BY:	CHECKED BY	:	APPROVED B	Y:	
	PA	٨	MK		P۸	ЛСМ
	- IV	~man	O N			
		Λεεος	istoc			
		ASSOC	iales			
	Consulting	Civil & Structura	t Engineers	Project Ma	nager	·c
	Enviro	onmental Engineer	S. PSDP & Tra	Iffic Enginee	rs	5
_						
	The Mi	ll Building, Newto Drogheda	wn Link Ro . Co. Louth	ad, Greenhi	lls,	
	t• 041	2137 050 e: info	@mcmahon	engineers.c	om	

STORM Netv	vork 1										
Pipe	Diameter	Gradient	Pipe	Pipe	Upstream Manhole			Downstream Manhole			Chamber
Code	(mm)	(1:)	Туре	Length	Number	Invert	Cover	Number	Invert	Cover	Dia. (mm)
1.000	225	100	uPVC	12.702	S1	11.175	13.440	S2	11.048	13.385	1200
1.001	225	100	uPVC	9.053	S2	11.048	13.385	S3	10.957	13.197	1200
1.002	225	100	uPVC	7.883	S3	10.957	13.197	S4	10.878	13.151	1200
1.003	150	40	uPVC	11.932	S4	10.878	13.151	S5	10.580	12.932	1200
2.000	150	25	uPVC	9.115	S6	13.415	14.150	S7	13.050	14.050	450
2.001	150	25	uPVC	11.205	S7	13.050	14.050	S8	12.600	13.580	450
2.002	150	100	uPVC	3.430	S8	12.600	13.580	S2	12.565	13.385	450

FOUL Netwo	ork 1										
Pipe	Diameter	Gradient	Pipe	Pipe		Upstream Manho	le	D	ownstream Manh	ole	Chamber
Code	(mm)	(1:)	Туре	Length	Number	Invert	Cover	Number	Invert	Cover	Dia. (mm)
1.000	150	60	uPVC	15.204	F1	11.800	13.320	F2	11.547	13.295	1200
1.001	150	60	uPVC	13.483	F2	11.547	13.295	F3	11.322	13.155	1200
1.002	150	60	uPVC	9.394	F3	11.322	13.155	F4	11.165	12.823	1200

Έ 15.000 -10.000 -DATUM 7.000 -GROUND LEVEL 2 FOULWATER COVER LEVEL 11.165 11.322 11.322 11 547 11 547 FOULWATER INVERT Pipe 1.000 Dia 150 uPVC 1 in 60 Pipe 1.001 Dia 150 uPVC 1 in 60 Pipe 1.002 Dia 150 uPVC 1 in 60 FOULWATER DETAILS 13.483 9.394 15.204 FOULWATER LENGTHS

FOUL PIPES 1.000 - 1.002 Hz SCALE 1:500 Vt SCALE 1:100

<u>GENERAL NOTES:</u>
1. ALL DIMENSIONS AND LEVELS TO BE VERIFIED ON SITE PRIOR TO COMMENCEMENT OF THE WORKS. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER.
2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT ARCHITECT'S AND OTHER ENGINEERING DRAWINGS.
LONGSECTION LEGEND
PROPOSED STORM SEWER
PROPOSED FOUL SEWER
EXISTING STORM SEWER
EXISTING FOUL SEWER
PROPOSED GROUND LEVEL

						_				
						_				
P	01.00.22		TED WITH	LATESTI	VOUT	DM	MV			
A	01.09.22	DWG	STATUS UI	PDATED TO) PLANNING	G PM	MK			
REV	DATE	DESC	RIPTION			BY	APP			
DRAWI	NG STATUS:									
F	PART_	_8_	PLANI	VING						
CLIENT	:									
					C 11					
۲I	NGAL	CUL		LUUN	L					
100 02				20 22 11	ססדט כדי	DEET				
13				30-32 N		KEEI,				
24		LU. DI								
DRAWIN	DRAWING TITI F									
					-					
P	ROPO	SED) DRA	INAG	E					
Pl I (ROPO	SED FCT) DRA	INAG	E					
PI L(ROPO ONGS)SED SECT) DRA FIONS	INAG	E					
PI L(ROPO ONGS	SEC) DRA FIONS	INAG	E	No.:				
Pl L(ROPO ONGS	SEC) DRA FIONS	INAG		^{№.:}	5			
Pl L(ROPO ONGS	SED ECT	D DRA FIONS	INAG		^{No.:}	5			
PI L(ROPO DNGS	SED ECT	D DRA FIONS 626	INAG	E DRAWING C REV. No.:	^{No.:} 2-05	5			
PI L(ROPO DNGS TNO.:	SED ECT) DRA FIONS 626	INAG	E DRAWING C REV. No.:	^{№.:} 2-05	5			
PI L(PROJEC	ROPO DNGS	SED ECT	D DRA FIONS 626	INAG	E DRAWING REV. No.: DATE:	^{№.:} 2-05 В	5			
PI L(PROJEC	ROPO ONGS T No.: F	DSED ECT D-3	D DRA FIONS 626	INAG	E DRAWING REV. No.: DATE:	No.: 2-05 B 25.07) 7.22			
PROJEC PROJEC	ROPO DNGS TNO.: F 1:10 BY: PA	DSED ECT D-3	D DRA FIONS 626 SHEET: CHECKED BY	INAG	E DRAWING C REV. No.: DATE: APPROVEI	No.: C-O5 B 25.07 D BY: P/	5 7.22 MCM			
PI L(PROJECC SCALE:	ROPO ONGS T No.: F 1:10 BY: PA		D DRA FIONS 626 SHEET: CHECKED BY	INAG	E DRAWING REV. No.: DATE: APPROVED	No.: C-OS B 25.07 D BY: P/	5 7.22 MCM			
PI L(PROJEC	ROPO ONGS T NO.:		D DRA FIONS 626 SHEET: CHECKED BY		E DRAWING C REV. No.: DATE: APPROVED	No.: C-O5 B 25.07 D BY: P/	7 .22 MCM			
PI L(PROJEC	ROPO ONGS T No.: F 1:10 BY: PA		D DRA FIONS 626 SHEET: CHECKED BY		E DRAWING REV. No.: DATE: APPROVED	No.: D B 25.07 D BY: P/	5 7.22 MCM			
PI L(PROJEC	КО ППЕЕ: ROPO DNGS IT No.: F 1:10 ВУ: РА		D DRA FIONS 626 SHEET: CHECKED BY	A1 MK ION	E DRAWING REV. No.: DATE: APPROVEI	No.: B 25.07 D BY: P/	7 .22 MCM			
PI L(PROJECC SCALE:			D DRA FIONS 626 SHEET: CHECKED BY	A1 MK ION iates	E DRAWING REV. No.: DATE: APPROVED	No.: D 25.07 D BY: P/	5 7.22 MCM			
PI L(PROJEC	ROPO ONGS T No.:	PSED ECT P-3	D DRA FIONS 626 SHEET: CHECKED BY Aah SSOC	A1 MK ION iates	E DRAWING REV. No.: DATE: APPROVED s, Project J raffic Engin	No.: D D D D D D D D	7 .22 MCM			
PI L(PROJEC	ROPO ONGS T No.:	DSED ECT D-3 Civil 8 Domenta	D DRA FIONS 626 SHEET: CHECKED BY Aah SSOC	A1 MK ION iates rsp. PSDP & T	E DRAWING REV. No.: DATE: APPROVED S, Project A raffic Engin	No.: D D D D D D D D	7.22 MCM			
PI L(PROJEC	ROPO ONGS T No.:	DSED DECT D-3 DO A Civil 8 Donmenta Il Build	D DRA FIONS 626 SHEET: CHECKED BY CHECKED BY	A1 MK ION iates , PSDP & T pwn Link F a, Co, Lout	E DRAWING REV. No.: DATE: APPROVEI S, Project J raffic Engin Coad, Greer	No.: B 25.07 D BY: P/ Managerers shills,	7.22 MCM			
PI L(PROJEC	ROPO ONGS TNO.: TNO.: F 1:10 BY: PA N Consulting Enviro The Mi t: 041	DSED ECT D-3 Co Civil 8 Civil	D DRA FIONS 626 SHEET: CHECKED BY Aah SSOC t Structura al Engineers ting, Newto Drogheda 50 e: info	A1 MK ION iates It Engineer s, PSDP & T own Link F a, Co. Lout	E DRAWING REV. No.: DATE: APPROVED S, Project A raffic Engin Road, Green	No.: D 25.07 D BY: P/ Managere eers s.com	7.22 MCM			

<u>GENERAL NOTES:</u>								
1. ALL DIMENSIONS AND LEVELS TO BE VERIFIED ON SITE PRIOR TO COMMENCEMENT OF THE WORKS. ANY DISCREPANCIES TO BE REPORTED TO THE ENGINEER.								
2. THIS DRAWING IS TO BE READ IN CONJUNCTION WITH THE RELEVANT ARCHITECT'S AND OTHER ENGINEERING DRAWINGS.								
LEGEND								
EXISTING FOOTPATH								
EXISTING ROAD (NORTH STREET)								
PROPOSED APARTMENT UNITS								
49m VISIBILITY SPLAY FOR 50km/h SPEED ZONE WITH A BUS ROUTE. AS PER DMURS								
PROPOSED 125mm HALF BATTERED CONCRETE KERB								
PROPOSED HALF BATTERED INSITU CONCRETE KERB (DROPPED)								
PROPOSED 125mm FLUSH CONCRETE KERB								
13.400 PROPOSED FINISHED FLOOR LEVEL								

PM MK BY APPR

DRAWING No .:

REV. No.:

APPROVED BY:

C-06

Α

25.07.22

PMCM

А	01.09.22	UPDATED WITH LATEST LAYOUT	PM	MK
REV	DATE	DESCRIPTION	BY	APPR

DRAWING STATUS: PART_8_PLANNING

FINGAL COUNTY COUNCIL

DRAWING TITLE:

JOB DESCRIPTION: 13No. DWELLING HD AT 30-32 NORTH STREET, SWORDS, Co. DUBLIN

FIRE ENGINE SWEPT PATH ANALYSIS

PROJECT No.: DRAWING No.: C-07 P-3626 REV. No.: Α SCALE 25.07.22 1:100 A1 DRAWN BY: CHECKED BY: APPROVED BY: MK PMCM PM M^cMahon

Associates

Consulting Civil & Structural Engineers, Project Managers Environmental Engineers, PSDP & Traffic Engineers The Mill Building, Newtown Link Road, Greenhills, Drogheda, Co. Louth t: 041 2137 050 e: info@mcmahonengineers.com

Passenger vehicle (5.2 m) Overall Length Overall Width Overall Body Height Min Body Ground Clearance Track Width Lock to lock time Kerb to Kerb Turning Radius

5110146	20 94 80 29 80 80 30	0m 0m 4m 5m 0s 0m	
<u> </u>	00	0111	
4. 6.	00 30	0m s 0m	

	01.00.00			LAT				D) (
A	01.09.22 DATE	DESCI	TED WITH	LATI	ESTLA	rout		PM BY	
KL V	DATE	DESCI						DI	AH
DRAWIN	NG STATUS:	_8_F	PLANI		٩G				
FI	NGAL	ςοι	JNTY	со	UNC	ΊL			
JOB DE	SCRIPTION:								
13	No. DWF			30-	32 NC	ORTH S	TRE	ET,	
S٧	ORDS, (Co. DL	JBLIN	50					
SW DRAWIN	ORDS, O	Co. DU	JBLIN						
SW DRAWIN P A	VORDS, (IG TITLE: RIVAT NALY	TE C	AR S	WE	EPT	ΡΑΊ	ſH		
	NORDS, (NG TITLE: RIVAT NALY	TE C	CAR S	WE	PT	PAT	TH NG No.:	-	
SW DRAWIN P A	VORDS, (IG TITLE: RIVAT NALY IT NO.:	TE C	AR S	WE	PT	PAT	ГН ^{NG No.:}	08	
SW DRAWIN PI A PROJEC	VORDS, (G TITLE: RIVAT NALY TNO.:		CAR S	WE	PT	PAT DRAWI	ГН NG No.: С-	08	,
SW DRAWIN PI A	VORDS, (RIVAT NALY TNO.:	E C SIS	CAR S	WE	EPT	PAT DRAWI REV. N	ГН NG No.: С-	08 4	}
SW DRAWIN PI A PROJEC	IT NO.: 1:10 1:10	FE C SIS >-3	CAR S 626	WE	EPT	PAT DRAWI REV. N DATE:	ГН NG No.: С- Io.:	08	.22
SW DRAWIN PI A PROJEC SCALE:	VORDS, (NG TITLE: RIVAT NALY TT NO.: F 1:10 BY: PA	FE C SIS -3	CAR S 626 SHEET: CHECKED BY	WE	ЕРТ А1 мк	PAT DRAWI REV. N DATE: APPRO	TH NG NO.: IO.:	08 4 25.07	

Consulting Civil & Structural Engineers, Project Managers Environmental Engineers, PSDP & Traffic Engineers The Mill Building, Newtown Link Road, Greenhills, Drogheda, Co. Louth t: 041 2137 050 e: info@mcmahonengineers.com

Appendix B:

- QBar Calculation
- Met Eireann Data
- 1 in 1 year event plus 10% Climate Change
- 1 in 30 year event plus 10% Climate Change
- 1 in 100 year event plus 10% Climate Change
- Foul Network Details

McMahon Associates		Page 1
Consulting Engineers		
50 Dobbin Street		
Armagh BT61 7QQ		Micco
Date 04/08/2022 09:19	Designed by paulmcg	
File	Checked by	Diginada
XP Solutions	Source Control 2020.1.3	
<u>IH 124</u>	Mean Annual Flood	
	Input	
Return Period (years)	100 Soil 0.30	00
Area (ha) 50.	000 Urban 0.00	00
SAAR (mm)	/41 Region Number Ireland Greater Dubli	n
	Results 1/s	
	QBAR Rural 97.4	
	2BAR Urban 97.4	
	Q100 years 254.2	
	Q1 year 82.8	
	Q2 years 89.6	
	Q5 years 133.4	
	Q10 years 162.7	
	Q25 years 199.7	
	Q30 years 206.9	
	Q50 years 226.9	
	2100 years 254.2	
	2200 years 201.5 0250 years n/a	
Q	1000 years n/a	
WARNING: Irish growth c	irves are not defined above 200 years.	
<u>0</u> 195	32-2020 Innovvze	
	52 2020 IIIIOVY2C	

Met Eireann Return Period Rainfall Depths for sliding Durations Irish Grid: Easting: 318361, Northing: 247073,

	Inte	rval						Years								
DURATION	6months,	lyear,	2,	З,	4,	5,	10,	20,	30,	50,	75 ,	100,	150,	200,	250,	500,
5 mins	2.5,	3.5,	4.0,	4.8,	5.3,	5.7,	7.0,	8.5,	9.5,	10.9,	12.1,	13.0,	14.5,	15.6,	16.5,	N/A ,
10 mins	3.5,	4.8,	5.6,	6.7,	7.4,	8.0,	9.8,	11.9,	13.2,	15.1,	16.8,	18.1,	20.2,	21.7,	23.0,	N/A ,
15 mins	4.1,	5.7,	6.6,	7.8,	8.7,	9.4,	11.5,	14.0,	15.6,	17.8,	19.8,	21.4,	23.7,	25.5,	27.1,	N/A ,
30 mins	5.4,	7.4,	8.5,	10.1,	11.1,	12.0,	14.6,	17.6,	19.5,	22.2,	24.6,	26.4,	29.2,	31.4,	33.1,	N/A ,
1 hours	7.2,	9.7,	11.0,	13.0,	14.3,	15.3,	18.5,	22.1,	24.4,	27.6,	30.5,	32.6,	35.9,	38.5,	40.6,	N/A ,
2 hours	9.5,	12.6,	14.3,	16.7,	18.3,	19.6,	23.5,	27.8,	30.6,	34.4,	37.8,	40.3,	44.2,	47.2,	49.7,	N/A ,
3 hours	11.1,	14.8,	16.6,	19.4,	21.2,	22.6,	27.0,	31.8,	34.9,	39.1,	42.9,	45.7,	50.0,	53.3,	55.9,	N/A ,
4 hours	12.5,	16.5,	18.5,	21.5,	23.5,	25.0,	29.8,	35.0,	38.3,	42.9,	46.9,	49.9,	54.5,	58.0,	60.8,	N/A ,
6 hours	14.7,	19.3,	21.6,	25.0,	27.2,	28.9,	34.2,	40.0,	43.7,	48.7,	53.1,	56.5,	61.5,	65.4,	68.5,	N/A ,
9 hours	17.3,	22.5,	25.1,	28.9,	31.4,	33.3,	39.3,	45.7,	49.8,	55.4,	60.3,	63.9,	69.5,	73.7,	77.1,	N/A ,
12 hours	19.4,	25.1,	28.0,	32.1,	34.8,	36.9,	43.3,	50.3,	54.7,	60.7,	65.9,	69.8,	75.7,	80.2,	83.9,	N/A ,
18 hours	22.9,	29.3,	32.6,	37.3,	40.3,	42.6,	49.8,	57.5 ,	62.4,	69.0,	74.7,	79.0,	85.5,	90.4,	94.4,	N/A ,
24 hours	25.7,	32.8,	36.3,	41.4,	44.7,	47.2,	54.9,	63.2,	68.5,	75.6,	81.7,	86.3,	93.2,	98.5,	102.7,	117.1,
2 days	31.8,	39.9,	43.9,	49.6,	53.2,	56.0,	64.5,	73.6,	79.2,	86.8,	93.3,	98.2,	105.5,	111.0,	115.4,	130.4,
3 days	36.8,	45.7,	50.0,	56.2,	60.1,	63.1,	72.3,	81.9,	87.9,	96.0,	102.8,	108.0,	115.6,	121.4,	126.0,	141.6,
4 days	41.1,	50.7,	55.3,	61.9,	66.1,	69.3 ,	79.0,	89.2,	95.5,	103.9,	111.1,	116.5,	124.5,	130.4,	135.2,	151.4,
6 days	48.7,	59.4,	64.6,	71.9,	76.5,	80.0,	90.6,	101.7,	108.6,	117.7,	125.4,	131.2,	139.7,	146.1,	151.2,	168.4,
8 days	55.4,	67.1,	72.7,	80.6,	85.6,	89.4,	100.8,	112.6,	120.0,	129.7,	137.9,	144.0,	153.0,	159.7,	165.1,	183.1,
10 days	61.5,	74.0,	80.1,	88.5,	93.9,	97.8,	110.0,	122.5,	130.2,	140.5,	149.1,	155.5,	165.0,	172.0,	177.7,	196.4,
12 days	67.2,	80.5,	86.9,	95.9,	101.5,	105.7,	118.5,	131.7,	139.8,	150.5,	159.5,	166.2,	176.0,	183.3,	189.2,	208.7,
16 days	77.7,	92.5,	99.6,	109.4,	115.5,	120.1,	134.1,	148.3,	157.1,	168.7,	178.3,	185.5,	196.1,	203.9,	210.2,	230.9,
20 days	87.4,	103.5,	111.1,	121.7,	128.4,	133.3,	148.3,	163.5,	172.9,	185.2,	195.5,	203.1,	214.2,	222.5,	229.2,	251.1,
25 days	98.7,	116.3,	124.6,	136.0,	143.2,	148.6,	164.7,	181.0,	191.0,	204.2,	215.1,	223.2,	235.1,	243.9,	250.9,	274.1,
NOTES:																

N/A Data not available

These values are derived from a Depth Duration Frequency (DDF) Model

For details refer to:

'Fitzgerald D. L. (2007), Estimates of Point Rainfall Frequencies, Technical Note No. 61, Met Eireann, Dublin', Available for download at www.met.ie/climate/dataproducts/Estimation-of-Point-Rainfall-Frequencies_TN61.pdf

M5-60 = 15.3
Ratio R = 15.3 / 56 = 0.273
SAAR = 741

Consulting Engineers P3626 13No. Unit HD 30-32 North Street, Swords S0 Dobbin Street S0 Dobbin Street S0 Dobbin Street Pile P3626 DRAINAGE DESIGN.MDX Designed by SM Checked by MK Image: Street S0 Dobbin Street S0 Dobbin Street Pile P3626 DRAINAGE DESIGN.MDX STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FSR Rainfall Model - Sochland and Ireland Return Period (years) 100 M5-60 (m) 15.300 Maximum Rainfall (mm/hr) 50 Maximum Time of Concentration (nin) 30 Min Design Depth for Optimisation (n) 1.200 Foul Sewage (1/a/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Design Depth For Optimisation (n) 1.200 Foul Sewage (1/a/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Design Depth For Optimisation (n) 1.200 Designed with Level Soffits Time Area (mins) (ha) 0-4 0.081 Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Fipe Volume (m*) = 1.805 Network Design Table for Storm Storm SECT (m) (ha) (ha) (mins) Flow (1/s) (ms) SECT (mm) Design Design 0.00 0.12.703 0.127 100.0 0.010 5.00 0.0 0.150 0 225 Pipe/Conduit 0.00 0.150 0 150 Pipe/Conduit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	McMahon Associates	Page 1								
50 Dobbin Street 130.0. Unit HD Armagh BT61 700 30-32 North Street, Swords Date 24/087/2022 Designed by SM File P3626_DRAINAGE DESIGN.MDX Checked by MK XP Solutions Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Designed by SM STORM SEWER DESIGN by the Modified Rational Method Designed by SM File P3626_DRAINAGE DESIGN by the Modified Rational Method Designed by SM STORM SEWER DESIGN by the Modified Rational Method DESIGN by the Modified Rational Method DESIGN 000 Add Flow / Climate Change (8) 0 Rainfall Model - Scotland and Ireland Relation 000 Min Design Depth for Optimization (0.000 Maximum Rainfall (mn/r) 50 Maximum Backdrop Height (0) 0.000 Network Acea Diagram for Storm Time Area (mina) (ha) (mina) (ha) Minimum Backdrop Height (0) 0.000 Network Design Table for Storm Time Area (mina) (ha) (mina) Stop I.stree T.st. Designe Table for Storm	Consulting Engineers	P3626								
Armagh PT61 700 30-32 North Street, Swords Date 24/08/2022 Designed by SM Checked by MK Designed by SM Designed by SM STORM SEWER DESIGN MXX Checked by MK Checked by MK Designed by SM Designed by SM STORM SEWER DESIGN by the Modified Rational Method Designed for Storm Designed for Storm File P3626_DRAINAGE DESIGN MX Prise Sizes STANDARD Manhole Sizes STANDARD FIMP (8) 100 Maximum Terrind (versit) 100 Maximum Backdrop Height (m) 0.200 Maximum Time of Concentration (min) 3.00 Min Design Dept for Optimisation (m) 1.200 Maximum Time of Concentration (mins) 3.00 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Signed for Storm Time Area (mins) (ha) 0.40 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m') = 1.805 Network Design Table for Storm Network Design Table for Storm Div (Lis) (ha) (mins) Flow (L/s) (m) SECT (m) Design Div (Lis) (ha) (mins) Flow (L/s) (m) SECT (m) Design Divo (Lis)	50 Dobbin Street	13No. Unit HD								
Date 24/08/2022 Designed by SM Checked by MK Difference File P3626_DRAINAGE DESIGN.MDX Network 2020.1.3 Difference STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm File Sizes STANDARD Manhole Sizes STANDARD File Sizes STANDARD Manhole Sizes STANDARD FILE STANDARD Manhole Sizes STANDARD Restainfall Model - Scotland and Ireland Return Feriod (years) 100 FILE FILE STANDARD Manhole Sizes STANDARD Maximum Rainfall (mo/r) 500 Mainimum Backdrop Height (m) 0.200 Maximum Rainfall (mo/r) 500 Mainimum Backdrop Height (m) 0.200 Maximum Rainfall (mo/r) 500 Mainimum Backdrop Height (m) 0.200 Maximum Rainfall (mo/r) 500 Maximum Rainfall (mo/r) 500 Maximum Rainfall (mo/r) 500 Maximum Backdrop Height (m) 0.200 Maximum Rainfall (mo/r) 500 Maximum Backdrop Height (m) 0.200 Time Area (1/s/h) 0.000 Maine Area (mins) (ha) for 0 Store Optimisation (1:x) 500 Designed with Level Soffits Time Area biagram for Storm <th< td=""><td>Armagh BT61 7QQ</td><td>30-32 North Street, Swords</td></th<>	Armagh BT61 7QQ	30-32 North Street, Swords								
File P3626_DRAINAGE DESIGN.MDX Checked by MX During Checked by MX XP Solutions Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Pipe Sizes STANDARD Menhole Sizes STANDARD FINE Rainfall Model - Scotland and Ireland RETURN SEWER DESIGN by the Modified Rational Method DESIGN by the Modified Rational Method DESIGN (years) Pipe Sizes STANDARD Menhole Sizes STANDARD Return Period (years) Maximum Rainfall (model - Scotland and Ireland Return Period (years) Maximum Rainfall (model - Scotland and Ireland Time Area (in a Area (in a Area (in a Area (make Ret Tebe for Storm	Date 24/08/2022	Designed by SM								
XP Solutions Network 2020.1.3 STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Fipe Sizes STANDARD Manhole Sizes STANDARD FIRE Rainfall Model - Scotland and Ireland Return Period (years) 100 Maximum Rainfall (mm/hr) Solution 0.200 Maximum Time of Concentration (mins) Maximum Time of Concentration (mins) Time Area (mins) Time Area (mins) Time Area (mins) OPU Sewage (1/s/ha) 0.00 Maximum Time of Concentration (mins) Time Area (mins) Time Area (mins) OPU Sewage (1/s/ha) 0.00 Maximum Time of Concentration (mins) Time Area (mins) Time Area (mins) <td co<="" td=""><td>File P3626_DRAINAGE DESIGN.MDX</td><td>Checked by MK</td></td>	<td>File P3626_DRAINAGE DESIGN.MDX</td> <td>Checked by MK</td>	File P3626_DRAINAGE DESIGN.MDX	Checked by MK							
STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm Figs STANDARD Manhole Sizes STANDARD Maximum Rainfall (model - Scotland and Ireland Return Period (years) 100 Maximum Backdrop Height (m) 0.200 Maximum Rainfall (mm/h) 30 Min Design Depth for Optimisation (m) 1.200 Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Designed with Level Soffits Time Area (mins) (ha) Catal Area Contributing (ha) = 0.114 Other Kells (mins) Flow (L/s) May Brow for Optimisation (m) 2.200 N length Fall Slope LArea T.E. Base (mon (1:2) 0.00 0.000 0.00 0.00 0.00 0.00 0.00 0	XP Solutions Network 2020.1.3									
Descur Criteria for storm Pipe Sizes STANDARD Manhole Sizes STANDARD FIR Rainfall Model - Scotland and Ireland Return Period (years) 100 NS-60 (mm) 15.300 Add Flow / Climate Change (%) 0 Ratin R 0.273 Minimum Backdrop Height (m) 0.000 Maximum Rainfall (mn/hr) 50 Maximum Ring Rainfall (mn/hr) 50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) Yold Maximum Rainfall (mn/hr) 500 Maximum Rainfall (mn/hr) Yold Maximum Time of Concentration (mins) Yold Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (1:X) Yold Maximum Time of Concentration (mins) 0.00 Min Vel for Auto Design on (1:X) Yold Maximum Time of Concentration (mins) 100 Yold Maximum Time of Concentration (mins) 100 Yold Maximum Tame of Concentration (mins) 100 Yold Maximum Time of Concentration (mins) 100 Yold Maximum Tame of Concentration (mins) 101 Maximum Time of Concentration 100 Maximum Time of Concentration 100 Maximum Time of Concentration 100	STORM SEWER DESIGN by the Modified Rational Method									
Figs Sizes STANDARD Mannole Sizes STANDARD FSR Rainfall Model - Scotland and Ireland Return Period (years) 100 FIMP (%) 100 M5-60 (mm) 15.300 Add Flow / Climate Change (%) 0 Raximum Rainfall (mm/hr) 50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Fool Sewage (1/5/ha) 0.000 Min VH for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m') = 1.805 Network Design Table for Storm Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (1:X) (ha) (mins) Flow (1/s) (ms) SECT (mm) Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 150 Pipe/Conduit (m) (1:02 7.883 0.079 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit (m) (1:02 7.883 0.079 100.0 0.000 0.00 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit (mm/h) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) (1/s) 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit (m) (1:02 7.883 0.079 100.0 0.000 0.00 <td colspan<="" td=""><td></td><td></td></td>	<td></td> <td></td>									
FBR Rainfail Model - Scotland and Ireland Return Period (years) 100 FIMP (%) 100 M5-60 (mm) 15.300 Add Flow / Climate Change (%) 0 Ratio R 0.273 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.000 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foll Sewage (1.5/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area (mins) (ha) Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m') = 1.805 Network Design Table for Storm Network Design Table for Storm Network Design Table for Storm 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 0 150 Pipe/Conduit 2.001 10.687 0.107 100.0 0.000 0.00 0.0 0.150 0 225 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.10 5.00 225 Pipe/Conduit 1.002 7.883 0.079 100.0 0.000 0.00 0.0 0.150 0	Pipe Sizes STAN	NDARD Manhole Sizes STANDARD								
MS-6-0 (mm) 15.300 Add Flow / Climate Change (%) 0 Ratio R 0.273 Minimum Backdrop Height (m) 0.200 Maximum Rainfall (mm/hr) 50 Maximum Backdrop Height (m) 0.200 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Slope for Optimisation (n) 1.200 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) Designed with Level Soffits Time Area Diagram for Storm Time Area Contributing (ha) = 0.114 Total Area Contributing (ha) = 0.114 Total Area T.E. Base k HYD DIA Section Type Auto Design Metwork Design Table for Storm Network Design Table for Storm Into 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 1.000 12.703 0.127 100.0 0.010 5.00 0.0 0.150 150 Pipe/Conduit 1001 Network Results Table Network Results Table <td< td=""><td>FSR Rainfall M Return Period (Verra)</td><td>100 PTMP (%) 100</td></td<>	FSR Rainfall M Return Period (Verra)	100 PTMP (%) 100								
Ratio R 0.273 Minimum Backdrop Height (m) 0.200 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (m) 1.200 Designed with Level Soffits Time Area Diagram for Storm 500 Time Area (mins) (ha) (ha) 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Design Design Network Design Table for Storm Network Design Table for Storm 1.000 1.2703 0.127 100.0 0.00 0.0 0.150 225 Pipe/Conduit 0 2.000 12.703 0.127 100.0 0.00 0.0 0.150 150 Pipe/Conduit 0 2.001 10.687 0.107 0.000 0.00 0.0 0.150 225 Pipe/Conduit 0 1.001 9.052 0.91 10.00 0.00 0.00 0.00 0.150 225 Pipe/Conduit <	M5-60 (mm)	100Fime (%)10015.300Add Flow / Climate Change (%)0								
Maximum Raintail (mm/hr) 50 Maximum Baintail (mm /hr) 50 Maximum Baintail (mm /hr) 50 Maximum Time of Concentration (mins) 30 Min Design Depth for Optimisation (m) 1.200 Foul Sewage (l/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.00 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (l:X) 500 Designed with Level Soffits Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Design Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.00 0.0 0.50 150 Pipe/Conduit 2.001 12.852 0.127 100.0 0.000 0.0 0.0 150 Pipe/Conduit 1 1.001 9.052 0.091 0.000 0.00 0.0 0.0 225 Pipe/Conduit 1 1.002 7.883 0.79 10.00 0.000 0.00 0.0 225	Ratio R	0.273 Minimum Backdrop Height (m) 0.200								
Foul Sewage (1/s/ha) 0.000 Min Vel for Auto Design only (m/s) 1.000 Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:X) 500 Designed with Level Soffits Time Area Diagram for Storm Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Area T.E. Base k HYD DIA Section Type Auto (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 1.000 On Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 1.000 On 0.000 0.000 Design 1.000 Total Area T.E. Base k HYD DIA Section Type Auto Design On 0.014 0 1.000 1.000 1.000 Design On 0.010 0.000	Maximum Rainfall (mm/hr) Maximum Time of Concentration (mins)	50 Maximum Backdrop Height (m) 0.000 30 Min Design Depth for Optimisation (m) 1 200								
Volumetric Runoff Coeff. 0.750 Min Slope for Optimisation (1:x) 500 Designed with Level Soffits Time Area (mins) (ha) 0-4 0.081 Time Area (mins) (ha) 0-4 0.081 Time Area (mins) (ha) 0-4 0.081 Time Area (mins) (ha) 0-4 0.081 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m ³) = 1.805 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (m) (1:x) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 2.001 12.652 0.129 100.0 0.010 5.00 0.0 0.150 0 150 Pipe/Conduit 2.001 10.687 0.107 100.0 0.000 0.00 0.0 0.150 0 225 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 0 225 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.0 0.150 0 225 Pipe/Conduit 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Foul Sewage (1/s/ha)	0.000 Min Vel for Auto Design only (m/s) 1.00								
Designed with Level Soffits Time Area (mins) (ha) Time Area (mins) (ha) 0-4 0.081 0-4 0.081 A 0.080 Time Area (mins) (ha) 0-4 0.081 0-4 0.081 0-4 0.081 A 0.081 Time Area (mins) (ha) 0-4 0.081 A 0.081 A 0.081 Time Area (mins) (ha) 0-4 0.081 A 0.081 A 0.081 Time Area (mins) (ha) OL 0.011 Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm Noto (12,012 0.010 0.010 5.00 0.0 0.150 0 225 Pipe/Conduit 1.000 12.703 0.127 100.0 0.010 5.00 0.00 0.150 0 150 Pipe/Conduit 100 Other Colspan Area Kesults Table Letwork Results Table Detwork Results Table N Rain T.C. US/IL E	Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X) 500								
Time Area (mins) (ha) 0-4 0.081 Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm PN length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 1000 1.001 12.852 0.129 100.0 0.000 0.00 0.150 0 225 Pipe/Conduit 1000 1.001 9.052 0.091 100.0 0.000 0.00 0.150 0 225 Pipe/Conduit 1000 1.001 9.052 0.091 0.000 0.00 0.00 0.150 0 225 Pipe/Conduit 1000 1.001 9.052 0.091 100.0 0.000 0.00 0.00 0.00 0.00 0.00 0.00 150 Pipe/Conduit 1000 1.002 7.883 0.079 100.0 0.000 0.0 0.0 </td <td>Designe</td> <td>ed with Level Soffits</td>	Designe	ed with Level Soffits								
Time Area (mins) (ha) Time Area (mins) (ha) Time Area (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Detwork Design Table for Storm Network Design Table for Storm PN Length Fall Slope I.Area (m) T.E. Base (mins) k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 225 Pipe/Conduit Image: Contribution on the contribution the contribution on the contribution the	Time Are	a Diagram for Storm								
(mins) (ha) (mins) (ha) 0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 0 150 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.000 0.00 0.150 0 225 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.000 0.0 0.150 0 225 Pipe/Conduit Network Results Table Network Results Table Network Results Table PN Rain T.C. US/IL E I.Area E Base Flow (1/s) (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 1.18 20.8 1.4	Time	Area Time Area								
0-4 0.081 4-8 0.033 Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 225 Pipe/Conduit Image: Colspan="2">Image: Colspan="2">Conduit 1.000 12.703 0.127 100.0 0.010 5.00 0.0 0.150 o 225 Pipe/Conduit Image: Colspan="2">Image: Colspan="2">Colspan="2">Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit Image: Colspan="2">Image: Colspan="2">Colspan="2">Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.0 0.0 225 Pipe/Conduit Image: Colspan="2">Image: Colspan="2">Colspan="2">Conduit Image: Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2">Colspan="2" C	(mins)	(ha) (mins) (ha)								
Total Area Contributing (ha) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm N Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit 2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 0 150 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.00 0.00 0.150 0 150 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.00 0.00 0.150 0 225 Pipe/Conduit Network Results Table N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow N Rain T.C.	0-4	0.081 4-8 0.033								
Total Area Contributing (na) = 0.114 Total Pipe Volume (m³) = 1.805 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto (m) (n) (1:X) (ha) (mins) Flow (1/s) (mm) SECT (mm) Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 225 Pipe/Conduit 1 2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 o 150 Pipe/Conduit 1 2.001 10.687 0.107 100.0 0.000 0.00 0.00 0.00 0.150 o 150 Pipe/Conduit 1 1.001 9.052 0.091 100.0 0.000 0.00 0.00 0.0150 o 225 Pipe/Conduit 1 Network Results Table Network Results Table Network Results Table N Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.00 0.0 0.0 0.0 1.18 20.8 1.4	Matal Amag	rate = 0.114								
Total Pipe Volume (m³) = 1.805 Network Design Table for Storm PN Length Fall Slope I.Area T.E. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 225 Pipe/Conduit Image: Conduct and Conduct	Total Area (Contributing (na) = 0.114								
PN Length Fall Slope L.Area T.F. Base k HYD DIA Section Type Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.00 0.150 0 225 Pipe/Conduit Image: Conduit Conduit Image: Conduit Conduit Image: Conduit Conduit Image: Conduit Conduit Image: Conduit Conduit Conduit Image: Conduit Con	Total Pi	pe Volume (m³) = 1.805								
N Length (m) Fall (m) Slope (1:x) I.Area (ha) T.E. (mins) Base Flow (1/s) k (mm) HYD SECT DIA (mm) Section Type (hm) Auto Design 1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 0 225 Pipe/Conduit Image: Conduit Image: Cond	<u>Network</u> De	esign Table for Storm								
1.000 12.703 0.127 100.0 0.104 5.00 0.0 0.150 o 225 Pipe/Conduit ● 2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 o 150 Pipe/Conduit ● 2.001 10.687 0.107 100.0 0.000 0.00 0.0 0.150 o 150 Pipe/Conduit ● 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit ● 1.002 7.883 0.079 100.0 0.000 0.00 0.0 0.0 0.225 Pipe/Conduit ● Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (m/s) (l/s) <	PN Length Fall Slope I.Area T.E (m) (m) (1:X) (ha) (min	2. Base k HYD DIA Section Type Auto us) Flow (l/s) (mm) SECT (mm) Design								
2.000 12.852 0.129 100.0 0.010 5.00 0.0 0.150 o 150 Pipe/Conduit 2.001 10.687 0.107 100.0 0.000 0.00 0.00 0.0 0.150 o 150 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.00 0.0 0.150 o 225 Pipe/Conduit 1.002 7.883 0.079 100.0 0.000 0.00 0.00 0.0 0.150 o 225 Pipe/Conduit Metwork Results Table PN Rain T.C. US/IL 2 I.Area 2 Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (1/s) (1/s) (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 0.0 1.18 20.8 1.4	1.000 12.703 0.127 100.0 0.104 5.	00 0.0 0.150 o 225 Pipe/Conduit 🔒								
2.001 10.687 0.107 100.0 0.000 0.00 0.00 0.0 0.150 o 150 Pipe/Conduit 1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit 1.002 7.883 0.079 100.0 0.000 0.00 0.00 0.0 0.150 o 225 Pipe/Conduit Metwork Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 1.18 20.8 1.4	2.000 12.852 0.129 100.0 0.010 5.	00 0.0 0.150 o 150 Pipe/Conduit 🔒								
1.001 9.052 0.091 100.0 0.000 0.00 0.0 0.150 o 225 Pipe/Conduit ● Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 1.18 20.8 1.4	2.001 10.687 0.107 100.0 0.000 0.	00 0.0 0.150 o 150 Pipe/Conduit								
I.002 7.883 0.079 100.0 0.000 0.00 0.00 0.150 o 225 Pipe/Conduit Network Results Table PN Rain T.C. US/IL E I.Area E Base Foul Add Flow Vel Cap Flow (mm/hr) (mins) (m) (ha) Flow (l/s)	1.001 9.052 0.091 100.0 0.000 0.	00 0.0 0.150 o 225 Pipe/Conduit								
Network Results Table PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base Flow (1/s) Foul (1/s) Add Flow (1/s) Vel (m/s) Cap (1/s) Flow (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 1.18 20.8 1.4	1.002 7.883 0.079 100.0 0.000 0.	00 0.0 0.150 o 225 Pipe/Conduit 🧌								
PN Rain (mm/hr) T.C. (mins) US/IL (m) E I.Area (ha) E Base Flow (l/s) Foul (l/s) Add Flow (l/s) Vel (m/s) Cap (l/s) Flow (l/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 1.18 20.8 1.4	Netwo	rk Results Table								
(mm/hr) (mins) (m) (ha) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 1.000 50.00 5.14 11.175 0.104 0.0 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 0.0 1.18 20.8 1.4	PN Rain T.C. US/IL E I.A.	rea E Base Foul Add Flow Vel Cap Flow								
1.000 50.00 5.14 11.175 0.104 0.0 0.0 1.53 60.7 14.1 2.000 50.00 5.18 12.504 0.010 0.0 0.0 1.18 20.8 1.4	(mm/hr) (mins) (m) (ha)) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)								
2.00050.005.1812.5040.0100.00.00.01.1820.81.4	1.000 50.00 5.14 11.175 0.1	104 0.0 0.0 0.0 1.53 60.7 14.1								
2.001 50.00 5.33 12.375 0.010 0.0 0.0 1.18 20.8 1.4	2.000 50.00 5.18 12.504 0.0 2.001 50.00 5.33 12.375 0.0	D100.00.00.01.1820.81.4D100.00.00.01.1820.81.4								
1.00150.005.4311.0480.1140.00.00.01.5360.715.41.00250.005.5210.9570.1140.00.00.01.5360.715.4	1.001 50.00 5.43 11.048 0.1 1.002 50.00 5.52 10.957 0.3	1140.00.00.01.5360.715.41140.00.00.01.5360.715.4								
©1982-2020 Innovyze	©198	2-2020 Innovyze								

McMahon A	Associa	tes									Pa	ae 2
Consultin	ng Engi	neers		P	3626							5
50 Dobbir	n Stree	+		1	13No Unit HD							
Armagh H	атбі 70	0		3	30-32 North Street Swords							
Date 24/0	$D_{a+e} = 24/08/2022$						SM SM		WOIC	10	M	ICIO
File P3626 DRAINAGE DESIGN MDX Checked by MK							D	ainage				
VP Solutions												
Network Design Table for Storm												
PN Length Fall Slope I.Area T.E (m) (m) (1:X) (ha) (min					Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	e Auto Design
1.003 11	.932 0.2	98 40.0	0.000	0.00)	0.0	0.150	0	150	Pipe/	Condui	t 🔒
			Ne	etworl	k Resi	<u>ilts 1</u>	<u>[able</u>					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	a Σ Flow	Base (1/s)	Foul (1/s)	Add (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.003	50.00	5.62	10.878	0.11	4	0.0	0.0		0.0	1.89	33.4	15.4
				01982-	-2020	Tnnor	1V7 P					
1							7 - 0					

McMahon Associates		Page 3
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

	Manhole Schedules for Storm										
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	13.173	1.998	Open Manhole	1200	1.000	11.175	225				
6	13.375	0.871	Open Manhole	450	2.000	12.504	150				
7	13.375	1.000	Open Manhole	450	2.001	12.375	150	2.000	12.375	150	
2	13.118	2.070	Open Manhole	1200	1.001	11.048	225	1.000	11.048	225	
								2.001	12.268	150	1145
3	13.197	2.240	Open Manhole	1200	1.002	10.957	225	1.001	10.957	225	
4	13.151	2.273	Open Manhole	1200	1.003	10.878	150	1.002	10.878	225	
S5	12.932	2.352	Open Manhole	1500		OUTFALL		1.003	10.580	150	

(North)	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
	Required	747096.792	718309.190	747096.792	718309.190	1
`	Required	747102.530	718332.775	747102.530	718332.775	6
-0.	Required	747108.055	718321.171	747108.055	718321.171	7
	Required	747109.419	718310.572	747109.419	718310.572	2
	Required	747110.404	718301.573	747110.404	718301.573	3
	Required	747111.479	718293.764	747111.479	718293.764	4
	No Entry			747113.376	718281.984	s5

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)	
1.003	S5	12.932	10.580	9.255	1500	0	

McMahon Associates		Page 4
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micco
Date 24/08/2022	Designed by SM	
File P3626 DRAINAGE DESIGN.MDX	Checked by MK	Digitight
XP Solutions	Network 2020.1.3	
File P3626_DRAINAGE DESIGN.MDX XP Solutions <u>Online</u> <u>Hydro-Brake® Optimum Manh</u> Unit Desig Design	Checked by MKNetwork 2020.1.3Controls for Stormole: 4, DS/PN: 1.003, Volume (m³t Reference MD-SHE-0076-2500-0950-2500gn Head (m)Flow (1/s)Stread (m)CalculatedObjective Minimise upstream storageApplicationo Availableameter (mm)ameter (mm)ameter (mm)ameter (mm)alculated)0.9502.5Flush-Flo™0.2852.5Kick-Flo®0.5942.0): 2.8
Mean Flow over The hydrological calculations have b Hydro-Brake® Optimum as specified.	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device	onship for the other than a
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w	onship for the other than a vill be
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo	Head Range - 2.2 been based on the Head/Discharge relati Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m)	onship for the other than a will be Flow (l/s)
Mean Flow over The hydrological calculations have b Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000	onship for the other than a will be Flow (1/s) 6.3
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.200 2.4 1.600	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500	conship for the other than a vill be Flow (1/s) 6.3 6.5
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500	conship for the other than a rill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500 3.5 5.000 5.4 9.000	Conship for the other than a will be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 7.1
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have I Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 0.600 2.0 0.800 2.3 2.400 1.000 2.6	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device end these storage routing calculations with the these storage routing calculations with these storage routing calculations with these storage routing calculations with the these storage routing calculations with these storage routing calculating the these storag	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake@Optimum@be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3 2.400 1.000 2.6 2.600	Head Range - 2.2 been based on the Head/Discharge relations were another type of control devices another type of control devi	Conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3

McMahon Associates		Page 5
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 3, DS/PN: 1.002

Invert Level (m) 10.419 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	30.1	30.1	1.001	0.0	52.7
1.000	30.1	52.7			

McMahon A	Associ	ates							Page 6
Consultir	ng Eng	ineers		P36	526				
50 Dobbir	n Stre	et		131	No. Unit	HD			
Armagh H	3T61 7	QQ		30-	-32 North	n Street,	Swords	;	Mirro
Date 24/0	08/202	2		Des	signed by	/ SM			Dcainago
File P362	26_dra	INAGE DES	IGN.MDX	Che	ecked by	MK			Diamage
XP Solut:	ions			Net	work 202	20.1.3			
Manho Fou	Margi	of Critic eal Reducti Hot Sta Hot Start L dloss Coeff ge per hect mber of In Number of O: Rainfall F M5-60 .n for Floo	cal Resu on Factor ort (mins) evel (mm) (Global) are (l/s) out Hydro Online Co ffline Co <u>Synt</u> Model tegion Sco (mm) d Risk Wa	Net	y Maximu tion Crite D Additi D Additi D Flow per D Flow per O Number 1 Number 0 Number Rainfall I F and Irela 15.3 (mm)	m Level (I ria onal Flow - DD Factor * DD Factor * In Person per of Storage of Time/Are of Real Tim Details SR Rati nd Cv (Summ 00 Cv (Wint	Rank 1 % of T 10m ³ /h let Coe Day (1 Structu ea Diagu ne Contu ne Contu o R 0.2 er) 0.7 er) 0.8) for S otal Flo a Storag ffiecier /per/day ures 1 cams 0 cols 0 	Storm w 0.000 ge 2.000 ht 0.800 y) 0.000
	Γ	Pro Duration(s)	Analysi Iner file(s) (mins)	s Time DTS St DVD St tia St 15, 7	30, 60, 2 20, 960, 2	Second Incre 120, 180, 24 1440, 2160,	Summer 10, 360, 2880, 4 7200, 8	Extended OF 0 and Win 480, 6 1320, 57 3640, 10) F N 00, 60, 080
	Return	Period(s)	(years)						1
	C	limate Cha	nge (%)						10
WARN	Name	lf Drain T	ime has n Return Cli	imate	en calculat First (X)	ted as the s First (Y) F	irst (2	a is to	o full. Water low Level (m)
	Name	SCOIM P	eriou ch	ange	Surcharge	FICCU	overiio	W ACC	. (ш)
1.000	1 1	5 Winter	1	+10%					11.250
2.000	6 I 7 1	5 Winter	1	+10% +10%					12.528
1.001	2 1	15 Winter	1	+10%					11.134
1.002	3 60)0 Winter	1	+10%					10.985
1.003	4 60	0 Winter	1	+10%					10.948
PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow , Cap.	/ Overflow (l/s)	Half Drain 7 Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.150	0.000	0.24	4		11.8	OK	
2.000	6	-0.126	0.000	0.00	6		1.1	OK	
2.001	/	-0.125	0.000	0.00	U		1.1	OK	
	-		©1	982-2	020 Inno	vyze			

McMahon Associates		Page 7
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	·

Summary of Critical Results by Maximum Level (Rank 1) for Storm

		Surcharged	Flooded			Half Drain	Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Time	Flow		Level
PN	Name	(m)	(m³)	Cap.	(l/s)	(mins)	(l/s)	Status	Exceeded
1.001	2	-0.139	0.000	0.30			12.9	OK	
1.002	3	-0.197	0.000	0.04			1.5	OK	
1.003	4	-0.080	0.000	0.05			1.5	OK	

McMahon Associates		Page 1							
Consulting Engineers	P3626								
50 Dobbin Street	13No. Unit HD								
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro							
Date 24/08/2022	Drainage								
File P3626_DRAINAGE DESIGN.MDX Checked by MK									
XP Solutions	Network 2020.1.3								
STORM SEWER DESIGN	by the Modified Rational Method								
Design Criteria for Storm									
Pipe Sizes STANDARD Manhole Sizes STANDARD									
FSR Rainfall	Model - Scotland and Ireland	() 100							
Return Period (years) M5-60 (mm)	100 PIN 15.300 Add Flow / Climate Chanc	7P (%) 100							
Ratio F	0.273 Minimum Backdrop Heigh	nt (m) 0.200							
Maximum Rainfall (mm/hr)	50 Maximum Backdrop Heigh 30 Min Design Depth for Optimisatio	nt (m) 0.000							
Foul Sewage (1/s/ha)	0.000 Min Vel for Auto Design only	(m/s) 1.00							
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation	(1:X) 500							
Design	ed with Level Soffits								
Time Ar	<u>ea Diagram for Storm</u>								
Time	Area Time Area								
(mins) (ha) (mins) (ha)								
0-	4 0.081 4-8 0.033								
Total Area	Contributing $(ha) = 0.114$								
Total P	ipe Volume (m³) = 1.805								
<u>Network</u>	Design Table for Storm								
PN Length Fall Slope I.Area T (m) (m) (1:X) (ha) (mi	E. Base k HYD DIA Section .ns) Flow (l/s) (mm) SECT (mm)	Type Auto Design							
1.000 12.703 0.127 100.0 0.104	0.00 0.0 0.150 o 225 Pipe/Con	duit 🥚							
2.000 12.852 0.129 100.0 0.010 5 2.001 10.687 0.107 100.0 0.000 0	0.00 0.0 0.150 o 150 Pipe/Con 0.00 0.0 0.150 o 150 Pipe/Con	duit 🔒 duit 🔒							
1.001 9.052 0.091 100.0 0.000 (0.00 0.0 0.150 o 225 Pipe/Con	duit 🔒							
1.002 7.883 0.079 100.0 0.000 0	0.00 0.0 0.150 o 225 Pipe/Con	duit 🧕							
Netw	ork Results Table								
PN Rain T.C. US/IL Σ I.	Area Σ Base Foul Add Flow Vel Ca	ap Flow							
(mm/hr) (mins) (m) (h	a) Flow (l/s) (l/s) (l/s) (m/s) (l/	/s) (1/s)							
1.000 50.00 5.14 11.175 0	.104 0.0 0.0 0.0 1.53 60).7 14.1							
2.000 50.00 5.18 12.504 0 2.001 50.00 5.33 12.375 0	.010 0.0 0.0 0.0 1.18 20 .010 0.0 0.0 0.0 1.18 20	0.81.40.81.4							
1.001 50.00 5.43 11.048 0	.114 0.0 0.0 0.0 1.53 60).7 15.4							
1.002 50.00 5.52 10.957 0	.114 0.0 0.0 0.0 1.53 60).7 15.4							
1									

McMahon A	Associa	tes									Pao	ae 2
Consulti	ng Engi	neers		P	3626							5
50 Dobbir	n Stree	+		1	3No	Unit	НЪ					
Armagh H	атбі 70	0		3	0-32	North	Stree	st s	word			
Date 24/0	18/2022	~		ocian	od by	SM SM		WOIC	10	M	ICIO	
Eile D2626 DDAINAGE DECIGN MDV Checked by MV								D	ainage			
VD Colutions												
Network 2020.1.5												
Network Design Table for Storm												
PN Le	ngth Fa (m) (m	ll Slope) (1:X)	I.Area (ha)	T.E. (mins)	Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	e Auto Design
1.003 11	.932 0.2	98 40.0	0.000	0.00)	0.0	0.150	0	150	Pipe/	Condui	t 🔒
			Ne	etworl	k Resi	<u>ilts 1</u>	<u>[able</u>					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	a Σ Flow	Base (1/s)	Foul (1/s)	Add (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.003	50.00	5.62	10.878	0.11	4	0.0	0.0		0.0	1.89	33.4	15.4
				01982-	-2020	Innor	1V7 P					
1				0 _			7 - 0					

McMahon Associates		Page 3
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamade
XP Solutions	Network 2020.1.3	

Manhole Schedules for Storm											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	13.173	1.998	Open Manhole	1200	1.000	11.175	225				
6	13.375	0.871	Open Manhole	450	2.000	12.504	150				
7	13.375	1.000	Open Manhole	450	2.001	12.375	150	2.000	12.375	150	
2	13.118	2.070	Open Manhole	1200	1.001	11.048	225	1.000	11.048	225	
								2.001	12.268	150	1145
3	13.197	2.240	Open Manhole	1200	1.002	10.957	225	1.001	10.957	225	
4	13.151	2.273	Open Manhole	1200	1.003	10.878	150	1.002	10.878	225	
S5	12.932	2.352	Open Manhole	1500		OUTFALL		1.003	10.580	150	

(North)	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
	Required	747096.792	718309.190	747096.792	718309.190	1
`	Required	747102.530	718332.775	747102.530	718332.775	6
-0.	Required	747108.055	718321.171	747108.055	718321.171	7
	Required	747109.419	718310.572	747109.419	718310.572	2
	Required	747110.404	718301.573	747110.404	718301.573	3
	Required	747111.479	718293.764	747111.479	718293.764	4
	No Entry			747113.376	718281.984	s5

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)	
1.003	S5	12.932	10.580	9.255	1500	0	

McMahon Associates		Page 4
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micco
Date 24/08/2022	Designed by SM	
File P3626 DRAINAGE DESIGN.MDX	Checked by MK	Digitight
XP Solutions	Network 2020.1.3	
File P3626_DRAINAGE DESIGN.MDX XP Solutions <u>Online</u> <u>Hydro-Brake® Optimum Manh</u> Unit Desig Design	Checked by MKNetwork 2020.1.3Controls for Stormole: 4, DS/PN: 1.003, Volume (m³t Reference MD-SHE-0076-2500-0950-2500gn Head (m)Flow (1/s)Stread (m)CalculatedObjective Minimise upstream storageApplicationo Availableameter (mm)ameter (mm)ameter (mm)ameter (mm)alculated)0.9502.5Flush-Flo™0.2852.5Kick-Flo®0.5942.0): 2.8
Mean Flow over The hydrological calculations have b Hydro-Brake® Optimum as specified.	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device	onship for the other than a
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w	onship for the other than a vill be
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo	Head Range - 2.2 been based on the Head/Discharge relati Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m)	onship for the other than a will be Flow (l/s)
Mean Flow over The hydrological calculations have by Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.1 1.200	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000	onship for the other than a will be Flow (1/s) 6.3
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.200 2.4 1.600	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500	conship for the other than a vill be Flow (1/s) 6.3 6.5
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500	conship for the other than a rill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500 3.5 5.000 5.4 9.000	Conship for the other than a will be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 7.1
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have I Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 0.600 2.0 0.800 2.3 2.400 1.000 2.6	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device end these storage routing calculations with the these storage routing calculations with these storage routing calculations with these storage routing calculations with the these storage routing calculations with these storage routing calculating the these storag	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake@Optimum@be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3 2.400 1.000 2.6 2.600	Head Range - 2.2 been based on the Head/Discharge relations were another type of control devices another type of control devi	Conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3

McMahon Associates		Page 5
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 3, DS/PN: 1.002

Invert Level (m) 10.419 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	30.1	30.1	1.001	0.0	52.7
1.000	30.1	52.7			

McMahon	Assoc	ciates							Page 6
Consult	ing Er	ngineers		P3	3626				
50 Dobb	in Str	reet		13	No. Unit	HD			
Armagh	BT61	7QQ		30)-32 Nort	h Street,	Sword	3	Micco
Date 24	/08/20)22		De	esigned b	y SM			
File P3	626 DF	RAINAGE D	ESIGN.MI	DX Ch	necked by	MK			Diginaria
XP Solu	tions			Ne	etwork 20	20.1.3			
<u>S</u> Mar F	Summar Ahole He Youl Sev	y of Crit Areal Reduc Hot S Hot Start eadloss Coe wage per he Number of Number of Rainfal M5- cgin for Fl	ical Re	Simul Simul tor 1.0 nm) al) 0.5 /s) 0.0 rograph Control Control Control Control Marning	by Maxim ation Crit 00 Addit 0 M 00 Flow pe 00 s 0 Number s 0 Number s 0 Number s 0 Number s 0 Number 1 Number s 0 Number s 1	um Level <u>eria</u> ional Flow ADD Factor I r Person pe c of Storage c of Storage c of Storage c of Real T <u>Details</u> FSR Rat and Cv (Sun 300 Cv (Wir	(Rank 1 - % of : * 10m³/l nlet Cod er Day (: e Struct rea Diag ime Cont : ime Cont : ine Cont : ine Cont	.) for S Fotal Flo ha Storag effiecier L/per/day ures 1 rams 0 rols 0 273 750 840 300.	Storm pw 0.000 ge 2.000 ht 0.800 7) 0.000
		P Duration(Analy In rofile(s) s) (mins)	sis Tim DTS S DVD S Mertia S 15	nestep 2.5 Status Status Status Status 5, 30, 60, 720, 960,	Second Inc 120, 180, 2 1440, 2160,	Summer 240, 360 2880, 7200,	Extended OF O and Win , 480, 6 4320, 57 8640, 10) F N ter 00, 60, 080
	Retur	n Period(s) (years)				,	,	30
		Climate C	hange (%)						10
WA U PN 1	RNING: S/MH Jame	Half Drain F Storm E	Time has eturn Cl: eriod Ch	s not be imate ange	een calcula First (X) Surcharge	first () First () Flood	structu ?) First Overf	re is to (Z) Ove Elow A	o full. Water rflow Level ct. (m)
1.000	1 1	15 Winter	30	+10%					11.292
2.000	6 1	5 Winter	30	+10% +10%					12.541
2.001 1.001	/ 1 2 20	50 Winter	30 30	+⊥U% +1∩%					12.413 11 259
1.002	3 36	50 Winter	30	+10% 3	0/120 Wint	er			11.256
1.003	4 24	10 Winter	30	+10%	30/60 Summ	er			11.254
PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.000	1	-0.108	0.000	0.53			26.3	0	K
2.000	6	-0.113	0.000	0.14			2.5	0	K
2.001	7	-0.112	0.000	0.14			2.5	0	K
				©1982-	2020 Inn	00070			

McMahon Associates		Page 7
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	·

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.001	2	-0.014	0.000	0.12			5.2	OK	
1.002	3	0.074	0.000	0.07			2.6	SURCHARGED	
1.003	4	0.226	0.000	0.08			2.4	SURCHARGED	

Storm 1 in 100 year +10% CC

McMahon Associates	Page 1								
Consulting Engineers	P3626								
50 Dobbin Street	13No. Unit HD								
Armagh BT61 7QQ	30-32 North Street, Swords								
Date 24/08/2022 Designed by SM									
File P3626_DRAINAGE DESIGN.MDX Checked by MK									
XP Solutions Network 2020.1.3									
STORM SEWER DESIGN by the Modified Rational Method									
Pipe Sizes STANDARD Manhole Sizes STANDARD									
FSR Rainfall Model - Scotland and Ireland									
Return Period (years)	100 PIMP (%) 100								
M5-60 (mm) Ratio R	15.300Add Flow / Climate Change (%)00.273Minimum Backdrop Height (m)0.200								
Maximum Rainfall (mm/hr)	50 Maximum Backdrop Height (m) 0.000								
Maximum Time of Concentration (mins) Foul Sewage (l/s/ha)	30 Min Design Depth for Optimisation (m) 1.200 0.000 Min Vel for Auto Design only (m/s) 1.00								
Volumetric Runoff Coeff.	0.750 Min Slope for Optimisation (1:X) 500								
Design	ed with Level Soffits								
Time Are	ea Diagram for Storm								
Time	Area Time Area								
(mins)) (ha) (mins) (ha)								
0-4	4 0.081 4-8 0.033								
Total Area	Contributing $(ha) = 0.114$								
Total Pi	pe Volume $(m^3) = 1.805$								
<u>Network D</u>	esign Table for Storm								
PN Length Fall Slope I.Area T. (m) (m) (1:X) (ha) (min	E. Base k HYD DIA Section Type Auto ns) Flow (l/s) (mm) SECT (mm) Design								
1.000 12.703 0.127 100.0 0.104 5	.00 0.0 0.150 o 225 Pipe/Conduit 🔒								
2.000 12.852 0.129 100.0 0.010 5 2.001 10.687 0.107 100.0 0.000 0	.00 0.0 0.150 o 150 Pipe/Conduit 🔒 .00 0.0 0.150 o 150 Pipe/Conduit 🔺								
1 001 0 050 0 001 100 0 0 000 0									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.00 0.0 0.150 o 225 Pipe/Conduit								
	•								
<u>Network Results Table</u>									
Netwo	ork Results Table								
<u>Netwo</u> PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha	ork Results Table area Σ Base Foul Add Flow Vel Cap Flow a) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)								
<u>Netwo</u> PN Rain T.C. US/IL Σ Ι.Α (mm/hr) (mins) (m) (ha 1.000 50.00 5.14 11.175 0.	Ork Results Table Area E Base Foul Add Flow Vel Cap Flow A) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s) 104 0.0 0.0 0.0 1.53 60.7 14.1								
Network PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha 1.000 50.00 5.14 11.175 0. 2.000 50.00 5.18 12.504 0. 2.001 50.00 5.33 12.375 0.	Dork Results Table Area E Base Foul Add Flow Vel Cap Flow a) Flow (1/s) (1/s) (1/s) (m/s) (1/s) (1/s) 104 0.0 0.0 0.0 1.53 60.7 14.1 010 0.0 0.0 0.0 1.18 20.8 1.4 010 0.0 0.0 1.18 20.8 1.4								
Network PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha 1.000 50.00 5.14 11.175 0. 2.000 50.00 5.18 12.504 0. 2.001 50.00 5.33 12.375 0. 1.001 50.00 5.43 11.048 0. 1.002 50.00 5.52 10.957 0	Dork Results Table Area E Base Foul Add Flow Vel Cap Flow All 0.0 0.0 1/s) (l/s) (l/s) (l/s) 104 0.0 0.0 0.0 1.53 60.7 14.1 010 0.0 0.0 0.0 1.18 20.8 1.4 114 0.0 0.0 0.0 1.53 60.7 15.4								
Network PN Rain T.C. US/IL Σ I.A (mm/hr) (mins) (m) (ha 1.000 50.00 5.14 11.175 0. 2.000 50.00 5.18 12.504 0. 2.001 50.00 5.33 12.375 0. 1.001 50.00 5.43 11.048 0. 1.002 50.00 5.52 10.957 0.	Drk Results Table Area E Base Foul Add Flow Vel Cap Flow 104 0.0 0.0 1/s) (1/s) (1/s) (1/s) 104 0.0 0.0 0.0 1.53 60.7 14.1 010 0.0 0.0 0.0 1.18 20.8 1.4 010 0.0 0.0 0.0 1.18 20.8 1.4 114 0.0 0.0 0.0 1.53 60.7 15.4 114 0.0 0.0 0.0 1.53 60.7 15.4								

McMahon A	Associa	tes									Pa	ae 2
Consulti	ng Engi	neers		P	3626							5
50 Dobbir	n Stree	+		1	3No	Unit	НЪ					
Armagh H	атбі 70	0		3	30-32 North Street Swords							
Date 24/0	18/2022	~			ocian	od by	SM SM		WOIC	10	M	ICIO
File P3626 DRAINAGE DESIGN MDX Checked by MK								D	ainage			
VP Solutions Network 2020 1 3												
	Network Design Table for Storm											
PN Le	PN Length Fall Slope I.Area T.E (m) (m) (1:X) (ha) (min				Ba Flow	ase (1/s)	k (mm)	HYD SECT	DIA (mm)	Secti	on Type	e Auto Design
1.003 11	.932 0.2	98 40.0	0.000	0.00)	0.0	0.150	0	150	Pipe/	Condui	t 🔒
			Ne	etworl	k Resi	<u>ilts 1</u>	<u>[able</u>					
PN	Rain (mm/hr)	T.C. (mins)	US/IL Σ (m)	I.Area (ha)	a Σ Flow	Base (1/s)	Foul (1/s)	Add (1/	Flow 's)	Vel (m/s)	Cap (1/s)	Flow (l/s)
1.003	50.00	5.62	10.878	0.11	4	0.0	0.0		0.0	1.89	33.4	15.4
				01982-	-2020	Tnnor	1V7 P					
1							7 - 0					

McMahon Associates		Page 3
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamade
XP Solutions	Network 2020.1.3	

Manhole Schedules for Storm											
MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	13.173	1.998	Open Manhole	1200	1.000	11.175	225				
6	13.375	0.871	Open Manhole	450	2.000	12.504	150				
7	13.375	1.000	Open Manhole	450	2.001	12.375	150	2.000	12.375	150	
2	13.118	2.070	Open Manhole	1200	1.001	11.048	225	1.000	11.048	225	
								2.001	12.268	150	1145
3	13.197	2.240	Open Manhole	1200	1.002	10.957	225	1.001	10.957	225	
4	13.151	2.273	Open Manhole	1200	1.003	10.878	150	1.002	10.878	225	
S5	12.932	2.352	Open Manhole	1500		OUTFALL		1.003	10.580	150	

(North)	Manhole Access	Intersection Northing (m)	Intersection Easting (m)	Manhole Northing (m)	Manhole Easting (m)	MH Name
	Required	747096.792	718309.190	747096.792	718309.190	1
`	Required	747102.530	718332.775	747102.530	718332.775	6
-0.	Required	747108.055	718321.171	747108.055	718321.171	7
	Required	747109.419	718310.572	747109.419	718310.572	2
	Required	747110.404	718301.573	747110.404	718301.573	3
	Required	747111.479	718293.764	747111.479	718293.764	4
	No Entry			747113.376	718281.984	s5

Outfall Pipe Number	Outfall Name	C. Level (m)	I. Level (m)	Min I. Level (m)	D,L (mm)	W (mm)	
1.003	S5	12.932	10.580	9.255	1500	0	

McMahon Associates		Page 4
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micco
Date 24/08/2022	Designed by SM	
File P3626 DRAINAGE DESIGN.MDX	Checked by MK	Digitight
XP Solutions	Network 2020.1.3	
File P3626_DRAINAGE DESIGN.MDX XP Solutions <u>Online</u> <u>Hydro-Brake® Optimum Manh</u> Unit Desig Design	Checked by MKNetwork 2020.1.3Controls for Stormole: 4, DS/PN: 1.003, Volume (m³t Reference MD-SHE-0076-2500-0950-2500gn Head (m)Flow (1/s)Stread (m)CalculatedObjective Minimise upstream storageApplicationo Availableameter (mm)ameter (mm)ameter (mm)ameter (mm)alculated)0.9502.5Flush-Flo™0.2852.5Kick-Flo®0.5942.0): 2.8
Mean Flow over The hydrological calculations have b Hydro-Brake® Optimum as specified.	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device	onship for the other than a
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w	onship for the other than a vill be
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo	Head Range - 2.2 been based on the Head/Discharge relati Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m)	onship for the other than a will be Flow (l/s)
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flow 0.100 2.1 1.200	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000	onship for the other than a will be Flow (1/s) 6.3
Mean Flow over The hydrological calculations have B Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.200 2.4 1.600	Head Range - 2.2 been based on the Head/Discharge relation Should another type of control device en these storage routing calculations w w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500	conship for the other than a vill be Flow (1/s) 6.3 6.5
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device en these storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500	conship for the other than a rill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations w (1/s) Depth (m) Flow (1/s) Depth (m) 2.8 3.000 4.2 7.000 3.0 3.500 4.6 7.500 3.2 4.000 4.9 8.000 3.4 4.500 5.1 8.500 3.5 5.000 5.4 9.000	Conship for the other than a will be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Flo 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have I Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device enthese storage routing calculations were entited at the entity of the ent	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake® Optimum as specified. Hydro-Brake Optimum® be utilised the invalidated Depth (m) Flow (1/s) 0.100 2.1 0.200 2.4 0.300 2.5 0.400 2.4 0.500 2.3 0.600 2.0 0.800 2.3 2.400 1.000 2.6	Head Range - 2.2 been based on the Head/Discharge relations Should another type of control device end these storage routing calculations with the these storage routing calculations with these storage routing calculations with these storage routing calculations with the these storage routing calculations with these storage routing calculating the these storag	<pre>conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3</pre>
Mean Flow over The hydrological calculations have A Hydro-Brake@Optimum@be utilised the invalidated Depth (m) Flow (1/s) Depth (m) Floe 0.100 2.1 1.200 0.200 2.4 1.400 0.300 2.5 1.600 0.400 2.4 1.800 0.500 2.3 2.000 0.600 2.0 2.200 0.800 2.3 2.400 1.000 2.6 2.600	Head Range - 2.2 been based on the Head/Discharge relations were another type of control devices another type of the type of	Conship for the other than a vill be Flow (1/s) 0 6.3 0 6.5 0 6.7 0 6.9 0 7.1 0 7.3

McMahon Associates		Page 5
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Storage Structures for Storm

Cellular Storage Manhole: 3, DS/PN: 1.002

Invert Level (m) 10.419 Safety Factor 5.0 Infiltration Coefficient Base (m/hr) 0.00000 Porosity 0.95 Infiltration Coefficient Side (m/hr) 0.00000

Depth (m) Area (m²) Inf. Area (m²) Depth (m) Area (m²) Inf. Area (m²)

0.000	30.1	30.1	1.001	0.0	52.7
1.000	30.1	52.7			

McMahon Associates		Page 6
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirrn
Date 24/08/2022	Designed by SM	Drainago
File P3626_DRAINAGE DESIGN.MD2	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	
Areal Reduction Factor Hot Start (minstructure) Hot Start Level (mm Manhole Headloss Coeff (Global) Foul Sewage per hectare (1/structure) Number of Input Hydr Number of Online C Number of Offline C Sym Rainfall Model Region Structure) Margin for Flood Risk W Analys	Network 2020.1.3 ults by Maximum Level (Rank 1) for Simulation Criteria r 1.000 Additional Flow - % of Total Flow) 0 MADD Factor * 10m³/ha Stora) 0 MADD Factor * 10m³/ha Stora) 0 Inlet Coefficience) 0.500 Flow per Person per Day (1/per/date)) 0.500 opgraphs 0 Number of Storage Structures 1 ophtrols 1 Number of Time/Area Diagrams 0 ophtrols 0 Number of Real Time Controls 0 thetic Rainfall Details FSR Ratio R 0.273 cotland and Ireland Cv (Summer) 0.750 15.300 Cv (Winter) 0.840 arning (mm) 300 is Timestep 2.5 Second Increment (Extende DTS Status 0	<u>Storm</u> low 0.000 age 2.000 ent 0.800 ay) 0.000 .0 d) FF
Ine Profile(s) Duration(s) (mins) Return Period(s) (years) Climate Change (%) WARNING: Half Drain Time has	DVD Status rtia Status 15, 30, 60, 120, 180, 240, 360, 480, 720, 960, 1440, 2160, 2880, 4320, 5 7200, 8640, 1 not been calculated as the structure is t	ON ON nter 600, 760, 0080 100 10 10 00 full.
US/MH Return Clim PN Name Storm Period Chap	ate First (X) First (Y) First (Z) Ov nge Surcharge Flood Overflow	Water verflow Level Act. (m)
1.000 1 360 Winter 100 + 2.000 6 15 Winter 100 + 2.001 7 15 Winter 100 + 1.001 2 360 Winter 100 + 1.002 3 360 Winter 100 + 1.003 4 360 Winter 100 +	10% 100/120 Winter 10% 10% 10% 100/60 Winter 10% 100/60 Summer 10% 100/30 Summer	11.833 12.547 12.418 11.829 11.826 11.824
Surcharged Flooded	Half Drain Pipe	
US/MH Depth Volume I	Con (1/c) (minc) (1/c) Chatter	Level
PN Name (m) (m³) 1.000 1 0.433 0.000 2.000 6 -0.107 0.000 2.001 7 -0.107 0.000	Cap. (1/s) (mins) (1/s) Status 0.12 6.1 SURCHARG 0.18 3.3 0.18 3.2	EXceeded ED OK OK

McMahon Associates		Page 7
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Mirro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Diamage
XP Solutions	Network 2020.1.3	

Summary of Critical Results by Maximum Level (Rank 1) for Storm

PN	US/MH Name	Surcharged Depth (m)	Flooded Volume (m³)	Flow / Cap.	Overflow (l/s)	Half Drain Time (mins)	Pipe Flow (l/s)	Status	Level Exceeded
1.001	2	0.556	0.000	0.15			6.3	SURCHARGED	
1.002	3	0.644	0.000	0.07			2.7	SURCHARGED	
1.003	4	0.796	0.000	0.09			2.5	SURCHARGED	

Foul Network

McMahor	n Ase	300	iates										Page 1
Consult	ing	En	rine	arg		1	D2626						
50 Dobl	sin c	t r		210			13N0	Unit H					
Armagh BT61 700						-	30-32	North	Stree	+ Sw	orde		
Date 24	1/08/	/20	<u>722</u> 22				Desim	nor ch	SM	C, Swo	5105		MICLO
Filo P	1/00/ 3626		ΔΤΝΔ(- - - - - - - - - - - - - - - - - - -	TCN N	ין צחו	² heck	ad by M	IK				Drainage
XP Solu	$\frac{1}{1 \pm i}$				1 GN • P		Vatwo	rk 2020	1 3				
<u></u>						1		LK 2020	• • • • •				
						FOUL	SEWER	AGE DES	<u>SIGN</u>				
				<u>I</u>	Design	n Crit	eria	for Fo	ul - 1	<u>Main</u>			
				Pip	e Size	s STAN	dard M	anhole S	Sizes S	TANDAR	D		
Ir Fl	Indu ndustr .ow Pe Domes	istr rial er F	rial F Peak Person Perso Domes Peak	low (l Flow (l/pe ns per tic (l Flow	/s/ha) Factor r/day) House /s/ha) Factor De	0.0 0.0 450.0 1.0 6.0 esigned	0 0 0 Min 0 M 0	Add Mi Design D in Vel f Min Slc Level So	Flow / .nimum eximum Depth f for Aut ope for offits	Climat Backdro Backdro or Opt: o Desio Optim	te Char op Heig op Heig imisat gn only isation	nge (%) ght (m) ght (m) ion (m) y (m/s) n (1:X)	0 0.200 0.000 1.200 0.75 500
				Net	work	Desig	n Tab	le for	Foul	- Mai	<u>n</u>		
PN	Leng (m)	th	Fall (m)	Slope (1:X)	Area (ha)	House	s B Flow	ase (1/s)	k 1 (mm) S	HYD D: ECT (m	IA Sec m)	tion T	ype Auto Design
1.000 1.001 1.002	15.2 13.4 9.3	04 83 94	0.253 0.225 0.157	60.0 60.0 59.8	0.000 0.000 0.000	1	3 0 0	0.0 1 0.0 1 0.0 1	.500	o 1 o 1 o 1	50 Pip 50 Pip 50 Pip	e/Cond e/Cond e/Cond	luit 🔒 luit 🔒 luit 🔒
					1	Networ	<u>ck Res</u>	sults T	<u>able</u>				
	PN	ບຣ (:	/IL Σ m)	Area (ha)	Σ Ba Flow (ise Σ (l/s)	Hse A	Add Flow (1/s)	P.Dep (mm)	P.Vel (m/s)	Vel (m/s)	Cap (1/s)	Flow (1/s)
1	000 .001 002	11. 11. 11.	.800 .547 .322	0.000 0.000 0.000		0.0 0.0 0.0	13 13 13	0.0 0.0 0.0	15 15 15	0.44 0.44 0.44	1.13 1.13 1.13	20.0 20.0 20.0	0.4 0.4 0.4
						©1982	2-2020) Innov	yze				

McMahon Associates		Page 2
Consulting Engineers	P3626	
50 Dobbin Street	13No. Unit HD	
Armagh BT61 7QQ	30-32 North Street, Swords	Micro
Date 24/08/2022	Designed by SM	
File P3626_DRAINAGE DESIGN.MDX	Checked by MK	Dialitada
XP Solutions	Network 2020.1.3	
<u>Manhole Sch</u>	edules for Foul - Main	

MH Name	MH CL (m)	MH Depth (m)	MH Connection	MH Diam.,L*W (mm)	PN	Pipe Out Invert Level (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
1	13.277	1.477	Open Manhole	1200	1.000	11.800	150				
2	13.176	1.629	Open Manhole	1200	1.001	11.547	150	1.000	11.547	150	
3	13.155	1.833	Open Manhole	1200	1.002	11.322	150	1.001	11.322	150	
F4	12.823	1.658	Open Manhole	1500		OUTFALL		1.002	11.165	150	
	I	I	1	1	I			I			I

MH Name	Manhole Easting (m)	Manhole Northing (m)	Intersection Easting (m)	Intersection Northing (m)	Manhole Access	Layout (North)
1	718304.134	747096.592	718304.134	747096.592	Required	
2	718306.238	747111.650	718306.238	747111.650	Required	
3	718292.891	747113.559	718292.891	747113.559	Required	

F4 718283.644 747115.214

No Entry

•--

McMahon Associates	Page 3			
Consulting Engineers	P3626			
50 Dobbin Street 13No. Unit HD				
Armagh BT61 7QQ	30-32 North Street, Swords			
Date 24/08/2022	Designed by SM			
File P3626_DRAINAGE DESIGN.MDX	Checked by MK			
XP Solutions	Network 2020.1.3			
PIPELINE SC	HEDULES for Foul - Main			
Up	stream Manhole			
PN Hyd Diam MH C.Level Sect (mm) Name (m)	I.Level D.Depth MH MH DIAM., L*W (m) (m) Connection (mm)			
1.000 o 150 1 13.277	11.800 1.327 Open Manhole 1200			
1.001 o 150 2 13.176	11.547 1.479 Open Manhole 1200			
1.002 o 150 3 13.155	11.322 1.683 Open Manhole 1200			
Dow	nstream Manhole			
PN Length Slope MH C.Leve (m) (1:X) Name (m)	l I.Level D.Depth MH MH DIAM., L*W (m) (m) Connection (mm)			
1.000 15.204 60.0 2 13.17	6 11.547 1.479 Open Manhole 1200			
1.001 13.483 60.0 3 13.15	5 11.322 1.683 Open Manhole 1200			
1.002 9.394 59.8 F4 12.82	3 11.165 1.508 Open Manhole 1500			
Free Flowing Out	fall Details for Foul - Main			
Outfall Outfall C	. Level I. Level Min D,L W			
Pipe Number Name	(m) (m) I. Level (mm) (mm) (m)			
1.002 F4	12.823 11.165 10.220 1500 0			
@1.00	32-2020 Innovvze			

Appendix C:

• OPW Flood Map

Appendix D:

• SuDS Selection Analysis using Appendices A, B & C from FCC's "Green / Blue Infrastructure for Development – Guidance Note Final Rev 0 December 2020"

Existing Scenario:	(250 words max)
Surface Water Statement	separate sheet may be included
Description of existing subject site	The existing site is a brownfield site that is currently derelict. It
outlining the drainage characteristics	is situated on North Street within Swords Town Centre. The
- topography, ground conditions,	site has a mix of two storey residential buildings and single
suitability for infiltration, natural	storey outbuildings. The remainder of the site is undeveloped
directions and paths for water	with little hardstanding surfaces. At present there is a
movement, existing surface water	combined sewer onsite which collects surface water from the
flood risk.	roofs and wastewater from the buildings and discharges to the
	600mm concrete foul sewer in North Street.
	The topography of the site slopes from east to west with
	approximately 1m level difference and a gradient of 1:40 from
	east to west. This is the direction ground water is most likely
	to follow and one that will be replicated in the surface water
	design.
	Detailed site investigation works have been procured but not
	yet been completed and inititration testing is to be carried out
	as part of these works. It is envisaged that infiltration potential will be low.
	Based on the OPW CFRAM Flood studies maps there is no
	fluvial, coastal or pluvial flood risk at the site

Proposed Scenario:	(250 words max)
Surface Water Management Design Statement	separate sheet may be included
This shall be a clear concise	The surface water proposal is to reduce the current brownfield
summary of the surface water	rate runoff from approximately 5.5 l/s to 2.5l/s which is a
design proposal.	betterment of approximately 54% on the existing scenario. It
	is proposed to provide attenuation storage within the
Applicants shall provide a brief	permeable paving's stone layers. Up to 25m3 of storage is
explanation of how they have	proposed to be stored in the 1 in 100 year rainfall event + 10%
responded to the principles of	Climate Change
Sustainable Drainage Systems	
(SuDS) Design contained in this	It is proposed to collect rainwater from the roofs into rainwater
policy. This could include	butts so that water can be used for amenity purposes in the
implications of SuDS on design of	units with gardens. This will provide source control and reduce
other aspects of the development	the runoff from the site therefore reducing downstream flows.
and price comparisons. We	
encourage that proposals are	Filter drains and tree pits are proposed in the development to
mindful of future implications from	act as a form of source control by collecting the runoff and
the beginning and present outline	slowing it down. They will improve the water quality by filtering
designs based on realistic options	water through the various granular layers. Flow controls to
including maintenance activities and	maximise the attenuation benefits of these items will not be
how they are resourced.	provided as there will be sufficient storage within the
	permeable paving stone layer.
Applicants shall be required to	
clearly demonstrate how the design	The proposed design means that surface water captured by
makes a significant and positive	the majority of the site will be provided with some form of
contribution to the amenity value of	SuDS design feature. These features will provide source
the open space provision and shall	control and water quality improvements.
state how the usability of these	
areas by the public has been	The runoff from site is being reduced by over 50% and will
addressed. Reference shall also be	receive water quality treatment by being filtered through SuDS
made on how the design considered	features. Therefore the proposed design adheres to the
the access and use of maintenance	philosophy of SuDS and is compliant with the FFC
machinery in terms of slopes and	Development Plan.
any hard structures (e.g. head walls)	
located within the open space areas.	

Suds Measures	ds Measures Measures to be used on this site Rationale for selecting/n						
		measure					
Source Control							
Swalas	No	Requires 3-5m of greenspace. Insufficient					
Swales		space on the site					
	Yes	4No. tree pits will be provided that take					
		approximately 12m3 of space each. There					
Tree Pits		is sufficient storage capacity within the					
		permeable paving layer, nowever the tree					
		control and treatment of surface water					
	Yes	Reduces surface water runoff from the roof					
		and reduces and demand on potable water					
Rainwater Butts		supply. Only provided to ground floor units					
		with garden areas.					
	No	Rainwater butts provided to collect roof					
Rainwater harvesting		runoff. Maintenance of 13No. connections					
		from a RWH tank to each of the 13Units is					
	Na	not desirable.					
Soakaways	NO	space on the site					
	TBC	Infiltration testing to be completed in Site					
		Investigation to determine if this is					
Infiltration trenches		feasible. Given information on GSI website,					
		infiltration potential is likely to be very					
		limited.					
Permeable pavement							
- Grasscrete	No	Block paving to be used					
	Yes	Given the limited space permeable paving					
		is the most practical method of source					
 Block paving 		attenuating surface water in this					
		development. Block paving to be provided					
		in the courtyard.					
- Porous Asphalt	No	Block paving to be used					
Green Roofs	No	Pitch of roof is not suitable					
Filter string	No	No space which would be beneficial to use					
		them					
	No	FCC Architects Department have advised					
Bioretention systems		they do not wish to take up the only					
· · · · · · · · · · · · · · · ·		communal greenspace with a bioretention					
Blue Boofs	No	aiea. Ditch of roof is not suitable					
	Yes	Will be provided around communal area					
		and pass-through tree pits. Will provide					
Filter Drain		measure of source control and improve					
		water quality					
Site Control							
Detention Basins	No	Insufficient space					
Retentions basins	No	Insufficient space					
Regional Control							
Ponds	No	Insufficient space					
Wetlands	No	Insufficient space					
wettanus							

Other		
Petrol/Oil interceptor	No	Use of permeable surfacing, filter drain & tree pits to allow omission of petrol interceptors
Attenuation tank – only as a last resort where other measures are not feasible	No	Permeable paving stone is the preferred option of attenuation storage
Oversized pipes- only as a last resort where other measures are not feasible	No	Inefficient use of space & not an FCC preferred method

Note:

- 1. Fingal has a preference for above ground Green Infrastructure rather than tanks or oversized pipes . Above ground flows through swales, basins etc are encouraged.
- 2. Demonstrate SUDS system will have sufficient Pollutant removal efficiency in accordance with Ciria Suds Manual C753
- 3. Basins sides should be no steeper than 1:4 and no deeper than 1.2m in the 1%AEP
- 4. Culverting shall be avoided where possible
- **5.** De-culverting is encouraged.

|--|

Flood risk	Applicable to subject site	Measures to reduce risk	Residual risk
Fluvial	OPW Mapping used to determine no risk in 1 in 1000year event + CC	N/A	Low
Pluvial	OPW Mapping used to determine no historical flooding at the site	FFLs set above surrounding ground levels & attenuation for 1in100year flood event to be provided	Low
Coastal	OPW Mapping used to determine no risk in 1 in 1000year event + CC	N/A	Low
Groundwater OPW Mapping used to determine no risk		N/A	Low
Dam/Embankment/Canal bank breach	OPW Mapping used to determine no risk	N/A	Low
Network drainage	FCC to confirm if any issues with flooding from storm network in vicinity	The flow control device will prevent surcharging of our system from main public storm network. The Internal network will have adequate storage for 1in100year event + 10% CC	Low
Snow melt	N/A	N/A	Low
Watermain burst	N/A	N/A	Low

Note:

Models should consider the risk when outlets are surcharged

Overall Development Site Area (m2)		1400									
% Permeable Areas		448									
(open space, green roofs, permeable surfacing etc)											
% Hardstanding Areas		952									
(roof areas, roa	d surface	es, concrete paved	areas etc)								
Park Type as per Table 12.5 of the Development Plan)	Park size (m ²)	Area of Drainage green infrastructure in park (m ²)	Percentage of drainage infrastructure per park (%)	Swale (m²)	Filter strip (m ²)	Bioretention area (m ²)	Retention basin (m²)	Detention basin (m²)	Pond (m²)	Wetland ((m²)	No. of head walls located on open
Pocket Park (500m2- 0.2ha)	82	16 (Tree Pits)	20%								
Small Park (0.2ha to 2ha)	N/A	N/A									
Local Park (2-20ha)	N/A	N/A									
Urban Park Neighbourhood (20ha to 50ha)	N/A	N/A									
Regional Park (over 50 ha)	N/A	N/A									
Other permeable surfaces	218	218 (permeable paving)	100%								
Grass margins/ Environmental open space											
*Not part of open space provision											