

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

Ground Investigations Ireland

Churchfields

Waterman Moylan

Ground Investigation Report

April 2023

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

DOCUMENT CONTROL SHEET

Project Title	Churchfields
Engineer	Waterman Moylan
Project No	12314-10-22
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
Α	Interim	M Sutton	A McDonnell	A McDonnell	Dublin	04 April 2023
В	Final	M Sutton	A McDonnell	A McDonnell	Dublin	28 April 2023

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client. The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

CONTENTS

1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Trial Pits2
3.3.	Soakaway Testing2
3.4.	Slit Trenching2
3.5.	Window Sampling2
3.6.	Dynamic Probing (DPH)3
3.7.	Rotary Boreholes3
3.8.	Surveying3
3.9.	Groundwater Monitoring Installations3
3.10.	Insitu Plate Bearing Test4
3.11.	Laboratory Testing4
4.0	Ground Conditions4
4.1.	General4
4.2.	Insitu Strength Testing5
4.3.	Groundwater5
4.4.	Laboratory Testing6
4.4.1.	Chemical Laboratory Testing6
4.4.2.	Environmental Laboratory Testing6
4.4.3.	Rock Laboratory Testing6
5.0	Recommendations & Conclusions7
5.1.	General7
5.2.	Foundations7
5.3.	External Pavements8
5.4.	Excavations8
5.5.	Soakaway Design8

Geotechnical & Environmental

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

APPENDICES

Appendix 1 Site Location Plan

Appendix 2 Slit Trenches

Appendix 3 Soakaway Testing

Appendix 4 Window Sample Records

Appendix 5 Dynamic Probe Records

Appendix 6 Rotary Core Records

Appendix 7 Plate Bearing Test Records

Appendix 8 Laboratory Testing

Appendix 9 Groundwater Monitoring

1.0 Preamble

On the instructions of Waterman Moylan Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between December 2022 and February 2023 at the site of the proposed Residential development in Mulhuddart, Dublin.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development with associated services, access roads and car parking at the proposed site. The site is currently greenfield however a portion in one corner of the site is occupied by a temporary site compound. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- · Visit project site to observe existing conditions
- Carry out 5 No. Trial Pits / Soakaways to determine a soil infiltration value to BRE digest
 365
- Carry out 2 Slit trench to investigate existing services.
- Carry out 4 No. Window Sample Boreholes to recover soil samples
- Carry out 4 No. Dynamic Probes to determine soil strength/density characteristics
- Carry out 5 No. Rotary Core Boreholes to a maximum depth of 3.50m BGL
- Installation of 2 No. Groundwater monitoring wells
- Geotechnical & Environmental Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling.

The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a JCB 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 3 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Slit Trenching

The slit trenches were excavated using JCB 3CX excavator at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The soil was slowly stripped using a spotter on the trench to alert the driver if any services were seen, to avoid damage to any underlying services. The slit trenches were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the slit trench records which are provided in Appendix 2 of this Report.

3.5. Window Sampling

The window sampling was carried out at the locations shown in the location plan in Appendix 1 using a Tecopsa SPT Tec 10 percussion drilling rig. The window sampling consists of a 1m long steel tube with a cutting edge and an internal plastic liner which is mechanically driven into the ground utilising a 50kg weight falling a height of 500mm. Upon completion of the 1m sample, the tube is withdrawn and the plastic liner removed and sealed for logging and sub sampling by a Geotechnical Engineer/Engineering Geologist. The tube is replaced in the borehole and a subsequent 1m sample can be recovered. Occasionally outer casing or a reduced diameter tube is utilised to enable the window sample to progress in difficult drilling conditions. Geotechnical or environmental soil samples can be recovered from each of the liners following logging. The window sample records are provided in Appendix 4 of this Report.

3.6. Dynamic Probing (DPH)

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 5 of this Report.

3.7. Rotary Boreholes

The rotary coring was carried out by a track mounted T44 Beretta rig at the locations shown on the location plan in Appendix 1. The rotary boreholes were completed from the ground surface or alternatively, where noted on the individual borehole log, from the base of the cable percussion borehole where a temporary liner was installed to facilitate follow-on rotary coring.

The T44 Beretta is equipped with rubber tracks which allow for short travel on pavement surfaces avoiding any damage to the surface. The T44 Beretta utilises a triple tube core barrel system operated using a wireline drilling process. The outer barrel is rotated by the drill rods and at its lower end, carries the coring bit. The inner barrel is mounted on a swivel so that it does not rotate during the process. The third barrel or liner is placed within the second one to retain the core intact and to preserve as much as possible the fabric of the drilling stratum. The core is cut by the coring bit and passes to the inner liner. The core is brought up to the surface within the inner barrel on a small diameter wire rope or line attached to the "overshoot" recovery tool which is then placed into a core box in order of recovery. A drilling fluid, typically air mist or water flush is passed from the surface through hollow drill rods to the drill bit and is used to cool the drill bit. Temporary casing is used in some situations to support unstable ground or to seal off fissures or voids. It should be noted that the rotary coring can only achieve limited recovery in overburden, particularly granular or weakly cemented strata due to the flushing medium washing away the cohesive fraction during coring. The recovery achieved, where required is noted on the borehole logs and core photographs are provided to allow assessment of the core recovered. The rotary borehole logs are provided in Appendix 6 of this Report.

3.8. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.9. Groundwater Monitoring Installations

Groundwater Monitoring Installations were installed upon the completion of selected boreholes to enable sampling and the determination of the equilibrium groundwater level. The typical groundwater monitoring installation consists of a 50mm uPVC/HDPE slotted pipe with a pea gravel response zone and bentonite

seal installed to the Engineers specification. Where required the standpipe is sealed with a gas tap and finished with a durable steel cover fixed in place with a concrete surround. The installation details are provided on the exploratory hole logs in the appendices of this Report.

3.10. Insitu Plate Bearing Test

The plate bearing tests were carried out using a 457mm diameter plate at the locations shown on the site plan in Appendix 1. The plate was loaded in increments using a hydraulic jack and an excavator to provide a reaction and the displacement was monitored in accordance with BS1377 Part 9 using independently mounted digital strain gauges. The constrained modulus and equivalent CBR are calculated in accordance with HD29/75 and are provided on the test reports in Appendix 7 of this Report.

3.11. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the Rilta Suite was carried out by Element Materials Technology Laboratory in the UK. The Rilta suite testing includes both Solid Waste and Leachate Waste Acceptance Criteria.

Rock strength testing including Point Load (Is₅₀) and Unconfined Compressive Strength (UCS) testing was carried out in CMTL Geotechnical Laboratory in Portlaoise

The results of the laboratory testing are included in Appendix 8 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were consistent across the site and generally comprised;

- Topsoil
- Made Ground
- Cohesive Deposits
- Weathered Bedrock
- Bedrock

TOPSOIL: Topsoil was encountered in all the exploratory holes and was present to a maximum depth of 0.3m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil in ST01 and ST02 and were present to depths of between 1.5m and 1.8m BGL, however madeground was deeper around the pipes where the base was not proven. These deposits were described generally as *brown sandy slightly gravelly CLAY with occasional cobbles and contained rare fragments of concrete, metal, rope, wood and plastic.*

COHESIVE DEPOSITS: Cohesive deposits were encountered beneath the Made Ground and were described typically as *brown sandy gravelly CLAY with occasional cobbles and boulders* The secondary sand and gravel constituents varied across the site and with depth, with granular lenses occasionally present in the glacial till matrix. The strength of the cohesive deposits typically increased with depth and was soft to firm generally becoming stiff below 1.0mBGL. These deposits had some, occasional or frequent cobble and boulder content, where noted on the exploratory hole logs.

WEATHERED BEDROCK: In the majority of exploratory holes weathered rock was encountered which was digable with a JBC 3CX excavator to a depth of up to 0.9m below the top of the stratum. The trial pits were terminated upon encountering the more competent bedrock, in which further excavation became more difficult. This material was recovered typically as angular gravel and cobbles of Limestone/Mudstone however there was some variability in the fracture spacing and the ease at which the excavator could progress. Some clay and sand were also present with the rock mass either from weathering or as infilling to fractures which were opened upon excavation.

BEDROCK: The rotary core boreholes recovered Medium strong to strong dark grey fine grained laminated LIMESTONE. This is typical of the Calp Formation, which is noted on the geological mapping of the proposed site.

The depth to rock varies from 0.6m BGL in BH04 to a maximum of 2.2m BGL in BH06. The total core recovery is good, typically 100% with some of the uppermost runs dropping to 80 or 90%. The SCR and RQD both are relatively poor in the upper weathered zone, often recovered as non-intact, however both indices show an increase with depth in each of the boreholes.

4.2. Insitu Strength Testing

The correlated DPH blow counts indicate that the overburden deposits are soft or soft to firm to depth of 1.0m to 1.2m BGL and become firm or firm to stiff with depth.

4.3. Groundwater

No groundwater was noted during the investigation however we would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors. For this reason, standpipes were installed in BH04 and BH08 to allow the equilibrium groundwater level to be determined. The groundwater monitoring is included in Appendix 9 of this Report.

4.4. Laboratory Testing

4.4.1. Chemical Laboratory Testing

The pH and sulphate testing carried out indicate that pH results are near neutral and that the water soluble sulphate results is low when compared to the guideline values from BRE Special Digest 1:2005. The samples tested classify the soil as a Design Sulphate Level DS-1.

4.4.2. Environmental Laboratory Testing

A number of samples were analysed for a suite of parameters which allows for the assessment of the sampled material in terms of total pollutant content for classification of materials as *hazardous* or *non-hazardous*. The suite also allows for the assessment of the sampled material in terms of suitability for placement at licenced landfills (inert, stable non-reactive, hazardous etc.). The parameter list for the suite includes analysis of the solid samples for arsenic, barium, cadmium, chromium, copper, cyanide, lead, nickel, mercury, zinc, speciated aliphatic and aromatic petroleum hydrocarbons, pH, sulphate, sulphide, moisture content, soil organic matter and an asbestos screen.

The suite also includes those parameters specified in the EU Council Decision establishing criteria for the acceptance of waste at Landfills (Council Decision 2003/33/EC), which for the solid samples are total organic carbon (TOC), speciated aliphatic and aromatic petroleum hydrocarbons, BTEX, phenol, polychlorinated biphenyls (PCB) and PAH.

As part of the suite a leachate is generated from the solid sample which is analysed for antimony, arsenic, barium, cadmium, chromium, copper, lead, mercury, molybdenum, nickel, selenium, zinc, chloride, fluoride, soluble sulphate, sulphide, phenols, dissolved organic carbon (DOC) and total dissolved solids (TDS).

While the laboratory report provides a comparison with the waste acceptance criteria limits it does not provide a waste classification of the material sampled nor does it comment on any potentially hazardous properties of the materials tested. The possibility for contamination, not revealed by the testing undertaken should be borne in mind particularly where Made Ground deposits are present or the previous site use or location indicate a risk of environmental variation. The waste classification report is included under the cover of a separate report by Ground Investigations Ireland.

4.4.3. Rock Laboratory Testing

The rock testing carried out on samples recovered from the boreholes reported Unconfined Compressive Strength (UCS) values ranging between 21.3 MPa and 25.8 MPa while the point load testing gave Is50 values ranging between 1.68 to 2.80 MPa. The Is₅₀ results correlate to the UCS values using a factor of approximately 20, giving values of 33.6 MPa and 56 MPa. These results correlate to the strength descriptions ranging between of Weak to Strong and confirming the variability of this stratum and the descriptions on the logs.

The results from the completed laboratory testing are included in Appendix 8 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 500 kN/m² is recommended for conventional strip or pad foundations on the bedrock encountered at depths of 0.5m and 2.20m BGL. Where the bedrock is deeper, lean mix trench fill is recommended to achieve the recommended allowable bearing capacity.

In any part of the site, should part of the foundation be on rock we would recommend that all the foundations of the unit in question be lowered to the competent rock stratum to avoid differential settlement.

The possibility for variation in the depth of the bedrock in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete.

Table 1 below shows the depth that a bearing capacity of 125 kN/m² is achievable on the stiff cohesive deposits for conventional strip or pad foundations. However it should be noted that due to shallow rock being encountered it may be required that the foundations be taken to rock to ensure structure are founded on the same strata to avoid differential settlement.

Table 1 - Allowable Bearing Capacities

		Allowable Bearing Capacities (ABC) kN/m ²							
Dynamic Probe	ABC Depth Comment			Dynamic Probe	ABC	Depth	Comment		
No.	kN/m²	m BGL		No.	kN/m²	m BGL			
DP06	125	1.1	Cohesive	DP12	125	1.5	Cohesive		
DP08	125	1.0	Cohesive	DP13	125	0.8	Cohesive		

A ground bearing floor slab is recommended to be based on the firm to stiff cohesive deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014 +A1:2016 and/or NRA SRW CL808 Type E granular stone fill.

5.3. External Pavements

The proposed pavements are recommended to be designed in accordance with the CBR test results included in the Appendices of this Report. The low CBR test results indicate that a capping layer or a sufficient depth of crushed stone fill may be required. Plate bearing tests are recommended at the time of construction to verify the design assumptions for the proposed pavement make up and to verify adequate compaction has been achieved.

The use of a geogrid and separation membrane may improve the performance of the proposed pavement and enable a more economical pavement design to be achieved, a specialist supplier is recommended to advise of the required strength, depth and type of geotextile for the proposed design.

5.4. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Excavations in the Made Ground or soft Cohesive Deposits will require to be appropriately battered or the sides supported due to the low strength of these deposits.

The groundwater and stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.

Excavations in the upper cohesive and weathered rock deposits are expected to be excavatable with conventional excavation equipment, with zones of more intact bedrock below this depth requiring rock breaking techniques. Based on the fracture spacing, the rock strength testing and Pettifer & Fookes (1994) Revised Excavatability Graph, the Calp Limestone ranges from hard digging to hard ripping, however the zones recovered as non-intact should be easy to hard digging. The JCB 3CX excavator was generally able to excavate to depths of up to 0.9m below the top of the weathered rock, and became difficult to excavate within the confines of the trial pit on encountering the more competent rock.

Any waste material to be removed off site should be disposed of to a suitably licenced landfill.

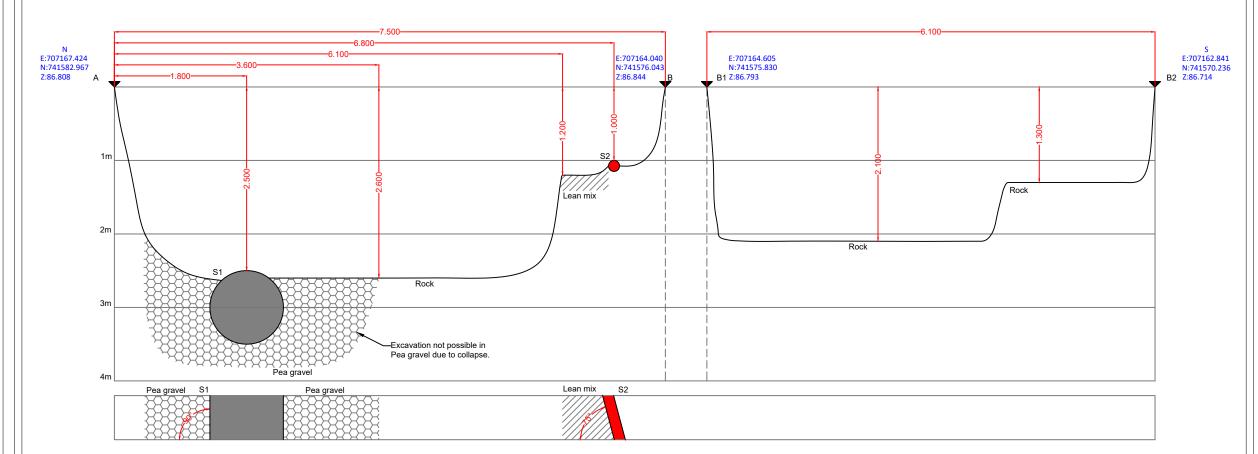
The environmental testing completed during the ground investigation is reported under the cover of a separate GII Waste Classification/Subsoil Assessment Report.

5.5. Soakaway Design

Infiltration rates between $f=1.123 \times 10^{-5}$ m/s and 8.131×10^{-6} m/s were calculated for the soakaway locations SA01 to SA05.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Site Location Plan



APPENDIX 2 – Slit Trench Records

Service No	ø (m)	Colour -	Utility	Angle to trench	Coord	inates	Laval	Notes
Service No	Ø (III)	Material	Othity	Angle to trench	East	North	Level	Notes
S1	1.000	Ductile Iron	Water	90°	707166.389	741581.020	86.776	No picture possible due to trench collapsed.
S2	0.150	Red PE	ESB	75°	707164.678	741576.531	85.728	-

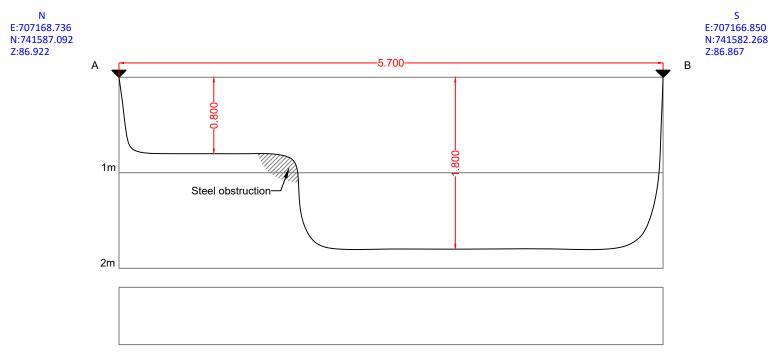
Surface fr	om/to (m)	Surface type	Sampl (ı
0.00	7.50	-	

Sample depth (m)	Sample type	

- 1	rom (m)	To (m)	Description	From (m)	To (m)	'
0	0.00	2.60	MADE GROUND: Greyish brown slightly sandy gravelly CLAY with occasional fragments of wood and plastic.	0.00	1.50	MADE GROUND: Brown slightly sandy gravelly CLAY with rare fragments of wood and plastic.
2	2.60	2.70	Pea gravel.	1.50	2.10	Brown slightly sandy gravelly CLAY with some cobbles.

Groundwater	Y/N	Depth	Notes
	N		

Ground Investigations Ireland Ltd.
Catherines town
Hazelhatch road,
Newcastle,
Co Dublin


Tel: +353-(0)1 6015175/6 Fax: +353-(0)1 6015173 Email: info@gii.e Web: www.gii.e

PROJECT:	12314-10-22 - Churchfields			
DRAWING No.:	ST01			
DATE:	29/11/2022			
CLIENT:	Waterman Moylan			
SCALE:	NTS			

Version:	Date:	Drawn By:	Checked By:	
0	16/01/2023	J.S.	M.S.	

Date of excavation: 29/11/2022

ST-02

Service No	ø (m)	Colour -	Utility	Anale to trench	Coord	inates	Lovel	evel Notes
Service NO	Ø (III)	Material	Cullty	Angle to trench	East	North	Level	

Surface f	Surface type	
0.00	5.70	-

|--|

From (m)	To (m)	Description
0.00	1.80	MADE GROUND: Brown slightly sandy gravelly CLAY with some cobbles and occasional fragments of metal, rope, plastic and wood.

Groundwater	Y/N	Depth	Notes
	N		

Ground Investigations Ireland Ltd.
Catherines town
Hazelhatch road,
Newcastle,
Co Dublin

Tel: +353-(0)1 6015175/6 Fax: +353-(0)1 6015173 Email: info@gii.e Web: www.gii.e

PROJECT:	12314-10-22 - Churchfields
DRAWING No.:	ST01
DATE:	29/11/2022
CLIENT:	Waterman Moylan
SCALE:	NTS

Version:	Date:	Drawn By:	Checked By:
0	16/01/2023	J.S.	M.S.

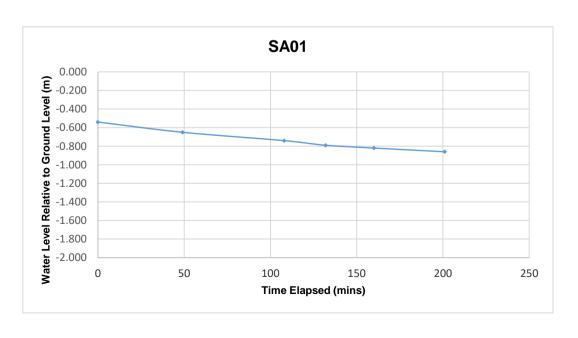
Date of excavation: 29/11/2022

ST01

ST02

APPENDIX 3 – Soakaway Records

Ground Investigations Ireland



Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

SA01 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m x 0.50m x 1.40m (L x W x D)

Date	Time	Water level (m bgl)
28/11/2022	0	-0.540
28/11/2022	49	-0.650
28/11/2022	108	-0.740
28/11/2022	132	-0.790
28/11/2022	160	-0.820
28/11/2022	201	-0.860

Start depth 0.54	Depth of Pit 1.400		Diff 0.860	75% full 0.755	25%full 1.185
Length of pit (m)) Width of pit (m) 0.500			75-25Ht (m) 0.430	Vp75-25 (m3) 0.47
Tp75-25 (from g	graph) (s)	17000		50% Eff Depth 0.430	ap50 (m2) 3.422
f =	8.131E-06	m/s		0.430	5.422

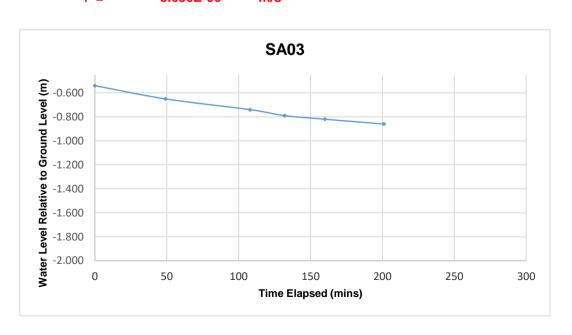
Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

SA02 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.20m x 0.50m x 1.40m (L x W x D)

Date	Time	Water level (m bgl)
28/11/2022	0	-0.940
28/11/2022	23	-1.220
28/11/2022	87	-1.460
28/11/2022	118	-1.530
28/11/2022	139	-1.570
28/11/2022	179	-1.620

Start depth 0.94	Depth of Pit 2.000		Diff 1.060	75% full 1.205	25%full 1.735
Length of pit (m) 2.200	Width of pit (m) 0.450			75-25Ht (m) 0.530	Vp75-25 (m3) 0.52
Tp75-25 (from g	raph) (s)	12300		50% Eff Depth 0.530	ap50 (m2) 3.799
f =	1 123F-05	m/s		3.300	200

Ground Investigations Ireland

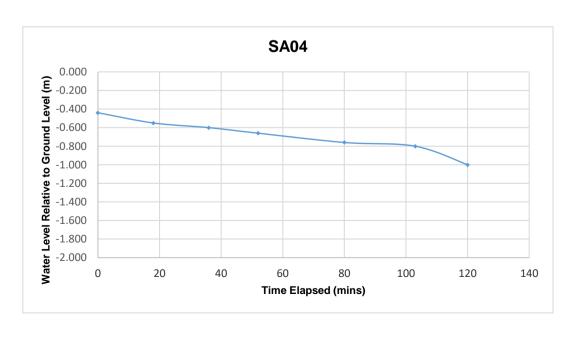


Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

SA03
Soakaway Test to BRE Digest 365
Trial Pit Dimensions: 2.20m x 0.50m x 2.00m (L x W x D)

Date	Time	Water level (m bgl)
28/11/2022	0	-0.540
28/11/2022	49	-0.650
28/11/2022	108	-0.740
28/11/2022	132	-0.790
28/11/2022	160	-0.820
28/11/2022	201	-0.860

Start depth 0.54	Depth of Pit 2.000		Diff 1.460	75% full 0.905	25%full 1.635
Length of pit (m) 2.200) Width of pit (m) 0.500			75-25Ht (m) 0.730	Vp75-25 (m3) 0.80
Tp75-25 (from g	ıraph) (s)	43800		50% Eff Depth 0.730	ap50 (m2) 5.042
f =	3.636E-06	m/s		0.730	3.042

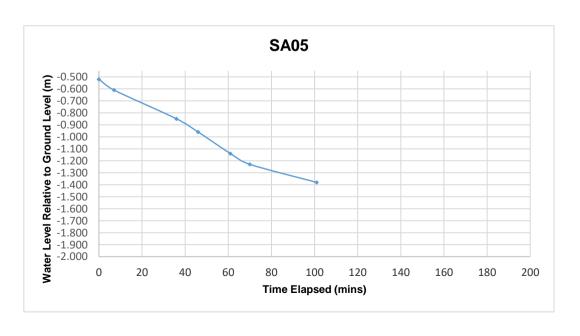


Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

SA04 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.30m x 0.55m x 1.00m (L x W x D)

Date	Time	Water level (m bgl)
28/11/2022	0	-0.440
28/11/2022	18	-0.550
28/11/2022	36	-0.600
28/11/2022	52	-0.660
28/11/2022	80	-0.760
28/11/2022	103	-0.800
28/11/2022	120	-1.000

Start depth 0.44	Depth of Pit 1.000		Diff 0.560	75% full 0.58	25%full 0.86
Length of pit (m) 2.300) Width of pit (m) 0.550			75-25Ht (m) 0.280	Vp75-25 (m3) 0.35
Tp75-25 (from g	4300		50% Eff Depth 0.280	ap50 (m2) 2.861	
f =	2.879F-05	m/s		0.200	2.001



Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

SA05 Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 2.10m x 0.45m x 1.70m (L x W x D)

Date	Time	Water level (m bgl)
28/11/2022	0	-0.520
28/11/2022	7	-0.610
28/11/2022	36	-0.850
28/11/2022	46	-0.960
28/11/2022	61	-1.140
28/11/2022	70	-1.230
28/11/2022	101	-1.380

Start depth 0.52	Depth of Pit 1.700		Diff 1.180	75% full 0.815	25%full 1.405
Length of pit (m) 2.100	Width of pit (m) 0.450			75-25Ht (m) 0.590	Vp75-25 (m3) 0.56
Tp75-25 (from g	4100		50% Eff Depth 0.590	ap50 (m2) 3.954	
f =	3-439F-05	m/s		0.000	0.001

	Grou	nd Inv	estigations www.gii.ie	Site T N				
Machine: J Method: T		Dimensio 2.20 X 0.			Level (mOD) 84.43	Client		Job Number 12314-10-22
		Location 7070	042.3 E 741387.6 N	Dates 28	8/11/2022	Engineer Waterman Moylan		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Plan				84.18 84.03	(0.15)	rootlets. Brownish grey slightly san	ig of grey slightly sandy sligh ular fine to coarse GRAVEL	· · · · · · · · · · · · · · · · · · ·
						No Groundwater encounters Trial pit sidewalls collapsing Soakaway test completed in Trial pit backfilled on comple	ed during excavation trial pit.	
						mai pit backilled on comple	out of southaway lest.	
						Gcale (approx) 1:25	Logged By	Figure No. 12314-10-22.SA01

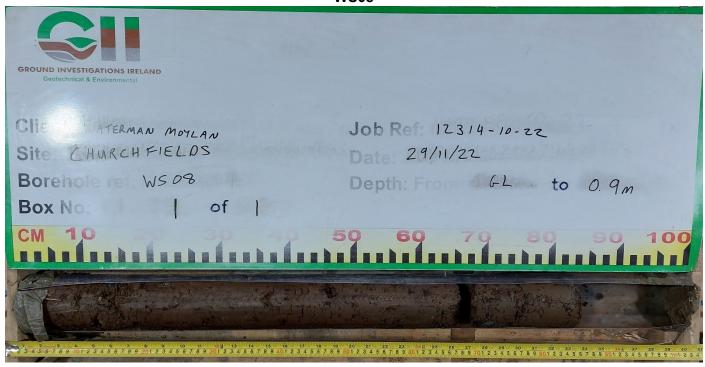
	Grou	ınd Inv	estigation www.gii.ie	Site Tria Nu Churchfields S.				
Machine : Method :		Dimensio 2.20 X 0.		Ground	Level (mOD) 84.03	Client		Job Number 12314-10-22
		Location 7069	990.7 E 741444.1 N		5/11/2022	Engineer Waterman Moylan		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Record	ds Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Nater
Plan .		Depth (m)	Field Record	83.78 83.13 82.83 82.03	(0.25) - (0.25) - (0.65) - (0.30) - (0.30) - (0.30) - (0.50) - (0.50) - (0.50) - (0.50)	Brown slightly sandy slight rootlets. Firm brown slightly sandy cobbles. Firm brownish grey slightly Firm to stiff grey slightly sa Residual Soil)	gravelly CLAY with occasion and gravelly CLAY with occasion and gravelly CLAY. andy gravelly CLAY. (Possible gravelly clay and gravelly CLAY.) and gravelly CLAY. (Possible gravelly clay and gravelly clay and gravelly clay.) Rock.	ass lal 6 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
					s	Scale (approx)	Logged By	Figure No. 12314-10-22.SA02

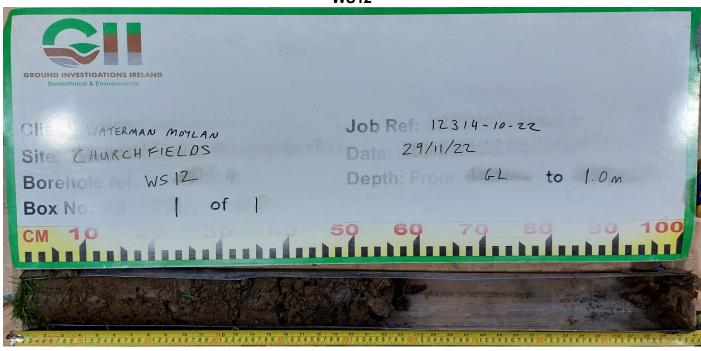
	Grou	ınd Inv	estigations www.gii.ie	Ltd	Site Churchfields			
Machine : Method :		Dimensio 2.20 X 0.			Level (mOD) 78.95	Client		Job Number 12314-10-22
		Location 7068	367.6 E 741450.3 N	Dates 28	3/11/2022	Engineer Waterman Moylan		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Legend Legend
Plan .				77.65 77.55	- (1.00) - (Firm to stiff grey slightly sa occasional cobbles.(Possi	ng of grey slightly sandy sligh ular fine to coarse GRAVEL Rock.	
		•				Trial pit stable. Soakaway test completed in Trial pit backfilled on comple	-	
		•				Scale (approx)	Logged By	Figure No. 12314-10-22.SA03

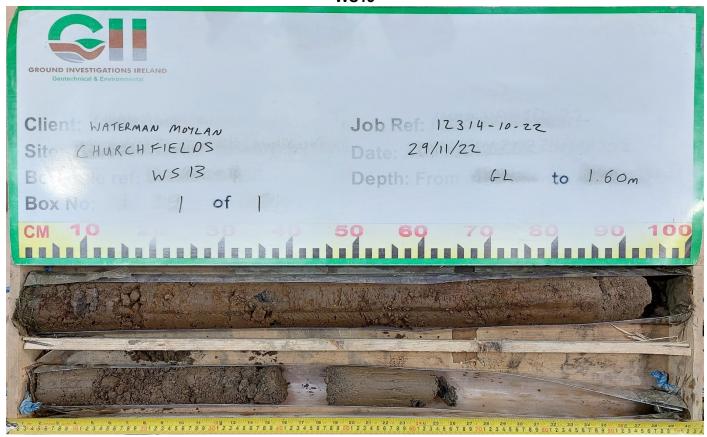
	Grou	nd Inv	estigations www.gii.ie	Ireland	Ltd	Site Churchfields		Nur	l Pit mber 404
Machine: J		Dimensio 2.30 X 0.5	ns		Level (mOD) 75.76	Client) mber 4-10-22
		Location		Dates		Engineer		She	et
		7067	79.8 E 741351.8 N	28	/11/2022	Waterman Moylan			1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Lege	Water
					(0.25)	Brown slightly sandy sligh rootlets.	tly gravelly TOPSOIL with gra	ass	
				75.51	0.25	Firm brownish grey slightly	y sandy slightly gravelly CLA	Y	<u></u>
				75.26	-	Weathered Rock consistir angular to sub-angular fine Limestone.	ng of slightly sandy slightly cla e to coarse GRAVEL of	ayey	
					(0.50)				
				74.76	1.00	Obstruction: Presumed I	Rock.		<u>:</u> .
					_	Terminated at 1.00m			
					- - - - - - -				
					_				
					_				
					_				
					_				
					_				
					_				
					<u> </u>				
					Ē				
					_				
Plan						 Remarks			
						No Groundwater encountere Trial pit stable. Soakaway test completed in	=		
		·			•	Soakaway test completed in Trial pit backfilled on comple	etion of soakaway test.		
		•			•				
					•				
		•							
					· s	Scale (approx)	Logged By	Figure No.	
						1:25	Tmcl	12314-10-22	2.SA05

S	Gro	und Inv	estigations www.gii.ie	Num			rial Pit umber SA05		
Machine :	JCB 3CX Trial Pit	Dimension 2.10 X 0.			Level (mOD) 74.36	Client		N	ob umber 314-10-22
		Location 706	736.4 E 741436.7 N	Dates 28	8/11/2022	Engineer Waterman Moylan		SI	heet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Leç	Mater Meneg
				74.06	(0.30) - (0.30) - 0.30 - (0.50)	rootlets.	tly gravelly TOPSOIL with gr	ass	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
				73.56	- 0.80 - 0.80 - 0.80 - 0.90)	Weathered Rock consistir very clayey angular to sub and COBBLES of Limesto	ig of grey/brown slightly san ⊷angular fine to coarse GRA ne.	dy VEL	
				72.66	1.70	Obstruction: Presumed I	Rock.		
					- - - - - - - - - - - - - -				
Plan						Remarks No Groundwater encountere Trial pit stable.	-		
		•				Soakaway test completed in Trial pit backfilled on comple	trial pit. etion of soakaway test.		
						Scale (approx)	Logged By	Figure No.	

APPENDIX 4 – Window Sample Records


	Grou	nd In	vestigations Ire www.gii.ie	land	Ltc	l	Site Churchfields		Number WS06	
Machine : T	ec 10 Orive-in Windowless Sampler	Dimensi 87r 65r		Ground	Leve 0.00		Client		Job Number 12314-10-2	
		Location 706	n 6680.3 E 741477.6 N	Dates 29	9/11/2	022	Engineer Waterman Moylan		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	ľ	Legend	Water
0.00-0.20	В					(0.20)	Brown TOPSOIL with roots.			
0.20-1.20	В			-0.20	- - - - - - - - - - - - - - - - - - -	(0.90)	Firm brown slightly sandy slightly gravelly CLAY. Stiff brown slightly sandy slightly gravelly CLAY.	0		
1.20-1.40	В			-1.20		1.10 (0.10) 1.20 (0.20)	Stiff greyish brown slightly sandy slightly gravelly CLAY. Stiff greyish brown slightly sandy slightly gravelly CLA	AY.		
Remarks 0-1.0m BGL	: 95% recovery.			-1.40		1.40	Refusal at 1.40m	Scale	Logged	
u-1.0m BGL 1.0-1.40m B Refusal at 1 Dynamic pro	.: 95% recovery. GGL: 88% recovery. .4m BGL on obstruct bbe DP06 carried out	ion: Possil ajacent to	ble boulder or bedrock.				(a _l	1:25	By	
		-					F	Figure No		-


	Grou	nd Inve	estigations Iro www.gii.ie	eland l	Ltd	Site Churchfields		Number WS08	
Machine : To		Dimension		Ground	Level (mOD) 76.47	Client		Job Numbe 12314-10	
		Location 70680	03.5 E 741495.3 N	Dates 29	/11/2022	Engineer Waterman Moylan		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
Remarks 0.10-0.90	: 85% recovery.	ion: Possible	boulder or bedrock.	75.57	(0.10) - (0.80) - (0.80) - (0.80) - (0.80) - (0.80) - (0.80) - (0.80) - (0.80)	Brown TOPSOIL. Soft brown slightly sandy slightly gravelly CLAY. Refusal at 0.90m	Scale (approx)	Logged	d
Dynamic pro	bbe DP08 carried out	ajacent to W	/S08				1:25 Figure No.		


	Grou	nd Inv	vestigations Ir www.gii.ie	eland	Ltd	Site Churchfields		Number WS12
Machine:	Fec 10 Drive-in Windowless Sampler	Dimensi 87n			Level (mOD) 83.31	Client		Job Number 12314-10-22
	·	Location 706	n 6956.3 E 741386.3 N	Dates 29)/11/2022	Engineer Waterman Moylan		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	ı	Kate Pueser
0.00-0.25 0.25-0.56	B B			83.06	(0.25) - (0.25) - (0.75) - (0.	Firm brown slightly sandy slightly gravelly CLAY. Refusal at 1.00m		Logged
0-1.0m BGL Refusal at 1 Dynamic pr	.: 56% recovery. I.0m BGL on obstruct obe DP12 carried out	ion: Possil ajacent to	ole boulder or bedrock. WS12				icale oprox)	Logged By
						Fig	igure No).

	Grou	nd Inv	estigations Ir www.gii.ie	eland	Ltd	Site Churchfields		Numb WS1	
	ec 10 Prive-in Windowless Campler	Dimension 87mr 65mr			Level (mOD) 85.02	Client		Job Numb 12314-1	
		Location 7070	63.4 E 741541.1 N	Dates 29	9/11/2022	Engineer Waterman Moylan		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	Description		Legend	Water
0.00-0.20	В				(0.20)	Brown TOPSOIL with grass.			
0.20-1.10	В			84.82	0.20	Soft brown slightly sandy slightly gravelly CLAY.			· · · · · · · · · · · · · · · · · · ·
				84.22	0.80	Stiff brown slightly sandy slightly gravelly CLAY.			<u>.</u>
1.10-1.50	В			83.92	1.10	Stiff brownish grey slightly gravelly slightly sandy	CLAY.		
1.50-1.60	В			83.52 83.42	⊢ (0.10)	Stiff brown slightly sandy slightly gravelly CLAY. Refusal at 1.60m			
Remarks 0-1.0m BGL 1.0-1.60m B Refusal at 1 Dynamic pro	: 95% recovery. :GL: 100% recovery. .6m BGL on obstruct bbe DP13 carried out	ion: Possible	e boulder or bedrock. VS13		1		Scale (approx)	Logge By	
= ja.ino pro		, J V	· ·				Figure N 12314-10	о.	

APPENDIX 5 – Dynamic Probe Records

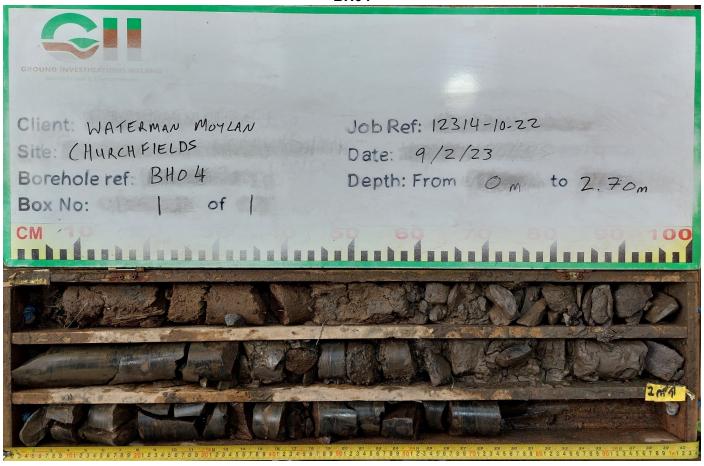
	Gro	und Investigations www.gii.ie	l Ltd	Site Churchfields						be mber P06	
Method 50kg Weigh 500mm Dro	nt op Height	Cone Dimensions Diameter 43.7mm	Ground	Level (mOD)	Client					Job Numl 12314-	
		Location 706680.3 E 741477.6 N	Dates 29/	11/2022	Engineer Waterman Moyl	lan				Shee	
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3 6	Blows fo 9 12	r Depth In	crement	24 2	27	30
0.00-0.10	2			0.00							F
0.10-0.20	3 4			<u> </u>							\vdash
0.20-0.30 0.30-0.40 0.40-0.50	7										_
0.50-0.60	6			0.50							
0.60-0.70 0.70-0.80	5										
0.80-0.90	4			<u>-</u> -							T
0.90-1.00 1.00-1.10	8 7			1.00							+
1.10-1.20	10			_							\vdash
1.20-1.30 1.30-1.32	9 25			_							
				1.50							
				- -							T
											+
				2.00							\vdash
				<u>-</u> -							L
				- -							
											T
											+
				<u>-</u> -							\vdash
				3.00							L
				<u>-</u> -							
				- -							T
				 							+
											\vdash
				 - -							_
				4.00							
				4.00 							Г
											+
				-							\vdash
				4.50 							_
				- - 							
Remarks		I		5.00					Scale (approx)	Logg By	±— ed
									1:25	RI	М
									Figure		-
									12314-	10-22.[DP06

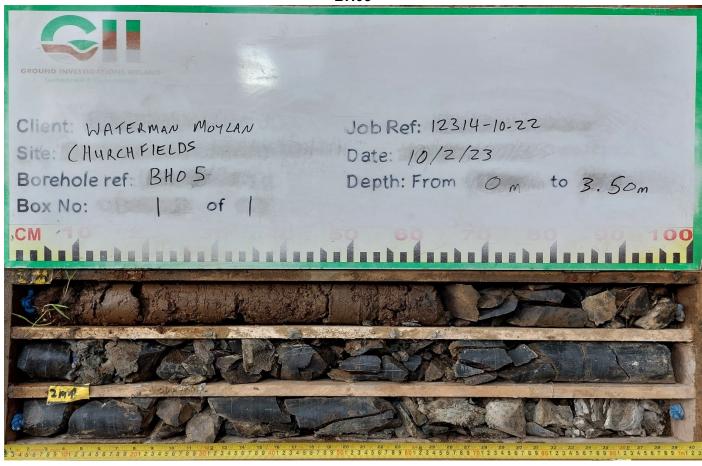
	Gro	und Investigations www.gii.ie	Ltd	Site Churchfields			obe imber P08			
Method 50Kg Weigl 500mm Dro	ht pp Height	Cone Dimensions Diameter 43.7mm		Level (mOD) 76.47	Client					b I mber 14-10-22
		Location 706803.5 E 741495.3 N	Dates 29/1	11/2022	Engineer Waterman Moy	rlan				1/1
Depth (m)	Blows for Depth Incremen	t Field Records	Level (mOD)	Depth (m)	0 3 6	Blows for I	Depth Increme	ent 21 24	27	30
0.00-0.10	0		76.47	0.00						_
0.10-0.20 0.20-0.30 0.30-0.40	3 2			- -						+
0.30-0.40	3			 - -					+	
0.50-0.60 0.60-0.70	3		75.97	0.50 						
0.70-0.80	3			- -						
0.80-0.90 0.90-1.00 1.00-1.10	3			- -						
1.00-1.10 1.10-1.11	14 25		75.47	1.00 -						\top
11.10 1.11				- - -						+
				- - -					+	
			74.97	1.50 					_	
				- - -						
				- - -						
			74.47	2.00 						
				- -						
			70.07	- - -					+	_
			73.97	2.50 					+	_
				- -						
			70.47	- - -						
			73.47	3.00 						
				- -					+	+
			70.07	- - -					+	_
			72.97	3.50 					+	_
				 - 						
			72.47	- - - - 4.00						
			72.47	— 4.00 - — -						
				 - -						_
			71.97	 						+
			71.57	— 4.00 - -					+	+
				 						_
			71.47	- - - - 5.00						
Remarks	-							Scale (appro) Lo	gged
								1:25 Figur	re No.	RM
								1231	4-10-2	2.DP08

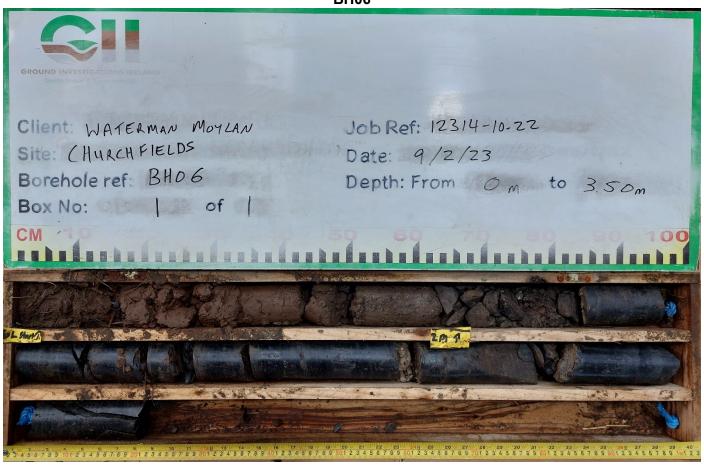
	Gro	und Investigations	Ltd	Site Churchfields						Prob Num		er			
		www.gii.ie			chfields								DP1	2	
Method 50Kg Weigl 500mm Dro	nt p Height	Cone Dimensions Diameter 43.7mm		_evel (mOD) 83.31	Client									Job Numb 12314-1	
		Location	Dates		Engine									Sheet	
		706956.3 E 741386.3 N	29/1	1/2022	Wate	rman M	loylan								
Depth (m)	Blows for Depth Increment	Field Records	(mOD)	Depth (m)	o	3	6				rement 18 2	1 2	4 2	27 3	30
0.00-0.10	0		83.31	0.00											F
0.10-0.20 0.20-0.30	8			- -											
0.30-0.40 0.40-0.50	8			- -											
0.50-0.60 0.60-0.70	6		82.81	0.50 											
0.70-0.80	9			- -											
0.80-0.90 0.90-1.00	9 7			- -			+								
1.00-1.10 1.10-1.20	3		82.31	1.00 - -			Т								
1.20-1.30 1.30-1.40	3 3			- -											_
1.40-1.50 1.50-1.60	4			- -											<u> </u>
1.50-1.60 1.60-1.70	10		81.81	— 1.50 - —											
1.70-1.71	25			- -									_		
				- - -											
			81.31	2.00 											
				- - - -											
				- - -											_
			80.81	— 2.50 - -											
				<u>-</u> - -											
			00.24	- - -											
			80.31	3.00 											
			70.04	- 3.50											_
			79.81	— 3.50 - - -											
				- -											
			79.31	- - - - 4.00											
			79.51												
				 - 											
			78.81	- - - - 4.50											_
			1 0.0 .	- - -											_
				- - -											
			78.31	- 5.00											
Remarks	•		,1	-				,				S	cale	Logge Bv	ed
													1:25 Figure N	RM No.	1
												1	2314-1	0-22.ℂ)P12

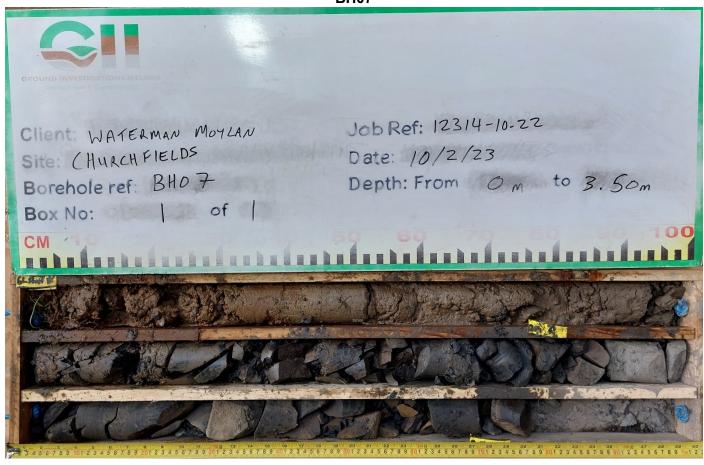
	Gro	und Investigations www.gii.ie	Ireland	l Ltd	Site Churchfields		Probe Numb			
Method 50Kg Weigl 500mm Dro	ht op Height	Cone Dimensions Diameter 43.7mm		Level (mOD) 85.02	Client				Job Numb 12314-1	
		Location 707063.4 E 741541.1 N	Dates 29/	11/2022	Engineer Waterman Moyla	an			Sheet	
Depth (m)	Blows for Depth Increment	t Field Records	Level (mOD)	Depth (m)	0 3 6		pth Increment 15 18 21	24 2	27 :	30
0.00-0.10 0.10-0.20	1 2		85.02	0.00						Ħ
0.20-0.30 0.30-0.40	3			- - -						+
0.30-0.40	3			- - -						\vdash
0.50-0.60 0.60-0.70	2 2		84.52	0.50 						L
0.70-0.80	3			- - -						
0.80-0.90	10			- - 						
0.90-1.00 1.00-1.10	11		84.02	1.00						\vdash
1.10-1.20 1.20-1.30 1.30-1.40	14			- -						\vdash
1.30-1.40 1.40-1.50	9			- -						<u> </u>
1.50-1.51	25		83.52	1.50 				<u> </u>		
				- - -						
				- - -						T
			83.02	2.00						+
				- -						\vdash
				<u> </u>						L
			82.52	2.50						
				 - 						Γ
				 - 						+
			82.02	3.00						\vdash
				 -						L
				- 						
			81.52	3.50						
				_ - _						\vdash
				<u>-</u> -						\vdash
			81.02	4.00						\vdash
				<u></u>						
				- -						
			80.52							T
				_ - -						+
				<u>-</u> -						+
			80.02	5.00					<u> </u>	\perp
Remarks								Scale (approx)	Logge By	ed
								1:25	RN	
								Figure I		-
								12314-	10-22.Γ)P13

APPENDIX 6 - Rotary Borehole Records


		Grou	nd In		igations Ire vw.gii.ie	land	Ltd		Site Churchfields		N	orehole umber 3H04
Machine: Beretta T44 Flush: Water Core Dia: 64 mm Method: Rotary Cored Casing Diameter 96mm cased to 2.70 Location 706721.4 E 741381.					r	Ground	Leve 73.93		Client		N	ob umber 314-10-22
		d			741381.7 N	Dates 09)/02/2	023	Engineer Waterman Moylan		S	heet 1/1
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Legend	Water	Instr
0.00	95	0	0	NI		73.78 73.33	Ė	(0.15) (0.45) (0.60) (1.40)	Brown TOPSOIL. Brown slightly sandy slightly gravelly CLAY. Weak to medium strong dark grey fine grained LIMESTONE. Highly weathered. Mostly Non intactions are supplied to the control of the control	tt		
2.70 Remarks	100	50	0	23		71.93		2.00 (0.70) 2.70	Medium strong dark grey fine grained LIMESTONE. Slightly weathered. (2.0 - 2.70m BGL) 2 fracture sets. F1: 10-20 degrees. Very closely spaced. Undulating, rough with occasional brown clay staining. F2: 70-85 degrees. Extremely closely to medium spaced. Undulating, rough with occasional brown clay staining. Complete at 2.70m			
Borehole co Slotted stand	mplete at 2 dpipe insta	2.70m BGL lled from	 2.70m BG	GL to 0.7	0m BGL with plain pip	e from 0.7	'0m E	GL to GI	Finished with concrete and a raised cover.	Scale (approx) 1:50 Figure I 12314-1	No.	ogged y 2.BH04


		Grou	nd In		igations Ire ww.gii.ie	Ltd	Site Churchfields			
	Vater			Diamete			Level (mOD) 78.49	Client	Job Number 12314-10-22	
Core Dia: 6 Method : R		d	Locatio 70		741557.3 N	Dates 09	0/02/2023	Engineer Waterman Moylan	Sheet 1/1	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Kate Wate	
1.60 2.00 2.65 3.10 3.50	100	0 12	0	NI 26 NI		74.99	(1.50)	Brown Slightly sandy slightly gravelly CLAY. Medium strong dark grey fine grained LIMESTONE. Slightly weathered to highly weathered. (1.60 - 3.50m BGL) 2 fracture sets. F1: 20-40 degrees. Extremely closely to closely spaced. Undulating, rough. F2: 80-90 degrees. Extremely closely spaced. Undulating, rough.		
Borehole co Borehole ba	ckfilled on	Completion	n					1:50		

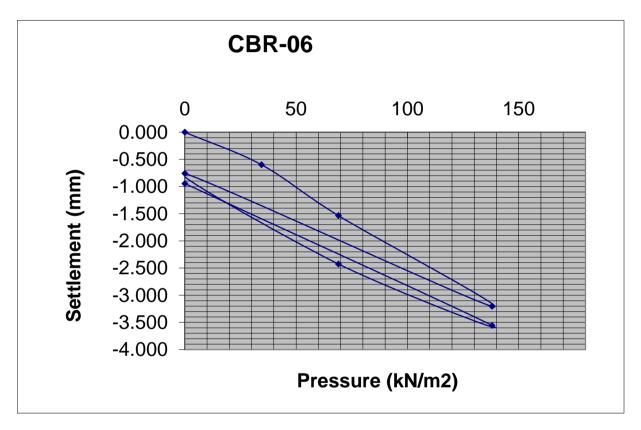

Ground Investigations Ireland Ltd www.gii.ie Machine: Beretta T44 Casing Diameter Ground Level (m									Chulchielus			
Flush : V	Vater			Diamete			Leve 80.64		Client	Job Number 12314-10-22		
Core Dia: 6 Method: F		ed	Locatio 70		741480 N	Dates 09	/02/2	023	Engineer Waterman Moylan	Sheet 1/1		
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	(Thi	epth (m) ckness)	Description	Vate Present		
0.00	32					80.46		(0.18) 0.18 (1.82)	Brown TOPSOIL. Brown slightly sandy slightly gravelly CLAY.			
2.00						78.64 78.44	⊢-	2.00 (0.20) 2.20	Grey clayey angular to sub-angular fine to coarse GRAVEL. (Possible weathered rock)			
2.45	95	57	24	8		77.14		(1.30)	Medium strong dark grey fine grained LIMESTONE. Fresh to slightly weathered. (2.45 - 3.50m BGL) 2 fracture sets. F1: 10-30 degrees. Extremely closely to medium spaced. Undulating, rough with brown clay staining. F2: 80-90 degrees. Extremely closely to medium spaced. Undulating, rough with brown clay staining.			
Remarks								3.50	Complete at 3.50m	Logged		
Borehole co Borehole ba	mplete at 3 ackfilled on	3.50m BGL Completio	 on						Scale (approx)	Logged By		
									Figure 1 12314-1	No. 0-22.BH06		


		Grou	nd In		igations Ire vw.gii.ie	land	Ltd	Site Churchfields		N	orehole lumber 3H07
	vater			Diamete			Level (mOD) 84.35	Client		N	ob lumber 314-10-22
Core Dia: 6 Method: F		ed .	Locatio 70		741576.2 N	Dates 10)/02/2023	Engineer Waterman Moylan		S	heet 1/1
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water	Instr
0.00	37					84.25	(2.00)	Brown TOPSOIL. Brown slightly sandy slightly gravelly CLAY.			
2.00 2.10	100	2	0	NI		82.25		Medium strong dark grey fine grained LIMESTONE. Highly weathered. Mostly Non Intac (2.20 - 3.50m BGL) 3 fracture set. F1: 20-30 degrees. Extremely closely to closely spaced. Undulating, rough. F2: 80-90 degrees. Undulating, rough. F3: 70-80 degrees. Extremely closely to medium spaced. Undulating, rough with occasional brown clay staining.	tt The state of th		
Remarks						80.85	3.50	Complete at 3.50m	Scale		ogged
Borehole co Slotted stan	mplete at 3 dpipe insta	3.50m BGL lled from 3	3.50m BG	L to 2.0m	n BGL with plain pipe f	from 2.0m	BGL to GL. F	inished with concrete and a raised cover.	(approx) 1:50 Figure N 12314-1	No.	RM 2.BH07

		Grou	nd In		gations Ire ww.gii.ie	land	Ltd	Site Churchfields	Borehol Number BH08	r
Machine: B	ater ater			Diamete			Level (mOD) 81.18	Client	Job Number 12314-10-2	
Core Dia: 6-		ed	Locatio 70		741323.9 N	Dates 09	0/02/2023	Engineer Waterman Moylan	Sheet 1/1	
Depth (m)	TCR (%)	SCR (%)	RQD (%)	FI	Field Records	Level (mOD)	Depth (m) (Thickness)	Description	Legend	Water
0.00	63					79.38	(1.80)	Brown slightly sandy slightly gravelly CLAY.		
1.80 2.00 2.25	97	34	19	NI 9		79.38 78.93 77.68	2.25	Medium strong dark grey fine grained LIMESTONE. Highly weathered. Mostly Non Intact. Medium strong to strong dark grey fine grained LIMESTONE. Slightly weathered. (2.25 - 3.50m BGL) 2 fracture sets. F1: 20-30 degrees. Closely spaced. Undulating, rough. Open to incipient with some grey clay infill. F2: 50-65 degrees. Planar, rough. Open to incipient.		
Remarks Borehole co	mplete at 3	3.50m BGL					3.50	Complete at 3.50m	Logged	
Borehole co Borehole ba	ckfilled on	Completio	 n					1:50 Figure		

APPENDIX 7 – Plate Bearing Test Records

Applied Load	Gauge settlement
0	0.000
34.5	-0.6
69	-1.535
138	-3.205
0	-0.76
69	-2.425
138	-3.555
0	-0.945



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-06SAMPLES

Brown slightly sand gravelly CLAY with occasional cobbles

0.3

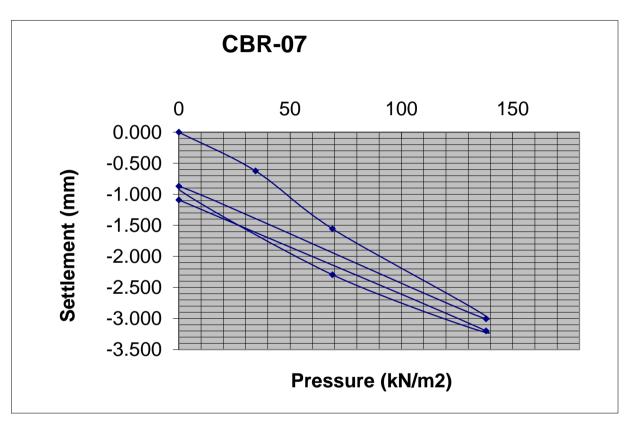
Modulus of subgrade reaction, K (Initial) =

Modulus of subgrade reaction, K (Reload) =

30.37 MN/m2/m 28.00 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 3.58 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 3.11 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.625
69	-1.555
138	-3.005
0	-0.87
69	-2.295
138	-3.2
0	-1.09



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-07SAMPLES

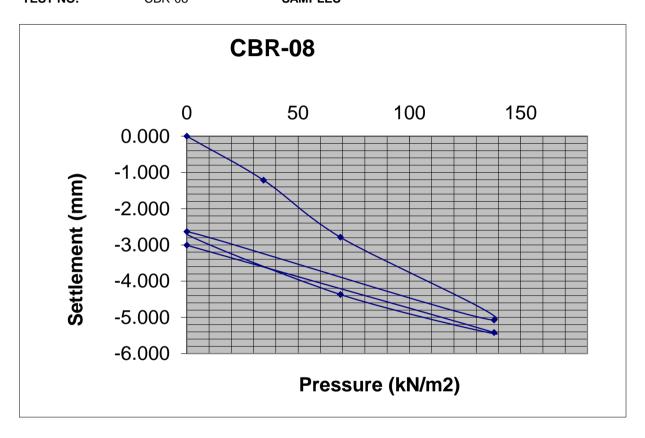
Brown slightly sand gravelly CLAY with occasional cobbles

0.3

Modulus of subgrade reaction, K (Initial) = 29.98 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 32.72 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 3.50 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 4.07 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.215
69	-2.79
138	-5.075
0	-2.635
69	-4.37
138	-5.42
0	-3.01



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENT Waterman Moylan DEPTH
PLATE DIAMETER 457mm NOTES
TEST NO. CBR-08 SAMPLES

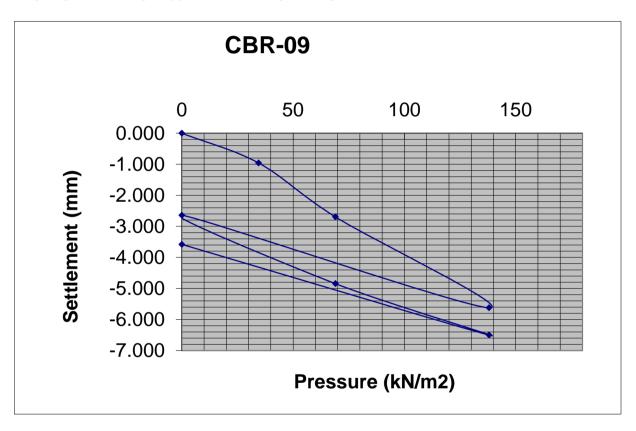
Brown slightly sandy slightly gravelly CLAY.

0.3

Modulus of subgrade reaction, K (Initial) = 16.71 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 26.87 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.27 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 2.89 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.96
69	-2.695
138	-5.62
0	-2.64
69	-4.845
138	-6.5
0	-3.58



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-09SAMPLES

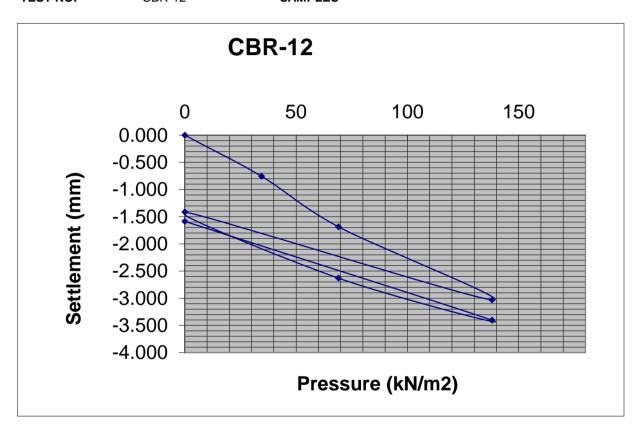
Brown slightly sand gravelly CLAY with occasional cobbles

0.5

Modulus of subgrade reaction, K (Initial) = 17.30 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 21.14 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.35 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 1.91 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.7565
69	-1.685
138	-3.03
0	-1.415
69	-2.63
138	-3.405
0	-1.585



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-12SAMPLES

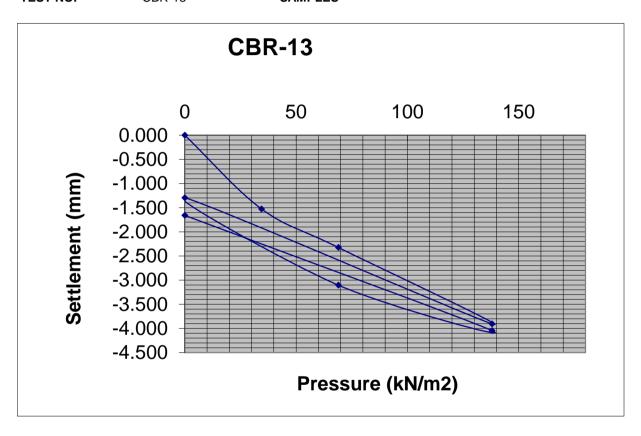
Brown slightly sandy slightly gravelly CLAY.

0.25

Modulus of subgrade reaction, K (Initial) = 27.67 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 38.37 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 3.04 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 5.36 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.5275
69	-2.325
138	-3.905
0	-1.295
69	-3.105
138	-4.045
0	-1.66



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENT Waterman Moylan DEPTH
PLATE DIAMETER 457mm NOTES
TEST NO. CBR-13 SAMPLES

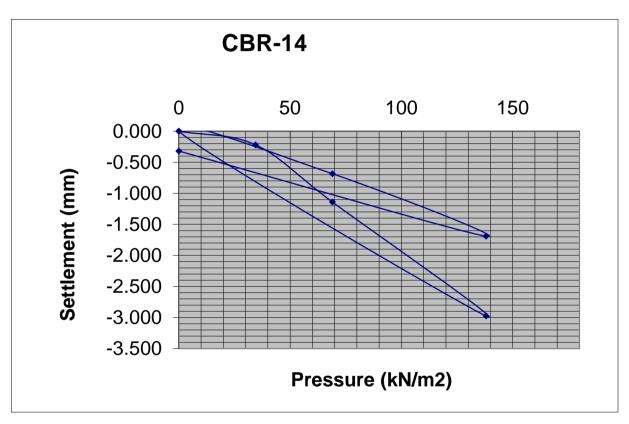
Brown slightly sandy slightly gravelly CLAY.

0.3

Modulus of subgrade reaction, K (Initial) = 20.05 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 25.76 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.74 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 2.69 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.22
69	-1.14
138	-2.975
0	0
69	-0.685
138	-1.69
0	-0.32



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-14SAMPLES

Brown slightly sand gravelly CLAY with occasional cobbles

0.5

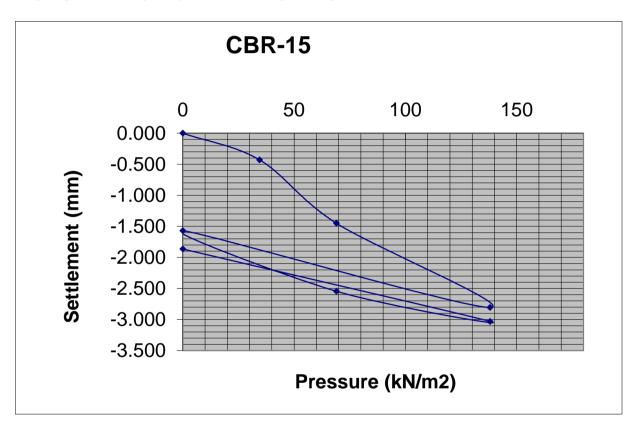
Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

40.90 MN/m2/m 68.06 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 5.99 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 14.48 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.43
69	-1.45
138	-2.805
0	-1.57
69	-2.545
138	-3.03
0	-1.865

CONTRACT NO. 12314-10-22 **DATE** 02/12/2022


CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-15SAMPLES

Brown slightly sand gravelly CLAY with occasional cobbles

0.3

32.15 MN/m2/m

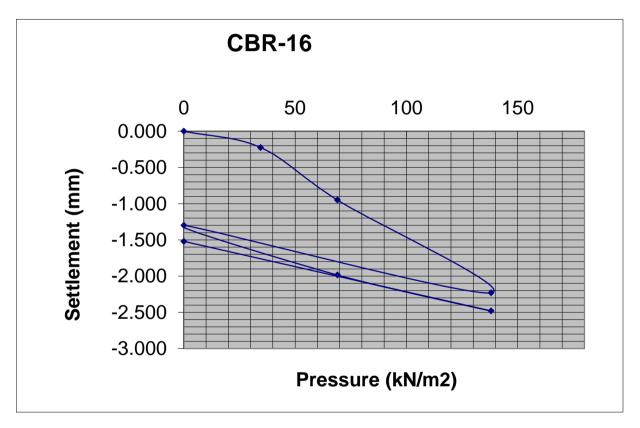
47.82 MN/m2/m

Modulus of subgrade reaction, K (Initial) =

Modulus of subgrade reaction, K (Reload) =

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 3.95 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 7.85 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.225
69	-0.95
138	-2.23
0	-1.3
69	-1.985
138	-2.48
0	-1.52



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-16SAMPLES

Brown slightly sand gravelly CLAY with occasional cobbles

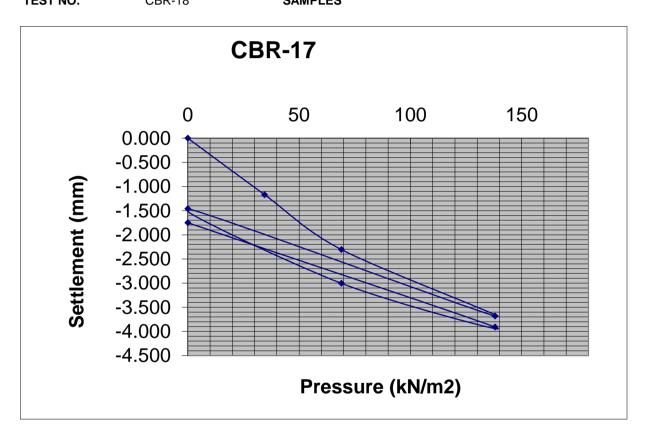
0.2

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

49.08 MN/m2/m 68.06 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 8.22 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 14.48 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.17
69	-2.305
138	-3.68
0	-1.46
69	-3.005
138	-3.91
0	-1.75



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-18SAMPLES

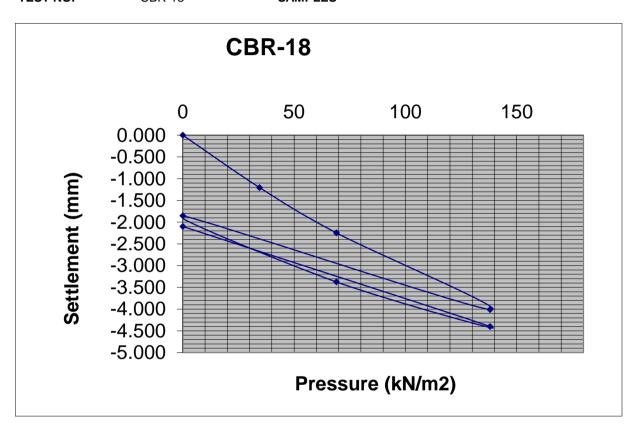
Brown slightly sandy slightly gravelly CLAY.

0.25

Modulus of subgrade reaction, K (Initial) = 20.23 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 30.18 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.77 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 3.54 %

Applied Load	Gauge settlement
0	0.000
34.5	-1.205
69	-2.247
138	-4.01
0	-1.855
69	-3.375
138	-4.4
0	-2.1



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENTWaterman MoylanDEPTHPLATE DIAMETER457mmNOTESTEST NO.CBR-18SAMPLES

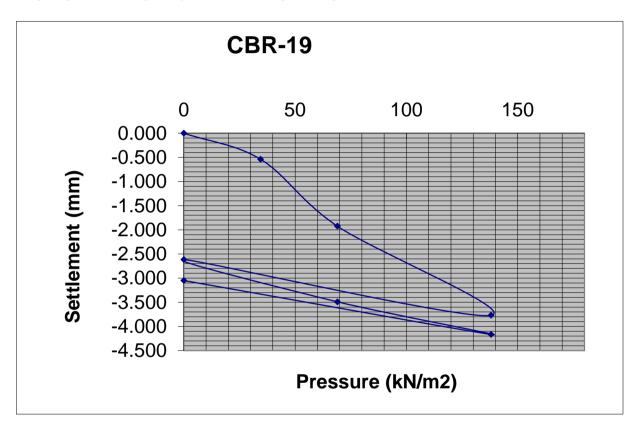
Brown slightly sandy slightly gravelly CLAY.

0.25

Modulus of subgrade reaction, K (Initial) = 20.75 MN/m2/m
Modulus of subgrade reaction, K (Reload) = 30.67 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 1.85 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 3.64 %

Applied Load	Gauge settlement
0	0.000
34.5	-0.54
69	-1.925
138	-3.77
0	-2.615
69	-3.49
138	-4.165
0	-3.05



CONTRACT NO. 12314-10-22 **DATE** 02/12/2022

CLIENT Waterman Moylan DEPTH
PLATE DIAMETER 457mm NOTES
TEST NO. CBR-19 SAMPLES

Brown slightly sand gravelly CLAY with occasional cobbles

0.25

Modulus of subgrade reaction, K (Initial) = Modulus of subgrade reaction, K (Reload) =

24.22 MN/m2/m 53.28 MN/m2/m

Equivalent CBR(initial)in accordance with HD25/94 volume7 section2 = 2.42 % Equivalent CBR(reload)in accordance with HD25/94 volume7 section2 = 9.47 %

APPENDIX 8 – Laboratory Testing

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: James Cashen

Date: 29th December, 2022

Your reference : -

Our reference : Test Report 22/20475 Batch 1

Location: Churchfields

Date samples received: 12th December, 2022

Status: Final Report

Issue: 1

Ten samples were received for analysis on 12th December, 2022 of which seven were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Liza Klebe

Project Co-ordinator

Please include all sections of this report if it is reproduced

Ground Investigations Ireland Client Name:

Reference:

Location:

James Cashen

Churchfields

22/20475

Contact: EMT Job No: Report: Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

LINIT SOB NO:								 				
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	25-28	29-32					
Sample ID	WS06	WS08	WS12	WS13	CBR06	CBR10	CBR12					
Depth	0.20-1.20	0.10-0.90	0.25-0.56	0.20-1.10	0.50	0.50	0.50			Please se	e attached n	otes for all
COC No / misc											ations and a	
Containers	VJT											
Sample Date		08/12/2022	08/12/2022	08/12/2022	08/12/2022		08/12/2022					
Sample Type				Soil		Soil	Soil					
	Soil	Soil	Soil		Soil							
Batch Number	1	1	1	1	1	1	1			LOD/LOR	Units	Method No.
Date of Receipt			12/12/2022	12/12/2022	12/12/2022		12/12/2022					
Antimony #	2	2	2	3	2	3	3			<1	mg/kg	TM30/PM15
Arsenic#	15.2 64	22.1 130	17.2 73	19.0 114	17.3	40.2	31.5 105			<0.5 <1	mg/kg	TM30/PM15 TM30/PM15
Barium [#] Cadmium [#]	<0.1	<0.1	0.3	1.5	134 0.9	88 <0.1	<0.1			<0.1	mg/kg mg/kg	TM30/PM15
Chromium #	67.1	52.0	32.5	53.8	51.0	59.1	58.8			<0.1	mg/kg	TM30/PM15
Copper#	30	42	26	42	36	50	52			<1	mg/kg	TM30/PM15
Lead #	24	40	21	43	32	108	48			<5	mg/kg	TM30/PM15
Mercury [#]	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			<0.1	mg/kg	TM30/PM15
Molybdenum#	0.3	2.6	2.4	5.7	3.8	1.3	2.9			<0.1	mg/kg	TM30/PM15
Nickel [#]	123.7	94.6	56.9	67.2	72.3	156.8	116.4			<0.7	mg/kg	TM30/PM15
Selenium [#]	3	5	2	3	4	6	7			<1	mg/kg	TM30/PM15
Zinc [#]	56	176	96	148	143	552	195			<5	mg/kg	TM30/PM15
PAH MS												
Naphthalene#	<0.04	<0.04 <0.03	<0.04 <0.03	<0.04 <0.03	<0.04	<0.04 <0.03	<0.04 <0.03			<0.04	mg/kg	TM4/PM8
Acenaphthylene	<0.03 <0.05	<0.03	<0.03	<0.03	<0.03 <0.05	<0.03	<0.03			<0.03 <0.05	mg/kg mg/kg	TM4/PM8 TM4/PM8
Acenaphthene # Fluorene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Phenanthrene #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Anthracene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Fluoranthene [#]	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Pyrene#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03			<0.03	mg/kg	TM4/PM8
Benzo(a)anthracene#	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06	<0.06			<0.06	mg/kg	TM4/PM8
Chrysene #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM4/PM8
Benzo(bk)fluoranthene #	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07			<0.07	mg/kg	TM4/PM8
Benzo(a)pyrene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Indeno(123cd)pyrene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Dibenzo(ah)anthracene#	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(ghi)perylene #	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Coronene PAH 6 Total#	<0.04 <0.22			<0.04 <0.22	mg/kg	TM4/PM8 TM4/PM8						
PAH 6 Total	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22			<0.22	mg/kg mg/kg	TM4/PM8
Benzo(b)fluoranthene	<0.04	<0.04	<0.05	<0.05	<0.04	<0.04	<0.04			<0.04	mg/kg	TM4/PM8
Benzo(k)fluoranthene	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02			<0.02	mg/kg	TM4/PM8
Benzo(j)fluoranthene	<1	<1	<1	<1	<1	<1	<1			<1	mg/kg	TM4/PM8
PAH Surrogate % Recovery	84	85	80	94	92	84	86			<0	%	TM4/PM8
Mineral Oil (C10-C40) (EH_CU_1D_AL)	<30	<30	<30	<30	<30	<30	<30			<30	mg/kg	TM5/PM8/PM16
		<u> </u>			<u> </u>	i		ı	I	ı		

Ground Investigations Ireland Client Name:

Reference:

Churchfields

Location: Cashen Report: Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact:	James Cash
EMT Job No:	22/20475

EMI JOD NO:	22/204/5										
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	25-28	29-32				
Sample ID	WS06	WS08	WS12	WS13	CBR06	CBR10	CBR12				
Depth	0.20-1.20	0.10-0.90	0.25-0.56	0.20-1.10	0.50	0.50	0.50				
COC No / misc										e attached n ations and a	
	V 1 T	VIT	VIT	\/ I.T	VIT	V 1 T	V 1.T				
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT		ļ		
Sample Date	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022				
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil				
Batch Number	1	1	1	1	1	1	1		LOD/LOR	1.1	Method
Date of Receipt	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022		LOD/LOR	Units	No.
TPH CWG											
Aliphatics											
>C5-C6 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C6-C8 (HS_1D_AL)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C8-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C12 (EH_CU_1D_AL)#	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2		<0.2	mg/kg	TM5/PM8/PM16
>C12-C16 (EH_CU_1D_AL)#	<4	<4	<4	<4	<4	<4	<4		<4	mg/kg	TM5/PM8/PM16
>C16-C21 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C21-C35 (EH_CU_1D_AL)#	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
>C35-C40 (EH_1D_AL)	<7	<7	<7	<7	<7	<7	<7		<7	mg/kg	TM5/PM8/PM16
Total aliphatics C5-40 (EH+HS_1D_AL)	<26	<26	<26	<26	<26	<26	<26		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
>C6-C10 (HS_1D_AL)	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>C10-C25 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
>C25-C35 (EH_1D_AL)	<10	<10	<10	<10	<10	<10	<10		<10	mg/kg	TM5/PM8/PM16
Aromatics											
>C5-EC7 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC7-EC8 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC8-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC12 (EH_CU_1D_AR)#	<0.2	<0.2	<0.2	<0.2 ^{SV}	<0.2	<0.2	<0.2 sv		<0.2	mg/kg	TM5/PM8/PM16
>EC12-EC16 (EH_CU_1D_AR)#	<4	<4	<4	<4 ^{SV}	<4	<4	<4 ^{SV}		<4	mg/kg	TM5/PM8/PM16
>EC16-EC21 (EH_CU_1D_AR)*	<7	<7	<7	<7 ^{SV}	<7	<7	<7 ^{SV}		<7	mg/kg	TM5/PM8/PM16
>EC21-EC35 (EH_CU_1D_AR)#	<7	<7	<7	<7 ^{SV}	<7	<7	<7 ^{SV}		<7	mg/kg	TM5/PM8/PM16
>EC35-EC40 (EH_1D_AR)	<7	<7	<7	<7 ^{SV}	<7	<7	<7 ^{SV}		<7	mg/kg	TM5/PM8/PM16
Total aromatics C5-40 (EH+HS_1D_AR)	<26	<26	<26	<26 ^{SV}	<26	<26	<26 ^{SV}		<26	mg/kg	TM5/TM36/PM8/PM12/PM16
Total aliphatics and aromatics(C5-40) (EH+HS_CU_1D_Total)	<52	<52	<52	<52 sv	<52	<52	<52 ^{SV}		<52	mg/kg	TM5/TM36/PM8/PM12/PM16
>EC6-EC10 (HS_1D_AR)#	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM36/PM12
>EC10-EC25 (EH_1D_AR)	<10	<10	<10	<10 ^{SV}	<10	<10	<10 ^{SV}		<10	mg/kg	TM5/PM8/PM16 TM5/PM8/PM16
>EC25-EC35 (EH_1D_AR)	<10	<10	<10	<10 ^{sv}	<10	<10	<10 ^{sv}		<10	mg/kg	TIMS/PIMO/PIMTO
MTDE#	<5	<5	<5	<5	<5	<5	<5		<5	ualka	TM36/PM12
MTBE# Benzene#	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5		<5 <5	ug/kg ug/kg	TM36/PM12
Toluene #	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5	<5 <5		<5 <5	ug/kg	TM36/PM12
Ethylbenzene #	<5 <5	<5	<5 <5	<5	<5	<5 <5	<5		<5	ug/kg	TM36/PM12
m/p-Xylene #	<5 <5	<5	<5 <5	<5	<5	<5 <5	<5 <5		<5	ug/kg	TM36/PM12
o-Xylene #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM36/PM12
J.=::=		1	-	-	-				-	.59	
PCB 28 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 52#	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 101 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 118#	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 138#	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 153#	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
PCB 180 #	<5	<5	<5	<5	<5	<5	<5		<5	ug/kg	TM17/PM8
Total 7 PCBs#	<35	<35	<35	<35	<35	<35	<35		<35	ug/kg	TM17/PM8

Client Name: Ground Investigations Ireland

Reference:

Location: Contact: EMT Job No: Churchfields
James Cashen
22/20475

Report : Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWI JOD NO:	22/204/5							 	 _		
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	25-28	29-32				
Sample ID	WS06	WS08	WS12	WS13	CBR06	CBR10	CBR12				
Depth	0.20-1.20	0.10-0.90	0.25-0.56	0.20-1.10	0.50	0.50	0.50		Please se	e attached n	otes for all
COC No / misc										ations and a	
Containers	VJT										
Sample Date	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1				Method
Date of Receipt	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022		LOD/LOR	Units	No.
Natural Moisture Content	26.7	31.0	16.2	27.5	23.0	33.0	30.3		<0.1	%	PM4/PM0
Moisture Content (% Wet Weight)	21.1	23.7	13.9	21.6	18.7	24.8	23.2		<0.1	%	PM4/PM0
Hexavalent Chromium#	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3		<0.3	mg/kg	TM38/PM20
Chromium III	67.1	52.0	32.5	53.8	51.0	59.1	58.8		<0.5	mg/kg	NONE/NONE
Total Organic Carbon [#]	0.15	0.75	0.26	1.26	1.13	0.27	0.96		<0.02	%	TM21/PM24
pH#	7.56	8.22	8.55	8.15	8.08	7.55	7.87		<0.01	pH units	TM73/PM11
pri	7.00	0.22	0.00	0.10	0.00	7.00	7.07		10.01	priamo	
Mass of raw test portion	0.1166	0.1175	0.1068	0.1147	0.115	0.1234	0.1181			kg	NONE/PM17
Mass of dried test portion	0.09	0.09	0.09	0.09	0.09	0.09	0.09			kg	NONE/PM17

Client Name: Ground Investigations Ireland

Reference:

Report: CEN 10:1 1 Batch

Location:

Churchfields

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: James Cashen EMT Job No: 22/20475

EMT Job No:	22/20475										
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	25-28	29-32				
Sample ID	WS06	WS08	WS12	WS13	CBR06	CBR10	CBR12				
Depth	0.20-1.20	0.10-0.90	0.25-0.56	0.20-1.10	0.50	0.50	0.50		Please se	e attached n	notes for all
COC No / misc									1	ations and a	
Containers	VJT		İ								
Sample Date	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022				
Sample Type	Soil										
Batch Number	1	1	1	1	1	1	1				
									LOD/LOR	Units	Method No.
Date of Receipt			12/12/2022		12/12/2022	12/12/2022			*0.000	/1	TM20/DM47
Dissolved Antimony#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Antimony (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Arsenic#	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025	<0.0025		<0.0025	mg/l	TM30/PM17
Dissolved Arsenic (A10)#	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		<0.025	mg/kg	TM30/PM17
Dissolved Barium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Barium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Cadmium#	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005		<0.0005	mg/l	TM30/PM17
Dissolved Cadmium (A10)#	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/kg	TM30/PM17
Dissolved Chromium#	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015	<0.0015		<0.0015	mg/l	TM30/PM17
Dissolved Chromium (A10)#	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		<0.015	mg/kg	TM30/PM17
Dissolved Copper#	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007	<0.007		<0.007	mg/l	TM30/PM17
Dissolved Copper (A10)#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		<0.07	mg/kg	TM30/PM17
Dissolved Lead #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	mg/l	TM30/PM17
Dissolved Lead (A10)#	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		<0.05	mg/kg	TM30/PM17
Dissolved Molybdenum#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Molybdenum (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Nickel#	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002		<0.002	mg/l	TM30/PM17
Dissolved Nickel (A10)#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		<0.02	mg/kg	TM30/PM17
Dissolved Selenium#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Selenium (A10)#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Dissolved Zinc#	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003	<0.003		<0.003	mg/l	TM30/PM17
Dissolved Zinc (A10)#	< 0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		<0.03	mg/kg	TM30/PM17
Mercury Dissolved by CVAF#	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001	<0.00001		<0.00001	mg/l	TM61/PM0
Mercury Dissolved by CVAF#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		<0.0001	mg/kg	TM61/PM0
Phenol	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		<0.01	mg/l	TM26/PM0
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		<0.1	mg/kg	TM26/PM0
Fluoride	<0.3	0.3	0.3	0.5	0.8	<0.3	0.5		<0.3	mg/l	TM173/PM0
Fluoride	<3	3	3	5	8	<3	5		<3	mg/kg	TM173/PM0
Sulphate as SO4 #	1.6	<0.5	1.4	<0.5	0.8	1.6	<0.5		<0.5	mg/l	TM38/PM0
Sulphate as SO4 #	16	<5	14	<5	8	16	<5		<5	mg/kg	TM38/PM0
Chloride#	<0.3	0.5	<0.3	<0.3	0.3	<0.3	<0.3		<0.3	mg/l	TM38/PM0
Chloride #	<3	5	<3	<3	3	<3	<3		<3	mg/kg	TM38/PM0
Dissolved Organic Carbon	<2	<2	<2	<2	<2	<2	<2		<2	mg/l	TM60/PM0
Dissolved Organic Carbon	<20	<20	<20	<20	<20	<20	<20		<20	mg/kg	TM60/PM0
рН	7.88	8.15	8.15	7.92	8.18	7.72	7.99		<0.01	pH units	TM73/PM0
Total Dissolved Solids #	<35	70	49	52	80	<35	60		<35	mg/l	TM20/PM0
Total Dissolved Solids#	<350	700	490	520	800	<350	600		<350	mg/kg	TM20/PM0

Client Name: Ground Investigations Ireland

Reference: - Churchfields

Contact: James Cashen
EMT Job No: 22/20475

Report: EN12457_2

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

EWIT JOB NO:	22/204/5								
EMT Sample No.	1-4	5-8	9-12	13-16	17-20	25-28	29-32		
Sample ID	WS06	WS08	WS12	WS13	CBR06	CBR10	CBR12		
Depth	0.20-1.20	0.10-0.90	0.25-0.56	0.20-1.10	0.50	0.50	0.50		
COC No / misc									
Containers	VJT								
Sample Date	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022		
Sample Type	Soil								
Batch Number	1	1	1	1	1	1	1		

Please see attached notes for all

COC No / misc												abbrevi	ations and a	cronyms
Containers	VJT	VJT	VJT	VJT	VJT	VJT	VJT							
Sample Date	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022	08/12/2022							
Sample Type	Soil	Soil	Soil	Soil	Soil	Soil	Soil							
Batch Number	1	1	1	1	1	1	1							
Date of Receipt	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022		Inert	Stable Non- reactive	Hazardous	LOD LOR	Units	Method No.
Solid Waste Analysis	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022	12/12/2022							
Total Organic Carbon #	0.15	0.75	0.26	1.26	1.13	0.27	0.96		3	5	6	<0.02	%	TM21/PM24
Sum of BTEX	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		6	-	-	<0.02	mg/kg	TM36/PM12
Sum of 7 PCBs#	<0.035	<0.035	<0.035	<0.035	<0.035	<0.025	<0.025		1	_	-	<0.035	mg/kg	TM17/PM8
Mineral Oil	<30	<30	<30	<30	<30	<30	<30		500	-	-	<30		TM5/PM8/PM16
PAH Sum of 6 #	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22		300	-	-	<0.22	mg/kg mg/kg	TM4/PM8
PAH Sum of 17	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64	<0.64		100	-	-	<0.64		TM4/PM8
PAR Sull of 17	\0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04		100	-	-	<0.04	mg/kg	TIVI4/FIVIO
CEN 10:1 Leachate														
Arsenic #	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025	<0.025		0.5	2	25	<0.025	mg/kg	TM30/PM17
Barium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		20	100	300	<0.03	mg/kg	TM30/PM17
Cadmium #	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		0.04	1	5	<0.005	mg/kg	TM30/PM17
Chromium #	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015	<0.015		0.5	10	70	<0.015	mg/kg	TM30/PM17
Copper#	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07	<0.07		2	50	100	<0.07	mg/kg	TM30/PM17
Mercury#	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001		0.01	0.2	2	<0.0001	mg/kg	TM61/PM0
Molybdenum #	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.5	10	30	<0.02	mg/kg	TM30/PM17
Nickel#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.4	10	40	<0.02	mg/kg	TM30/PM17
Lead #	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05		0.5	10	50	<0.05	mg/kg	TM30/PM17
Antimony#	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02		0.06	0.7	5	<0.02	mg/kg	TM30/PM17
Selenium #	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		0.1	0.5	7	<0.03	mg/kg	TM30/PM17
Zinc#	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03		4	50	200	<0.03	mg/kg	TM30/PM17
Total Dissolved Solids#	<350	700	490	520	800	<350	600		4000	60000	100000	<350	mg/kg	TM20/PM0
Dissolved Organic Carbon	<20	<20	<20	<20	<20	<20	<20		500	800	1000	<20	mg/kg	TM60/PM0
Dry Matter Content Ratio	77.4	76.9	84.7	78.5	78.0	72.9	76.5		-	-	-	<0.1	%	NONE/PM4
, ,						-								
Moisture Content 105C (% Dry Weight)	29.2	30.1	18.0	27.5	28.2	37.2	30.8		-	-	-	<0.1	%	PM4/PM0
pH#	7.56	8.22	8.55	8.15	8.08	7.55	7.87		-	-	-	<0.01	pH units	TM73/PM11
'														
Phenol	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1		1	-	-	<0.1	mg/kg	TM26/PM0
Fluoride	<3	3	3	5	8	<3	5		10	150	500	<3	mg/kg	TM173/PM0
Sulphate as SO4#	16	<5	14	<5	8	16	<5		1000	20000	50000	<5	mg/kg	TM38/PM0
Chloride #	<3	5	<3	<3	3	<3	<3		800	15000	25000	<3	mg/kg	TM38/PM0
			l											

EPH Interpretation Report

Client Name: Ground Investigations Ireland Matrix : Solid

Reference: -

Location:ChurchfieldsContact:James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	EPH Interpretation
22/20475	1	WS06	0.20-1.20	1-4	No Interpretation Possible
22/20475	1	WS08	0.10-0.90	5-8	No Interpretation Possible
22/20475	1	WS12	0.25-0.56	9-12	No Interpretation Possible
22/20475	1	WS13	0.20-1.10	13-16	No Interpretation Possible
22/20475	1	CBR06	0.50	17-20	No Interpretation Possible
22/20475	1	CBR10	0.50	25-28	No Interpretation Possible
22/20475	1	CBR12	0.50	29-32	No Interpretation Possible

Client Name: Ground Investigations Ireland

Reference:

Location: Churchfields
Contact: James Cashen

Note:

Asbestos Screen analysis is carried out in accordance with our documented in-house methods PM042 and TM065 and HSG 248 by Stereo and Polarised Light Microscopy using Dispersion Staining Techniques and is covered by our UKAS accreditation. Detailed Gravimetric Quantification and PCOM Fibre Analysis is carried out in accordance with our documented in-house methods PM042 and TM131 and HSG 248 using Stereo and Polarised Light Microscopy and Phase Contrast Optical Microscopy (PCOM). Asbestos subsamples are retained for not less than 6 months from the date of analysis unless specifically requested.

The LOQ of the Asbestos Quantification is 0.001% dry fibre of dry mass of sample.

Where the sample is not taken by a Element Materials Technology consultant, Element Materials Technology cannot be responsible for inaccurate or unrepresentative sampling.

Where trace asbestos is reported the amount of asbestos will be <0.1%.

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analyst Name	Date Of Analysis	Analysis	Result
22/20475	1	WS06	0.20-1.20	3	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	WS08	0.10-0.90	7	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	WS12	0.25-0.56	11	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	WS13	0.20-1.10	15	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	CBR06	0.50	19	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	CBR10	0.50	27	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD
22/20475	1	CBR12	0.50	31	Simon Postlewhite	29/12/2022	General Description (Bulk Analysis)	Brown soil/stones
					Simon Postlewhite	29/12/2022	Asbestos Fibres	NAD
					Simon Postlewhite	29/12/2022	Asbestos ACM	NAD
					Simon Postlewhite	29/12/2022	Asbestos Type	NAD

Client Name: Ground Investigations Ireland

Reference:

Location: Churchfields **Contact:** James Cashen

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 22/20475	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 22/20475

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 22/20475

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
M	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
со	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 22/20475

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.	PM0	No preparation is required.			AR	
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.			AR	Yes
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM16	Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.			AR	Yes
ТМ5	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range C8-C40 by GCFID. For waters the solvent extracts dissolved phase plus a sheen if present.	PM8/PM16	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required/Fractionation into aliphatic and aromatic fractions using a Rapid Trace SPE.	Yes		AR	Yes
TM5/TM36	please refer to TM5 and TM36 for method details	PM8/PM12/PM16	please refer to PM8/PM16 and PM12 for method details			AR	Yes
TM17	Modified US EPA method 8270D v5:2014. Determination of specific Polychlorinated Biphenyl congeners by GC-MS.	PM8	End over end extraction of solid samples for organic analysis. The solvent mix varies depending on analysis required.	Yes		AR	Yes
TM20	Modified BS 1377-3:1990/USEPA 160.1/3 (TDS/TS: 1971) Gravimetric determination of Total Dissolved Solids/Total Solids	PM0	No preparation is required.	Yes		AR	Yes
TM21	Modified BS 7755-3:1995, ISO10694:1995 Determination of Total Organic Carbon or Total Carbon by combustion in an Eltra TOC furnace/analyser in the presence of oxygen. The CO2 generated is quantified using infra-red detection. Organic Matter (SOM) calculated as per EA MCERTS Chemical Testing of Soil, March 2012 v4.	PM24	Dried and ground solid samples are washed with hydrochloric acid, then rinsed with deionised water to remove the mineral carbon before TOC analysis.	Yes		AD	Yes

EMT Job No: 22/20475

Test Method No.	Description	Prep Method No. (if appropriate)	Description (MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM26	Determination of phenols by Reversed Phased High Performance Liquid Chromatography and Electro-Chemical Detection.	PM0	No preparation is required.			AR	Yes
ТМ30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.			AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec. 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec. 1996	PM15	Acid digestion of dried and ground solid samples using Aqua Regia refluxed at 112.5 °C. Samples containing asbestos are not dried and ground.	Yes		AD	Yes
TM30	Determination of Trace Metals by ICP-OES (Inductively Coupled Plasma – Optical Emission Spectrometry): WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev.2, Dec 1996; Modified BS EN ISO 11885:2009: SOILS by Modified USEP 6010B, Rev.2, Dec.1996; Modified EPA Method 3050B, Rev.2, Dec.1996	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.	Yes		AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.			AR	Yes
TM36	Modified US EPA method 8015B v2:1996. Determination of Gasoline Range Organics (GRO) in the carbon chain range of C4-12 by headspace GC-FID. MTBE by GCFID coelutes with 3-methylpentane if present and therefore can give a false positive. Positive MTBE results will be re-run using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2:2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM0	No preparation is required.	Yes		AR	Yes
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AR	Yes
TM60	TC/TOC analysis of Waters by High Temperature Combustion followed by NDIR detection. Based on the following modified standard methods: USEPA 9060A (2002), APHA SMEWW 5310B:1999 22nd Edition, ASTM D 7573, and USEPA 415.1.	PM0	No preparation is required.			AR	Yes
TM61	Determination of Mercury by Cold Vapour Atomic Fluorescence - WATERS: Modified USEPA Method 245.7, Rev 2, Feb 2005. SOILS: Modified USEPA Method 7471B, Rev.2, Feb 2007	PM0	No preparation is required.	Yes		AR	Yes

EMT Job No: 22/20475

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM65	Asbestos Bulk Identification method based on HSG 248 Second edition (2021)	PM42	Modified SCA Blue Book V.12 draft 2017 and WM3 1st Edition v1.1:2018. Solid samples undergo a thorough visual inspection for asbestos fibres prior to asbestos identification using TM065.			AR	
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM0	PM0 No preparation is required.			AR	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No
TM173	Analysis of fluoride by ISE (Ion Selective Electrode) using modified ISE method 9214 - 340.2 (EPA 1998)	PM0	No preparation is required.			AR	Yes
NONE	No Method Code	NONE	No Method Code			AD	Yes
NONE	No Method Code	PM17	Modified method BS EN12457-2:2002 As received solid samples are leached with water in a 10:1 water to soil ratio for 24 hours, the moisture content of the sample is included in the ratio.			AR	
NONE	No Method Code	PM4	Gravimetric measurement of Natural Moisture Content and % Moisture Content at either 35°C or 105°C. Calculation based on ISO 11465:1993(E) and BS1377-2:1990.			AR	

Unit 3 Deeside Point

Zone 3

Deeside Industrial Park

Deeside CH5 2UA P: +44 (0) 1244 833780

F: +44 (0) 1244 833781

W: www.element.com

Ground Investigations Ireland Catherinestown House Hazelhatch Road Newcastle Co. Dublin Ireland

Attention: Mike Sutton

Date: 26th April, 2023

Your reference : 12314-10-22

Our reference: Test Report 23/6173 Batch 1

Location: Churchfields

Date samples received: 20th April, 2023

Status: Final Report

Issue: 1

Four samples were received for analysis on 20th April, 2023 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Bruce Leslie Project Manager

Please include all sections of this report if it is reproduced

Client Name: Ground Investigations Ireland

Reference: 12314-10-22 Location: Churchfields Contact: Mike Sutton Report: Solid

Solids: V=60g VOC jar, J=250g glass jar, T=plastic tub

Contact: Mike Sut EMT Job No: 23/6173

EMT Sample No. 1 Sample ID CBR-07	2	3	4						
Sample ID CBR-07	000.40								
	CBR-13	CBR-17	CBR-16						
Depth 0.50	0.50	0.50	0.50				Please se	e attached n	otes for all
COC No / misc							abbrevi	ations and ad	ronyms
Containers T	Т	т	Т						
Sample Date 18/04/20	18/04/2023	18/04/2023	18/04/2023						
Sample Type Soil	Soil	Soil	Soil						
Batch Number 1	1	1	1				LOD/LOR	Units	Method
Date of Receipt 20/04/20	20/04/2023	20/04/2023	20/04/2023						No.
Sulphate as SO4 (2:1 Ext)# 0.0060	0.0068	0.0039	0.0079				<0.0015	g/l	TM38/PM20
pH # 7.11	8.56	8.63	8.64				<0.01	pH units	TM73/PM11

Client Name: Ground Investigations Ireland

Reference: 12314-10-22 Location: Churchfields Contact: Mike Sutton

EMT Job No.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
					No deviating sample report results for job 23/6173	

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were deviating. Only analyses which are accredited are recorded as deviating if set criteria are not met.

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.: 23/6173

SOILS and ASH

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary. Asbestos samples are retained for 6 months.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C. Ash samples are dried at 37°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

STACK EMISSIONS

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation for Dioxins and Furans and Dioxin like PCBs has been performed on XAD-2 Resin, only samples which use this resin will be within our MCERTS scope.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

EMT Job No.: 23/6173

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

Laboratory records are kept for a period of no less than 6 years.

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

Customer Provided Information

Sample ID and depth is information provided by the customer.

ABBREVIATIONS and ACRONYMS USED

NA	Not applicable
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
SS	Calibrated against a single substance
SV	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
W	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above quantitative calibration range. The result should be considered the minimum value and is indicative only. The actual result could be significantly higher.
*	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
OC	Outside Calibration Range

HWOL ACRONYMS AND OPERATORS USED

HS	Headspace Analysis.
EH	Extractable Hydrocarbons - i.e. everything extracted by the solvent.
CU	Clean-up - e.g. by florisil, silica gel.
1D	GC - Single coil gas chromatography.
Total	Aliphatics & Aromatics.
AL	Aliphatics only.
AR	Aromatics only.
2D	GC-GC - Double coil gas chromatography.
#1	EH_Total but with humics mathematically subtracted
#2	EU_Total but with fatty acids mathematically subtracted
_	Operator - underscore to separate acronyms (exception for +).
+	Operator to indicate cumulative e.g. EH+HS_Total or EH_CU+HS_Total
MS	Mass Spectrometry.

EMT Job No: 23/6173

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM38	Soluble Ion analysis using Discrete Analyser. Modified US EPA methods: Chloride 325.2 (1978), Sulphate 375.4 (Rev.2 1993), o-Phosphate 365.2 (Rev.2 1993), TON 353.1 (Rev.2 1993), Nitrite 354.1 (1971), Hex Cr 7196A (1992), NH4+ 350.1 (Rev.2 1993) – All anions comparable to BS ISO 15923-1: 2013l	PM20	Extraction of dried and ground or as received samples with deionised water in a 2:1 water to solid ratio using a reciprocal shaker for all analytes except hexavalent chromium. Extraction of as received sample using 10:1 ratio of 0.2M sodium hydroxide to soil for hexavalent chromium using a reciprocal shaker.	Yes		AD	Yes
TM73	Modified US EPA methods 150.1 (1982) and 9045D Rev. 4 - 2004) and BS1377-3:1990. Determination of pH by Metrohm automated probe analyser.	PM11	Extraction of as received solid samples using one part solid to 2.5 parts deionised water.	Yes		AR	No

CMTL Ireland Limited Unit D, Zone 5, Clonminam Business Park Portlaoise, Co. Laois R32 W30Y

Tel: 057 8664885

Laboratory Test Report Point Load Strength Index

Project : Churchfields Client: **Ground Investigations Ireland**

Catherinestown House, Hazelhatch Road

Newcastle, Co. Dublin

Lab Ref No ST 23432 **Date Received** 06/04/2023

Job Number

06/04/2023 **Date Tested** 07/04/2023 **Date Reported**

12314-10-22

Point Load Strength Index

Originator Mike Sutton

	ou engui in											
Sample No:-	Depth (m)	Description	Туре	Orientation	(ww) M	(ww) Q	P (KN)	De² (mm²)	De (mm)	۶۱	Ą	$I_{s(50)} MN/m^2$
вн06	3.14-3.27	2	D	4	64.0	63.0	6.00	3969	63.0	1.512	1.11	1.68
вн08	3.14-3.27	2	D	4	65.0	63.0	10.00	3969	63.0	2.520	1.11	2.80

Description 1 : Black/Grey Rock

Description 2: Black/Grey Rock with cracks

Description 3:

Test

$I_{s(50)}MN/m^2$ for	Description 1&2	
Min	1.68	
Mean	2.24	
Max	2.80	

Relationship to planes of weakness

 \perp = perpendicular IL = irregular lump A = axial

II = parallel D = diametrical

	$I_{s(50)}MN/m^2$	U.C.S. MN/m ²	
Extremely Weak	<0.05	0.6-1.0	
Very Weak	0.05-0.20	1.0-5.0	
Weak	0.20-0.50	5.0-25.0	
Medium Strong	0.50-2.00	25-50	
Strong	2.00-4.50	50-100	
Very Strong	4.50-9.00	100-250	
Extremely Strong	9.00 +	>250	

The stated result only relates to the item/location tested, this report shall not be reproduced except in full.

Approved Signature James Ward, Operations Manager **CMTL Ireland Limited**

CMTL Ireland Limited
Unit D, Zone 5, Clonminam Business Park
Portlaoise, Co. Laois R32 W30Y

Tel: 057 8664885

Laboratory Test Report Uniaxial Compressive Strength

Project:	Churchfields	Job Number	12314-10-22
Client:	Ground Investigations Ireland	Lab Ref No	ST 23433
	Catherinestown House, Hazelhatch Road	Date Received	06/04/2023
	Newcastle. Co. Dublin	Date Tested	07/04/2023
Originator:	Mike Sutton	Date Reported	12/04/2023

Sample Reference	Moisture Content	Density (Mg/m³)	Uniaxial Compressive Strength (N/mm²)
BH06 2.35-2.5m	2.0	2625	21.3
BH08A 2.35-2.5m	2.6	2640	25.8

Approved Signature

James Ward, Operations Manager

CMTL Ireland Limited

APPENDIX 9 – Groundwater Monitoring

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176

Email: info@gii.ie Web: www.gii.ie

GROUNDWATER MONITORING

Churchfields

BOREHOLE	DATE	TIME	GROUNDWATER (m BGL)	Comments
RC04	22/05/2023	06:55	2.45	Base of hole 2.55m BGL
RC07	22/05/2023	06:45	Dry	Base of hole at 3.40m BGL