APPENDIX A

APPENDIX B

Archaeological Assessment by Archaeology Plan

archaeology plan
HERITAGE SOLUTIONS

Archaeological Assessment at New Street, Malahide

archaeology plan

HERITAGE SOLUTIONS

SITE NAME

Archaeological assessment at New Street, Malahide, Co. Dublin

CLIENT

Fingal County Council

PLANNING

Pre-planning

PROJECT REF

22-15

REPORT AUTHORS

Brandon Walsh
Antoine Giacometti (project manager)

DATE

20/10/2022

Table of Contents

1 Introduction 1
Report summaryStudy area locationProposed developmentFingal development planMethodology
2 Archaeological Background 5
Recorded monuments
Previous excavations
Topographical filesIndustrial heritage
3 History and Cartography 15
Introduction
Cartography
4 Site Visit 31
IntroductionThe DiamondNew StreetRoss Cottages
5 Archaeological Impact Assessment 40
Archaeological potential
Archaeological impact
Mitigation measures
Bibliography 47

Section 1 Introduction

b summary

The results of an archaeological assessment at New Street, Malahide, County Dublin are presented in this report. The assessment outlines an examination of the archaeological, historical and cartographic background of the study area and surrounding environment. It also details the findings of a site inspection.

For the purpose of this assessment the study area has been separated into three distinct zones of archaeological potential. The first zone comprises New Street, a north-south running single carriageway with a row of commercial properties running either side along its length. It ends at a junction with Strand Street in the north and at the Diamond in the south. The second zone includes a panhandle running east and a small
area known as Ross Cottages. The last zone is the Diamond, which forms the junction between New Street, the Mall, Main Street and Church Street. These Study Area zones are distinct from the site boundary, as shown in the image below.

Study area location

The study area is located at the centre of Malahide village, north County Dublin. It is contained between an existing intersection referred to as 'the diamond' on the R106 to the south, and Strand Road to the north. The road is approximately 150 m in length and 14 m in width, with 1.7 m wide footpaths in the west and 1.2 m wide in the east The road takes up an area of $2,224 \mathrm{~m}^{2}$.

The location of the study area in Malahide

The study area in the wider landscape

Methodology

For the purposes of this assessment a number of cartographic, documentary and illustrative resources were employed. As a foundation for the assessment the files in the Records of Monuments and Places (RMP), excavations.ie and the topographical files for the study area were examined. Additionally, a number of features dating to the industrial period are discussed using the records at the National Inventory of Architectural Heritage (NIAH). The Record of Protected Structures (RPS), separate from the NIAH files, was also examined. Features within the study area that form part of one or both of these records are discussed in this report.

Cartography

Online cartographic resources, such as HeritageMaps.ie or the Historic Environment Viewer provide an overlay of the 1837 edition (6 -inch) and the 1913 edition (25-inch) ordnance survey maps. These were consulted as a way to track the development and expansion of Malahide town in the nineteenth and early twentieth centuries. John Rocque's 1760 map, which depicts Malahide, is the earliest map that
was identified as depicting the street layout of the town. The street layout was also analysed in a chart of the Bay of Dublin and Sea Coast by Bernard Scale, dated to 1765 .

A number of cartographic sources were not used in this assessment either due to an overlap of information, a lack of accurate representation of Malahide, or a lack of access to the resource.

This includes:

- Taylor and Skinner's 1778 map of the roads of Ireland
- William Duncan's 1821 map (although the environs map of 1853 is nearly identical)
- Griffith's valuation map (the text is shown in this report but the map was not of a high enough quality)
- Ordnance survey maps outside of the 1843 and 1913 editions, due to access

Illustrative evidence

A number of photographs, postcards and illustrations are used throughout this report. These have been collected primarily through online resources and the ACA document published in 2009. Additionally, photographs
provided by the Malahide Historical Society on malahideheritage.ie and through their Facebook page have been used. These offer a glimpse into the visual history of the town that is missing in cartographic and literary resources. The catalogue at the National Library of Ireland was also used to gain access to historic photography and illustrations.

Documentary evidence

In researching this report a series of commonly used documentary resources were made use of. This includes Samuel Lewis (1837) and John D'Alton's (1838) descriptions of Malahide town as it was during their time. D'Alton also offers some information into the history of Malahide village, although this is primarily done through the perspective of the Talbots. A number of articles detailing the development of Malahide were accessed through JSTOR, including the Dublin Historical Record. The listings of Griffith's Valuation records (1847-1864) were
also used in order to identify the occupants of Ross Cottages. Census records dating to 1901 and 1911 were employed to identify the occupants and owners of shops, private dwellings and public houses.

A number of resources were not usable due to a lack of mentioning Malahide, or the information they provided was not relevant to this report. This includes Ball's (1920) A History of County Dublin Vol. 6, Southern Fingal, which did not mention Malahide in great detail. Thom's directories were also not useful as they did not afford any relevant information.

The Diamond at Malahide, early 20th century

The extent of the site at New Street (red line). Note that the extent of the site is smaller than the Study Area examined in this report

Section 2 Archaeological Background

Recorded monuments

The Record of Monuments and Places (RMP) was founded under the National Monuments Act 1994 Amendment. Features, structures, sites or objects listed within the records are known as Recorded Monuments. A set of maps which accompany the RMP files outline zones of archaeological potential surrounding listed monuments. The RMP files are one of the primary repositories of information on the archaeological record.

The Record of Monuments and Places (RMP) comprise the following elements: (i) Letter or letters indicating county ($\mathrm{DU}=\mathrm{Dublin}$); (ii) A three digit number indicating the relevant ordnance survey six inch sheet number (e.g. 010); (iii) A three to six digit number indicating the
dedicated number of the individual site or monument. The Archive Unit of the National Monuments Section of the Department of Housing holds a file for every site listed on the RMP.

There are no recorded monuments within the study area along New Street or at the Diamond. Three records are of particular importance to the study area as they are located on a parallel street to the west, Old Street.

Ritual site - holy well DU012-023001-

This holy well is located 80 m west of the study area, on the corner of Old Street and Railway Avenue (formerly Fountain Lane, after the well). The well is traditionally called 'Sunday's Well', or St Sylvester's Well. It is adjacent to St Sylvester's Church in the north and is widely accessible to

The RMP files near the study area

Photograph of St Sylvester's Holy Well c. 1948 (from McLoughlin 2009)

RMP

DU012-023001-
DU012-023003-
DU012-023002-
DU012-030----
DU012-031001-

Feature

Ritua site - holy well
Earthwork
Church
Malahide Castle
Malahide Castle church \& grounds

Townland
Malahide
Malahide
Malahide
Malahide Demesne
Malahide Demesne

Distance

90m
100m
100m
950m
950m

The RMP files in the vicinty and wider landscape of the study area
the public. A modern stone plaque placed during refurbishment in 2001 dates the well to AD 430. Old Street, formerly Chapel Street, was originally the centre of Malahide and the well would have been a vital source of water for the village's inhabitants (malahideheritage.ie 2020). The well would have originally been open at the top, with the water being accessed through a bucket and rope (ibid.).

D'Alton (1838, 186) describes the feature as 'a well of clear and wholesome water, dedicated to
the Blessed Virgin, and covered with an arched enclosure, within which her statue was formerly set'. The dedication of the well has resulted in a number of debates as to the source of its eponym. D'Alton (1838) states that it was dedicated to the Blessed Virgin. O'Reilly $(1910,153)$ refers to it as named after Sylvester, a disciple of St Patrick. Alternate theories suggest it is named after either St Sylvester I or St Sylvester II, with the latter being more common among the French, due to his Norman origins (malahideheritage.ie 2020).

St Sylvester's holy well in the present day

Eartbwork DU012-023003-

According to Flanagan $(1984,112)$ a mound once existed on the site of St Sylvester's Church. An extension constructed in 2010 saw a series of test excavations taking place on site (10E0426). A small pit/drainage gully with a silty fill dating to the medieval period was identified. Excavations the following year (11E0326) discovered medieval structural remains, ditches, pits, and eighteenth or nineteenth century masonry walls. Ceramic found during the excavation demonstrated a degree of occupancy in the near vicinity during the thirteenth or fourteenth centuries. An interpretation of inhabitation at the site of the earthwork should take account of the holy well to the north. The well demonstrates that the area was occupied from at least the fifth century AD. No extant remains of the earthwork are present today.

Church DU012-023002-

Flanagan $(1984,112)$ states that an early church stood in the earthwork (DU012-023003) which predates St Sylvester's Church, constructed in 1845. As discussed above, test excavations on
the site of the later church revealed a number of medieval features dating to the thirteenth or fourteenth centuries. The identification of medieval structural remains (11E0326) further suggests that the early church may survive as subsurface foundation remains.

Features in the wider landscape

The historic and cartographic background provided in section 3 establishes a strong dichotomy between the village of Malahide and the construction of Malahide Castle to the southwest. The wealth and prosperity of the Talbots residing in the castle was not present in the poor farming village at Malahide. An examination of the castle, then, is required as it affords the polar opposite link of how the wider landscape developed under the sway and influence of the Talbot family.

Malabide Castle DU012-030----

Malahide Castle is a detached three-storey over basement medieval mansion dating to c. 1450 .

A Malahide Castle print - published by Newman \& Co. (1838-1880)

The castle has gone through a number of renovations throughout its history (in approximately 1650, 1770, 1825, 1975, and 1990) (NIAH 2005). It is built on a rise that oversees the surrounding landscape. It was originally constructed from wood, later to be replaced by a stone fortress (malahidecastleandgardens.ie 2022). The castle on its exterior is of Georgian Gothic style. The ground floor of the late medieval core of the castle is entered through a Gothic doorway, with entrance to the upper floors being a spiral staircase. Ornamentation in the castle includes corbel heads of Edward IV, sixteenth century carved panelling, and a Fleming carving over the fireplace of the Assumption of the Virgin, among others. The history of the castle and Malahide in general will be provided in section 3 .

Malahide Castle church DU012-031001-

A church and surrounding graveyard/grounds
are located 30 m east of Malahide Castle. D'Alton (1838) describes the church as 'the venerable remains of [an] ancient chapel, the entrance to which is guarded by two magnificent sycamores'. The church contains a chancel and nave, with a sacristy on the southeastern corner. The side walls of the nave have stepped battlements and the entire structure is formed of coursed, well mortared limestone masonry. The church contains a number of RMP files including two architectural fragments (DU012-031004 \& DU012-031005) and two Sheela-na-gigs (DU012-031002 \& DU012-031003). The church is also surrounded by a graveyard on all sides (DU012-031006). The graveyard is primarily occupied by burials dating to the eighteenth, nineteenth and mid-twentieth centuries. The interior of the church has been used for internment and contains an altar tomb dedicated to Maud Plunkett (c. 1494).

Previous excavations

No listed excavations have taken place on New Street. A number of excavations have been conducted in the region surrounding the study area. The primary source of information on licensed excavations in Ireland in the last decades are the volumes of the Excavations Bulletins series and their online version, the Excavations database (www.excavations.ie). While no excavations have taken place directly within the study area, a number of works have been carried out in the near vicinity. For the purposes of this report a radius of 500 m will be used for examining prior excavations.

Railway Avenue - 01E0421

A series of four test-trenches, covering a total of $45 \mathrm{~m}^{2}$ were excavated in May 2001. The excavation revealed no features dating prior to the post-medieval period. Substantial stone walls were uncovered in all test trenches and were assumed to have been part of one single structure. A later examination of the ordnance survey maps demonstrated that the walls likely belonged to an earlier structure of St Sylvester's Church nearby.

St Sylvester's Church - 10E0426

Test excavations were carried out in the area for a proposed parish centre to the west of the

Previous archaeological excavations that presented archaeological material within 120 m of the study area

Licence	Address	Findings	Distance
01E0421	Railway Avenue	Substantial stone walls	70 m
10E0426	St Sylvester's Church	Foundation walls	110 m
$11 E 0326$	St Sylvester's Church	Foundation walls \& medieval occupation layers	120 m
E4381	Multiple	Stone culverts, post medieval archaeology	N/A

Previous excavations near the study area

church. A separate trench was excavated at the prayer chapel to the east of the church as well. The excavations were similar to those conducted in 2001 as they uncovered a series of foundation walls for an earlier church structure. It was noted in the excavation that an earlier deposit of medieval archaeology may exist.

St Sylvester's Church-11E0326

A second excavation at the site of St Sylvester's Church the following year. The earliest activity identified on site was medieval occupation layers characterised by structural remains and subsoil cut features. The walls were constructed from undressed limestone with poor facing. The fill surrounding the wall had inclusions of seashell, animal bone and charcoal flecking. A stone drain was also excavated to the south. A later wall was also identified during excavation, which was constructed sometime between 1837 and 1867 (depicted on two separate editions of the
ordnance survey maps). A series of finds demonstrate that the site was multi-phased, these include: a flint scraper, a retouched flake, flint debitage, a medieval pottery assemblage, post-medieval pottery, and a number of metal artefacts.

Pipeline - E4381

The construction of a pipeline measuring 1.1 km in length commenced in October 2011. The pipe ran from the Dublin Road through Malahide Castle and terminated at Black Road. The excavations uncovered a number of eighteenth century landscaping features, stone culverts, limestone walls, and a metalled surface. A number of post-medieval finds were recovered including animal bone, pottery sherds, a small milled copper coin, and a clay pipe bowl. The excavator deemed that no features dating prior to the eighteenth century were identified during the excavation.

St Sylvester's Church, taken from Railway Avenue

Topographical files

In compiling this report the files of the National Museum of Ireland (NMI) were consulted. These contain information on the archaeological artefacts in the collections of the NMI and the discovery locations of those artefacts. No topographical files are listed within the study area. Thus, it is necessary to examine the region surrounding the study area in order to establish a concise historical narrative. Three files are noted within 500 m of the study area.

Bronze lid - 1984:146

A bronze lid was uncovered on the beach to the east of Malahide, across from the Grand Hotel. The file lists the lid as possibly belonging to a spirit measure. The lid is designed in a domed manner, with its centre topped by a raised, stepped pattern. The underside has a raised lip
or rim. The figure 6 or 9 appears on the upper surface of the lid. It is noted as belonging to either the seventeenth or eighteenth century.

Flint scraper - 1966:42

A flint scraper was uncovered in Broomfield, Malahide, southeast of the study area. It was found on the surface and presented to the museum in a collection of other objects. The scraper is honey-brown and made from a thin flake. One side of the flint is noted as sharp and finely worked. Its dimensions are 2.8 cm in length, 1.9 m in width and 0.4 cm in depth. It was presented with a slate pencil, broken tortoise shell from an ornamental box, and a sperm whale tooth.

Flint assemblage - 1964:29-30
A series of flint objects were presented to the museum for analysis. It should be noted that the

Topographical files within 1.1 km of the study area

ID	Address
1984:146	Grand Hotel, Malahide
1966:42	Broomfield
1964:29-30	Multiple
1968:151	Paddy's Hill

The topographical files within 1.1 km of the study area

Topographical File

Bronze lid (post-medieval)
Flint scraper
Flint assemblage
Stone assemblage

Distance

470m
1 km
1.09 km
1.1km
assemblage represents flint objects from a number of different locations. Among these were twenty-eight waste flint flakes from Feltrim Hill, five waste core-like flints from Kilcrea, and twelve waste flint and three flint flakes with obvious retouching from Paddy's Hill (Keeling \& Kelley 1994, 3). The museum determined the objects to be of little archaeological value.

Stone assemblage - 1968:151
A number of stone artefacts were presented to
the museum, who subsequently purchased them for the sum of $£ 30$. These included two polished stone axehead fragments, waste flint material, two flint flakes, five water rolled flint flakes, six chert flakes, a flint scraper, an animal tooth, bone fragments, a bronze object, and an iron object. The finds are primarily prehistoric in nature, with the metal objects discovered to be modern. They were located adjacent to 1964:29-30, at Paddy's Hill.

The industrial heritage sites (NIAH) within the vicinity of the study area

Ref	Address	Feature	Distance
11344035	New Street	Lamp standard	0 m
11344036	The Mall, Malahide	Post box (ER VII)	50 m
11344008	Main Street, Malahide	Railway station	140 m
11344055	Main Street, Malahide	Station master's house	170 m
11344009	Main Street, Malahide	Signal box	180 m
11344015	Strand Street, Malahide	Railway bridge	180 m

The industrial heritage sites (NIAH) within 180 m of the study area

Industrial heritage

The industrial period in Ireland is generally accepted to date between 1750 and 1930 (Rynne 2006). The period came with an entirely new economic and social experience. Ireland, however, failed to reach the degree of industrialisation seen in the United Kingdom or the rest of Europe (Ulster Historical Foundation 2021). Ireland as a whole remained an agricultural economy catering to its own growing population and the ever-increasing demands of the British market and Empire. Consequently, the majority of industrial activity was centred in cities and
large port towns.
No features in the Dublin City Industrial Heritage Records are located within Malahide or the study area. For the purpose of this assessment the ordnance survey maps have been examined with a short list of industrial heritage near New Street dating to the industrial period in Ireland. The database for the National Inventory of Architectural Heritage has been employed for reference numbers.

Lamp standard - 11344035
A freestanding gas lamp standard constructed

from cast-iron in 1900. It comprises a chamfered square pedestal with a foliated shaft (NIAH 2005). The top is intricately decorated and fitted with a double lamp, facing opposite sides. This has been removed and is no longer present.

Post box-11344036

This is a freestanding cast-iron postbox dating to 1905 . It is decorated with the monogram 'ER VII'.

Malahide Railway Station - 11344008

The Malahide Railway Station was designed by George Papworth and was constructed in 1851 (NIAH 2005). It is a detached nine-bay single storey building constructed from yellow bricks. The entrance to the station is a Tudor style projecting porch at the centre of the structure on its street facing side. It is still in use as a railway station.

Station master's house - 11344005

To the east of the railway station stands a detached single storey building constructed from red brick. It was built in 1880 and has retained all of its original features in the present day. The quoins and dressings of the house are in yellow brick. It is presently in use as a domestic structure.

Signal box-11344009

A detached single storey timber signal box constructed in 1855. It is located north of the railway station along the tracks, west of New Street.

Railway bridge - 11344015

To the north of the railway station and signal box is a single-arch ashlar limestone bridge built for the railway line in 1844. Still in use in the present day.

Railway station bridge on Strand Street

Section 3 History and Cartography

Introduction

In 1609 Fynes Moryson, in his 'Description of Ireland', described Fingal as "a little territory, as it were the garner of the kingdom, which is environed by the sea and great rivers, and this situation hath defended it from the incursions of rebels in former civil wars'". The name 'Fingal' in the ninth century referred not to the land north of Dublin but rather a people, the fair strangers later known as the Vikings. By the eleventh century it was synonymous with a place, stretching from the River Delvin toward Dublin City. The names of Fingal, Fine Gall, Fingall, Crich Gall or Fyngall are named in the Irish annals, as well as Welsh, Scandinavian and Anglo-Norman sources (Baker 2010, 1).

Malahide is located in the northeast of Fingal, situated at the mouth of the shallow Broadmeadow estuary. It is 4 km east of Swords and 13 km north of Dublin city. The name Malahide, as demonstrated by the Placenames Database of Ireland, has undergone a number of changes since it first appeared (Malachida) in 1181. It possibly derives from the Irish Baile Átha Thíd, referring to 'the town of the ford of Thíd'. The modern Irish name Mullach Íde means 'the hilltop of Ide', or Hyde's Brow. This likely refers to the Norman family that occupied the Donabate Area (McLoughlin 2009, 6).

Lewis (1837) describes Malahide as having 'a pleasing and sequestered character, [containing]

many handsome cottages, chiefly occupied by visitors during the bathing season and in some instances by permanent residents. D'Alton (1838) describes Malahide as 'a well-built and pleasantly situated village on the brow of the sea'.

Prehistory

A considerable amount of flint artefacts were collected between 1964 and 1981 by amateur archaeologist Noel Flanagan. A large portion of this material was uncovered in the townland of Robswalls, east of Malahide. The date range for these artefacts ranges between the Mesolithic and the Early Bronze Age. These finds form part of a range of collections uncovered throughout the coast of north County Dublin. Flint flakes dating from the Mesolithic and Neolithic periods have been found at Sutton (Stout \& Stout 1992) and Paddy's Hill, overlooking the Malahide Estuary (1964:29-30). Other prehistoric artefacts in the wider landscape in-
clude a stone axe in Saintdoolaghs (1940:49), a flint arrowhead in Feltrim (1947:159), three waste flints in Ballymadrough (1978:70-72), and flint flakes in Lanestown (1978:73-74).

Excavations by Keeling and Keeley (1994) revealed a substantial quantity of lithic material (almost 3000) at Paddy's Hill in Robswalls (DU012-037). These vary in date between the Neolithic and Early Bronze Age.

Malahide Hill, southeast of the town, is a focal point of prehistoric activity. It is a highly-visible setting for a number of monuments which run along the crest of the ridge (Giacometti 2017, 28). Included within these are a burnt mound (DU012-065), a barrow (14E161), a mound (DU012-032) and two medieval middens (DU012-062 \& DU012-012). The ridge is also the location of two lithic scatters (DU012-063 \& 00E0037).

Excavations at Feltrim Hill by Hartnett et al. (1964)

Lithics uncovered during excavations at Feltrim (Hartnett et al. 1964)

Excavations at Feltrim Hill (DU012-02502) exhibited evidence of Neolithic activity through pottery sherds and worked lithics, however no evidence of occupation was uncovered (Hartnett \& Eogan 1964). These included eighteen neolithic stone axes (Baker 2010, 10). To the northeast, the coast has a strong view of Lambay Island. This was shown through excavations by Cooney $(2000,196)$ to have once been a manufactory of Neolithic axes (93E0144). The island is also home to five Neolithic cairns. A burial in the west of the island contained an extensive collection of Neolithic artefacts, including flint, stone axes, an adze, and decorated pottery (DU009-001012).

Excavations by Giacometti (2017) at Seamount, Malahide examined a prehistoric penannular enclosure and barrow, and an early medieval resource processing area. Through excavation an identification was made for the historic continuity of landscape. The site ranged in date from the Late Bronze Age to the Early Medieval Period. A Late Bronze Age burial monument (barrow) at the crest of the hill demonstrated evidence for maintenance during the Iron Age. Toward the base of the hill a Late Bronze Age enclosure was identified. Between these monuments a number of features forming an early
medieval farmstead was uncovered.
The prehistoric monuments situated along Malahide Hill formed visible markers within the landscape, which could have defined territory and ownership (ibid. 27). Even after their origins had been forgotten, they continued to define space and boundaries. For example, the early medieval farmstead identified during excavation was positioned with reference to the two prehistoric monuments. The medieval church parish boundary too followed in a similar manner.

Settlement in Fingal during the Bronze Age tended to be focused at coastal areas. A number of sites dating to this period The remains of a round house have been excavated at Balbriggan (02E0298). Lusk appears to have been occupied during the transition from the Neolithic to the Bronze Age. Excavations revealed pits, hearths, and Beaker pottery, in conjunction with a possible structure (02E1719).

A circular ring-ditch was excavated by Antoine Giacometti at Mountgorry, Swords in 2004 (04E1066). The feature had an entrance to the southeast, with a single large pit filled with burnt bone and charcoal at its centre. Bronze

Dublin environs map of Malahide, 1853

Age pottery fragments were recovered from the ditch fill and central pit. Further evidence of settlement during the Bronze Age was identified during a geophysical survey at Skerries. A number of features such as fulactha fiadh, huts, ring-ditches, and at least three round houses were noted (Baker 2010, 26).

Closer to Malahide, a ring-ditch was excavated in the townland of Drinan (DU012-093). It consisted of a circular ditch with a single large pit filled with charcoal and burnt bone. The fill contained sherds of Bronze Age pottery. An unexcavated ring-ditch to the north in the townland of Seatown East may also be evidence of Bronze Age settlement in the area. Such ringditches are evident in the wider landscape of Fingal as well.

Early medieval period

The early medieval period dates between the fifth and twelfth centuries AD in Ireland. It was a period of heavy societal fragmentation, based primarily on the fine, a kin-group based on a common great-grandfather. A network of dynasties developed, resulting in constant warfare over land supremacy (Baker 2010, 31). The basis of social interaction surrounded the transacting of cattle, land and female slaves (ibid.). The plains of north County Dublin formed part of the kingdom of Brega during this period. Initially the land was occupied by the Laigin, although the extent of their hegemony was limited to south of the River Liffey during the fifth century AD. The land was controlled by Sil nÁedo Sláine, a dynasty of Uí Néill (Byrne 1973). A number of features dating to the early medieval period are located in the region surrounding New Street.

According to Tírechán, a seventh century Irish bishop, St Patrick is believed to have landed on Inishpatrick, the 'Island of Patrick', in 432 AD. Patrick is stated to have arrived by sea to "the plains of Brega... with the true light of miraculous doctrine, lighting the thick clouds of ignorance" (cited in Swift 2004, 61). The following centuries would see the development of a number of religious centres throughout Fingal, including Swords and Lusk. Many of these early churches were constructed from wood and either went out of use or were replaced by more
substantial stone structures in the following centuries. It is unclear as to whether the church in Malahide was part of this original tradition, however the evidence for stone foundations dating to the medieval period suggests that the original church was of some antiquity.

The holy well (DU012-023001) at St Sylvester's Church is the closest feature dating to the early medieval period in the near vicinity of the study area. Lewis (1837) states that 'in the [town] centre is a well of excellent water, arched over and dedicated to the Blessed Virgin'. To the southeast in the townland of Robswalls in a kink in a field boundary is a natural spring called St Patricks' Well (DU012-038). Further south in Portmarnock in the townland of Burrow is St Marnock's Well (DU015-007002). The Pattern
day at the well was August 18th (Ó Danachair 1958, 78). The RMP file states that during its peak the well comprised a large circular pool with sixteen stone steps leading down to it. A hoard of medieval coins were found at the well. The well was destroyed in 1854, along with its associated Ogham stone (DU015-007003). An additional holy well (DU012-039) known as Tobermaclaney was located west of Carrick Martello tower. The 1830 ordnance survey map recorded that the water ran down the hill to form two small pools beside the tower.

The closest evidence for settlement during the early medieval period in the area surrounding Malahide is a cashel west of Feltrim. The cashel comprises an oval area enclosed by a drystone wall (measuring 35 m east/west, 25 m north/ south). The entrance is to the east, and was originally protected by a timber gate (Eogan \& Hartnett 1964, 21). Excavations in the 1940s identified extensive activity for domestic activity on the site (ibid.).

Further settlement include ringforts and enclosures at Broomfield, Grange, Springhill, Saintdoolaghs, and Kinsaley (DU012-033, DU015-003001 \& -003002, DU015-126, DU015-123, DU015-010). In addition, a multiperiod site in the townland of Drinan exhibited a number of enclosures dating to the early medieval and medieval periods. The excavation revealed a truncated ringfort, and it was believed
to have been occupied in the eleventh or twelfth centuries (Halliday 2005).

The Vikings wintered for the first time in Dublin in 841-2 AD. Ball (1920) states that the name Fingal, or Fine Gall, was employed to denote the district that the Vikings left for their excursions. The harbour of Malahide was said to be integral to Viking raids and the Danes had settled there by 892 AD (Bradley et al. 2009, 51). After Viking expansion northwards in the mid 11th century, Hammond McTurkill, the last Viking king of Dublin, settled at Malahide in 1171 (Lewis 1837, 337). Hammond's name lasted until the 19th century when the townland of Hamonstown (or Hamonswood) northwest of Malahide Demesne was renamed to Yellow Walls (oldyellowwalls.org 2022, also see D'Alton 1838 who names Hamonstown). Bradley (1992) suggests that this area of Dublin should be considered as 'the rurally settled area of the Dublin Scandinavians'.

Medieval period onward

The Anglo-Normans that arrived in 1169 knew

The thatched cottages of Old Street (FCC 2009, 8)
of the richness of the soil throughout Fingal (Baker 2010, 47). The new settlers employed an aggressive system of intensive agriculture throughout the landscape, likely owing to the destruction of prehistoric monuments. The Hi-berno-Norse occupants of Fingal were initially opposed to the Anglo-Normans, however their resistance was ultimately unsuccessful. The kingdom of Leinster was granted to Strongbow in 1171 by Henry II. Lordships were afforded to

The medieval wall uncovered during excavations beneath St Sylvester's Church (11E0326; McQuade 2012)

Malahide in 1844, note the new railway line spanning the estuary
nobles who accompanied Strongbow to Ireland shortly thereafter. The count of Dublin was retained by the English Crown, which was at this point divided into five baronies. These were granted to Hugh de Lacy, who confirmed it to his son Walter de Lacy in 1208 (Veach 2010, 179). This period was followed by an early period of colonisation in which land grants were given to the Talbots, Barnewells, and St Lawrences (O'Donnell 2008, 50).

The medieval period onward in Malahide is defined by the arrival of the Talbots, who constructed a motte and bailey approximately 1 km southwest of the small village in c. 1250 AD (Duffy \& Simpson 2009, 210). The castle was originally constructed from wood (mentioned in section 2) and was passed down through the male heirs of Sir Richard Talbot for the next eight centuries. A diary entry from 1780 describes the castle as a "large and spacious castle in the highest repair" (Little 1948, 2). The castle and land were sequestered in the 1650s by Cromwellian forces, however the lands were later retrieved by the Talbots in the following decades. The castle and grounds were placed on sale in 1973 after the death of Lord Talbot,
which were purchased by Dublin City Council.
The town of Malahide's population rose from 100 to 200 in the seventeenth century. During this period, the court and its offices were erected with stone walls and slate roofs, in stark contrast to the thatched mud walled homes of the villagers (McLoughlin 2009, 7). The town was centred around St Sylvester's Well, its water source. An account by John Dunton in 1699 stated that Malahide "contained 30 ordinary huts in all, and not one without several little children who are sprawling about the fireplace (for there was but a small appearance of a fire on it) like so many maggots on a dunghill in a summer's day". The town in this period was poor, and was overseen and heavily influenced by the Talbot family in Malahide castle.

The Talbots played an influential role in the redevelopment of the town in the eighteenth century. As a trustee of the turnpike at Malahide, Richard Talbot was integral in the changes of the street layout being undertaken at the time (Greene 2012, 75). Main Street was extended westward into a shape more familiar today. In addition, the centre of the village was moved

The dispensary on New Street
eastward to New Street, with the Diamond being a focal point.

New Street and the Diamond were built up with houses far grander than their thatched cottage counterparts in Old Street. These developments continued into the nineteenth century, as Malahide slowly became industralised. In 1837 Lewis wrote that 'the trade of the town, never very extensive, received a great check from the priveleges granted to the port of Dublin in the sixteenth century... [a] cotton manufacture was introduced here on an extensive scale... though the Irish parliament granted $£ 2000$ for the completion of the requisite machinery, it was ultimately abandoned'. Lewis further states that the primary export at Malahide was flour and meal, with coal being imported from Whitehaven and Scotland. D'Alton $(1838,191)$ confirms that the cotton manufactory 'metamorphosed into one for silk, which gives daily employment to but eight individuals'.

A number of structures relate to the operation of the railway line from its initial construction
in 1844 onwards. These include the railway station building, station master's house, signal box and the railway bridge. A single industrial feature is located within the study area, a lamp standard.

In the nineteenth century the town saw the construction of the coal works on the northern coast, adjacent to the present day junction of New Street and Strand Street (visible on the first edition OS map). At a later point (prior to the 1913 OS map) the coal works was repurposed as an oil works. Developments also took place southward along New Street. Plates and photographs from the period depict a number of upper-class homes New Street (page 20).

Lewis (1837) and D'Alton $(1838,191)$ both suggest that industry at Malahide was never grand in scale. D'Alton states that the fishing industry by the time of his writing had declined considerably, with 'but three wherries here now fit to put to sea'. In addition, no pier or quay was constructed north of the village. Fishing vessels were easily beached on the shoreline, with many

Malahide Dispensary.

A Dispensary for Sick Poor, will open in Malahide, on the first day of May, 1817.

THIS DISPENSARY will be supported by public Subscription; and each Sub. scriber shall have a power of recommending an unlimited number of patients.

Printed Tickets of recommendation will be furnished to each Subscriber; and no application will be attended to, unless the person making the same shall produce, upon his first coming to the Dispensary, one of those printed Tickets, signed by a Subscriber.

THE immediate management of the Dispensary will be vested in a Committee of Seven, who will meet at the Dispensary on the First Monday of every Month, to make such Rules and Regulations as may, from time to time, appear necessary.

The Committee for the present year :

An Annual Meeting of the Subscribers will be held at the Dispensary, on the First day of May, in each succeeding year, to inspect the Books of the Establishment, appoint a Committee, \&c. \&c.

A Blank Book will be constantly upon a table in the Dispensary, to which every Subscriber shall have access, during Dispensary hours, for the purpose of making suck observations therein as he, or she, may think proper to submit to the consideration of the Committee.

Froms the First day of May, to the First day of October, in eách year, the Dispensary *ill open exery Morning, (Sunday excepted,) at Eight o'Clock, and close at Five in the Afternoon'; -and from the First day of October, to the First day of May, it will open at Nine o'Clock in the Morning, and close at Three.

Prersons applying for Medical Aid must come to the Dispensary within these hours ; otherwise they will not be admitted.

In cases however of Accident or Sudden Illness, the Ticket of a Subscriber will be attended to upon any Day, or at any time of the Day or Night; but it is expected that no Subscriber will send to the Dispensary at extra hours, except in cases of real danger ; or such at least as appear to admit of no delay.

Patients, who by reason of severe sickness, are unable to attend at the Dispensary, shall be visited at their own homes, provided the distance does not exceed three miles.

In Labour Cases attended with danger or extraordinary difficulty, the Dispensary Physician will visit the Patient at a distance not exceeding three miles; but it is to be particularly understood, that if the case should not require or admit of immediate assistance, he shall not be expected to continue in attendance; in all such cases the expediency of remaining with the Patient must rest with the Physician, and be determined by him.
O_{N} Wednessdays and Saturdays, the Children of the Poor will be Vaccinated at the Dispensary.

An Apothecary will reside at the Dispensary, and the Physician will attend every Morning as soon as it opens, and remain for two hours.
owners allowing their boats to 'ride afloat in the channel in perfect safety' (ibid.).

Possibly the most prominent feature of the west side of New Street is the dispensary. It is a two storey red-brick structure with an arched entrance way, and horizontal blue-brick string coursing. The building heavily contrasts in style with all other structures on the street. The foundation of the dispensary was possibly encouraged by a 1765 Act which gave Grand Juries the power to match local voluntary subscriptions in order to establish local dispensaries. A local committee was established in 1817, which sought the construction of a dispensary 'for the more immediate relief of the poor in the vicinity to which all persons, unable to pay for advice and medicines, residing within four miles of the dispensary house, and bringing proper recommendations from subscriber, will be admissible' (cited in a document detailing the official opening of the dispensary, Macartney \& Crawford, 1817).

Subscribers to the programme paid one guinea per year, which afforded them the privilege of recommending patients for medical treatments to the dispensary. The subscribers were described as a 'very respectable list of nobility and gentry who have honoured this institution with
their patronage and support' (Greene 2012).

The dispensary opened on the 1st of May 1817, It was housed originally on the eastern side of New Street, as depicted on the first edition ordnance survey map. The 1908 ordnance survey map depicts the dispensary as being located in the current location of Donnybrook Fair. The red-brick structure that currently standings in New Street housed the dispensary from the later 19th century onward (McLoughlin 2009).

The 1901 census lists 71 individuals living on New Street. An examination of the census data from the national archives provides the following statistics:

- the average age of individual was 24.9
- the male to female ratio was $52 / 48 \%$
- the data exhibited 23 unique surnames, with 12 heads of families listed
- 99% of adults were literate
- 12 houses are listed n New Street in 1901

The professions of those inhabiting New Street includes domestic servants, clerks, coal merchants, shop workers, victuallers, painters, post office workers, labourers and teachers. Furthermore, only one person was listed as being ill.

A chart of the Bay of Dublin and Sea Coast, Bernard Scale (1765), from the Bibliotheque National de France

The study area outline over the 6-inch ordnance survey map

The study area outline over the 25 -inch ordnance survey map

There were some notable changes in the 1911 census. Notably, the population had increased to 84 since a decade prior.

- the average age raised to 27.6
- the male to female ratio raised to $54 / 46 \%$
- the data exhibited 26 unique surnames, with 16 heads of families
- 99% of adults were literate
- 18 houses were listed on New Street in 1911

Additional professions mentioned in the 1911 census include fishmongers, hospital workers, general practitioner, telegraph messengers, car drivers, carpenters and a dairy owner.

These figures are notable when compared with the census information from Old Street for the same years. 96 individuals occupied Old Street in 1901 and 100 in 1911.

- the average age of individual was 28.8 in 1901 and 31.56 in 1911, nearly four years above New Street in both censuses
- in 1901 and 1911 the percentage of male inhabitants were 41.6% and 47% respectively
- the number of unique surnames were 34 in 1901 and 1911, with 26 heads of family in 1901 and 28 in 1911
- 85.8% of adults were literate in 1901 and 97% in 1911

The professions represented on Old Street similarly match those on New Street. With a slight tendency toward labourer or clerk jobs on Old Street.

The data suggests that literacy was generally higher in New Street. Additionally, the number of male occupants was lower on Old Street. Interestingly, the average age was higher on Old Street. It is unclear as to whether this is due to the difference in the male/female ratio exhibited in both streets. The surname to head of family ratio is also noteworthy, as Old Street families tended to be smaller than those at New Street.

Taylor's 1816 map of the environs of Dublin, which is potentially the first map depicting the layout of the Diamond

Cartography

The landscape of Malahide has changed extensively since the first appearance of human beings there in prehistory. The greatest of these changes, however, took place from the nineteenth century onwards with the development of the small fishing village of Malahide into a seaside resort town. The coast has been altered through the reclamation of land at the northern shore of the town. This occurred originally with the construction of oil and coal works during the industrial period, and the Marina in later years. In addition, the street layout of Malahide town has been changed in the past three centuries, with developments at New Street, Strand Street, The Mall and Church Street.

For the purpose of this assessment Dublin's historic cartography was analysed through www.dublinhistoricmaps.ie. This resource offers a wide variety of georeferenced historic maps of Dublin and its surrounding environs. The earliest map that affords a detailed view of Malahide was published by John Rocque in 1760. The georeferenced image depicts The Diamond
as being the junction of Church Road, Railway Avenue and Old Street. Rocque offers a glimpse into Malahide prior to the construction of New Street. The location of the site outline over structures that would later be removed for the creation of New Street is notable. Rocque also lists a chapel as being located in the area of New Street. It is ambiguous as to whether this refers to the presently standing church in the west or if this may have been a separate structure altogether. It is possible that D'Alton is describing this chapel when he states that it 'is very old and inadequate for its congregation'. Excavations outlined in this report have demonstrated the existence of a stone structure predating St Sylvester's Church (10E0426 \& 11E0326).

The first edition OS map, published prior to the construction of St Sylvester's Church in 1845, lists the structure as a Roman Catholic chapel. This may refer to the chapel listed in Rocque. Regardless, the identification of possible subsurface structures predating New Street are archaeological receptors that must be heeded in the development proposal.

The study area outline over the ortho 1995 map

The study area outline over the ortho 2000 map

The study area outline over the ortho 1995 map

The study area outline over the most recent aerial imagery

The focal point of Malahide village shifted eastward in the nineteenth century. Prior to this, much of the town's social and commercial activity took place on the junction of Old Street and Railway Avenue; the location of the church, well, and cottages. The street layout can be seen in a chart of the Bay of Dublin and Sea Coast by Bernard Scale, dated to 1765 . This map, however, affords less detail of specific structures in the town than Rocque's map. The general layout of the town is similar in Scale's map, with Old Street as a focal point and the town stretching westwards.

The Diamond in the nineteenth century became the home of new grander developments, overshadowing the humble homes of those residing on Old Street. The Talbots of Malahide Castle were influential in the changes that took place to the town's road system during this period (Greene 2012, 75). The primary junction within the town moved to the Diamond's present location. New street was constructed c.1800, which in turn saw the erection of a number of upperclass homes.

By this point the population of the village had expanded to over a thousand residents. Ma-
lahide town had become an established trading port, used for exporting flour and corn meal, and importing coal (McLoughlin 2008, 10). In the late eighteenth and early nineteenth centuries Malahide underwent the process of industralisation. The exportation of cornmeal and flour through milling was paired with the appearance of a small silk and cotton mill. The town is also shown as having a ribband factory in the first edition OS map (1836). The coal yard (later an oil works) is of note as it borders the study area on the northern side. This links the study area directly with the development of industrial works throughout the town.

The construction of the railway line in 1844 connected Malahide with the city of Dublin (Railscot 2007). Easy access to the harbour made Malahide a popular destination as a seaside resort. Tourists flocked to the sea-baths, which resembled Roman Baths on the eastern side of the Grand Hotel (thegrand.ie 2022). The prominence of the town is demonstrated through the 25 -inch OS map, which depicts a series of terrace's, estates and homes of upper class families.

The 1937 edition ordnance survey map, 6-inch

Section 4 Site Visit

Introduction

The study area was inspected on 03/06/2022 as part of this assessment. It was the primary objective of the inspection to analyse the grounds of the study area and identify any extant archaeological remains outlined in the previous sections. In addition, the wider area surrounding New Street was examined in order to establish a detailed understanding of Malahide's development from a small fishing village to a prominent tourist destination. For the purpose of this assessment, the study area is separated into three components: the Diamond, New Street and Ross Cottages.

The Diamond

The distinctive appearance of the Diamond is created by four structures that create its outline. Historic photography depicts these as twostorey, five bay dwellings with gable chimneys and front railings (McLoughlin 2009, 27). The front railings created a garden space which would have extended toward the modern road surface. Only two of these structures survive in the northwest and northeast of the junction. The southeastern and southwestern sides are modern structures that mimic the character of the surviving buildings.

The northeastern house, now in use as a bank

The northwestern house, now in use as a pharmacy and jeweller

The town is notable for its common use of arched entrance ways, visible in old photographs of these houses. The two southern homes were later demolished and replaced with twentieth century structures, which resemble the original two in the north. Old photography can luckily offer a picture of the southern homes prior to their removal (page 30). In addition, the junction was notable for its fountain, which is present in maps between Rocque and the first edition OS. The date of the fountain's removal is not firmly established but it appears to have been demolished at some point in the latter half of the nineeenth century. The Diamond does not appear to have held any commercial use (i.e. acted as a market square), like the similar developments in Slane Village (Hurley \& McLoughlin 2008, 12). Instead, it was employed as the entranceway to the new central hub of Malahide: New Street.

New Street

A large portion of Malahide Village's historic extant structures are located in the southern half of New Street, near the Diamond. This is mostly due to the location of the original shoreline and mudflats further inland near the northern half of the street. A consideration of all features of archaeological, architectural and historical importance is required to establish any archaeological receptors within the study area.

Southern New Street

Adjacent to the dispensary on the southern side is an alleyway, which is matched on the opposite side of the street. These possibly form, in conjunction with two further north, side streets for coach houses along New Street. These are presently occupied by Michael's Garden Centre and Fish Shack.

New Street, looking northwards

Large residential properties dominate this side of New Street. A number of these have their bottom floors presently in use as shop fronts. Their similarities include continuous slate roofing, rendered walls and arched entrance ways. A number have retained their historic doors, fan lights and door surrounds. A number of historic shop fronts have survived this side of New Street. Of particular note are two bow-shaped store fronts, approximately halfway along the street on the western side.

An outbuilding is located behind 13 New Street, where the stall Griolladh is located. The structure is of rubble stone with a gable front. It is similar in style to a separate structure on Townyard Street (McLoughlin 2009, 29). The structure dates to the nineteenth century, with later alterations made to the door and window that front the property (ibid.). An east/west running wall in an adjacent property to the north
demonstrates a certain degree of antiquity. It exhibits a number of alterations in red brick, with a different fabric of stone across its surface. This is possibly one of the original property boundaries depicted on both editions of the ordnance survey maps.

Northern New Street

The northern portion of New Street is primarily occupied by twentieth century structures, with the northwestern side being made up of a 1950's shopping centre. A single home on the northeastern corner at the junction with Strand Street dates to the nineteenth century and would have stood in close proximity to the mud-flats that existed there prior to the reclamation of land at the marina. A plaque near the entrance of the property names 'Malahide Hardware Ltd, Regd Office', a company that was set up there in 1969 (solocheck.ie 2021).

A 19th century structure with historic storefront and bowed window

The northern of two historic storefronts with bowed windows

19th century house on the eastern side of New Street

19th century buildings near the centre of New Street, eastern side

The 19th century outbuilding behind 13 New Street

A wall in a property adjacent to the 19th century outbuilding

A 19th century home at the northeast corner of New Street

The Old Coach House at Ross Cottages

The stone structures west of the Old Couch House at Ross Cottages

Ross Terrace depicted on the 25 -inch OS map, part of a number of 'terraces' constructed during this period

	SEW-sticet.						Malahide ; lessor should be in fee.
$\stackrel{1}{2}$	Cooceapied,						
3	Wichuel Gaffiey.	-	-	210		$20 \overline{0}$	Occupier should be Terence Mr-Donauh.
6	Sir Thomas Ross,	-		2s 0	-	20	Lessor should be Lord Talbut d. Malahide.
7	Michael M-Shen		-	2500	-		House now vacant; lessor should bee Sir Thomes Ross.
i	Nicholas Toran.	-	-	2100	-	-	House now racant.
2	Mrs, Bridget Wogan, .	-	-	$\begin{array}{lll}3 & 3 & 0 \\ 14 & 0 & 0\end{array}$	-	210	House now vaca
3	Bridget Gaffney, .	-	-	$\begin{array}{rrr}14 & 0 & 0 \\ 27 & 10 & 0\end{array}$	-	$2 0 \longdiv { 0 }$	Occupier shonld be Miss Bridget Toogam.

An excerpt from Griffiths Valuation, showing the occupants of Ross Cottages

Ross Cottages

The area known as 'Ross Cottages' forms a panhandle running easterwards, perpendicular to New Street. The area was likely named after Sir Thomas Ross, named as an occupant of New Street in Griffith's Valuations. As noted above, at least one structure within the area of the cottages was used as a dispensary prior to the construction of the later one on New Street. A dispensary is depicted on the first edition OS map, in a rectangular E / W running structure which may be extant in the present day. The homes within the grounds likely post-date Griffith's Valuation, as the homes are not included within its contents. Furthermore, the cottages
do not appear on the 6 -inch or 25 -inch OS maps. Consequently it can be assumed that the structures date sometime after 1913, likely in the first half of the 20th century. A standalone structure named 'The Old Coach House' may have once acted as a coach house for Ross's home on New Street, as it appears on the 1913 OS map. Additionally, an east/west running structure behind the coach house exhibits a number of alterations to its fabric across its surface. These are depicted from the 1913 OS map onwards, further suggesting that the structures in the area date to the twentieth century.

Section 5 Archaeological Impact Assessment

Archaeological potential

Discussion of archaeological heritage

There are no recorded archaeological sites and monuments within the study area. The Malahide Historic Core Architectural Conservation Area conducted by Fingal County Council lists a number of features scheduled as protected structures and recorded monuments. These fall within the conservation area outlined in the report and include the following:

RPS No. 387 Station Master's House
RPS No. 388 Railway Station
RPS No. 389 St Sylvester's RC Church
RPS No. 390 St Sylvester's Well
RPS No. 398-401 Killeen Terrace
RPS No. 391-397 Castle Terrace
RPS No. 408 Carnegie Library
RPS No. 409-419 1-12 James' Terrace
No topographical files exist within the study area. However, this assessment has demonstrated that a number of archaeological finds uncovered in the surrounding landscape offer a detailed narrative of the history of north County Dublin's coastal areas. The majority of these files comprise prehistoric flint scatters gathered and presented to the museum during the second half of the twentieth century. The
substantial quantity of lithic artefacts uncovered across Fingal's coasts suggests a vibrant prehistoric presence. In addition, archaeological works at Seamount, Feltrim and Paddy's Hill have offered a glimpse into the strong historical continuity of Malahide's landscape.

The cartographic sources outlined in this report have shown that a number of subsurface structural remains are likely to exist below New Street's modern road surface. These relate to the occupation of the town which would have been centred around the junction at Old Street and Railway Avenue, with a focus on the holy well at its centre. Coal cellars are probably not present, based on the absence of any basements along the New Street properties.

Discussion of built heritage

New Street contains a number of structures that are of cultural heritage significance. Spacious nineteenth century homes dominate the streetscape just south of the Diamond. These define much of the fabric of the street as they are presently used as retail outlets, with some still in use domestically. These are generally linked by their continuous slate roofing, rendered walls, arched door frames and fanlights. Two structures with bowed window frames further add to the historic appearance of

The archaeological receptors within the study area

Ref	Type	Significance	Presence Chance?	Survival Chance?
AR1	Pre-early medieval occupation layers	High	Moderate	Low
AR2	400-1550AD occupation layers	High	Moderate	Low
AR3	1550-1800AD structural foundations	High	High	High
AR4	19th century streetscape	High	High	High
AR5	Subsurface fountain foundation	High	High	High
AR6	Coal cellars	Moderate	Very low	High

Archaeological Receptors
AR1, 2, 3
AR4
\square AR5

- AR6

Zone map of the study area showing archaeological receptors
the street. In addition, a substantial red-brick on the western side of the street near the Diamond strikingly stands out when compared to the other built heritage on New Street. This was constructed for uses as a dispensary in 1817 and is tied in with the stylistically similar Carnegie Library, constructed in 1909 (McLoughlin 2008, 12).

Toward the north, a four-bay corner house at the junction of New Street and The Strand has timber sashes and an elliptical headed door opening. The home is simply decorated with eave brackets and corner quoins (FCC 2009, 28). This is the only structure in the south of the study area of significance.

Archaeological receptors

Pre-early medieval occupation layers

Previous excavations and topographical files within the wider landscape of Malahide have demonstrated that the northern coast of County Dublin has a rich history dating as far back as the Mesolithic. A concentration of pre-

historic activity in the area directly surrounding Malahide suggests the possible existance of occupation layers dating to these periods. Furthermore, the finds of an excavation Seamount portray a continuous stream of occupation in the area throughout prehistory, with evidence for planning around pre-existing monuments.

400-1550AD occupation layers

St Sylvester's Well at the junction of Old Street and Railway Avenue has been used as a water source since at least 430AD (malahideheritage.ie 2020). The excavations at St Sylvester's Church (10E0426 \& 11E0326) provided evidence for stone structural remains dating to the medieval period. A number of artefacts ranging from prehistoric to post-medieval were uncovered during these excavations. This may suggest that the existence of layers within the study area relating to these periods of occupation.

1550-1800AD structural foundations

In section 3 of this report Rocque's 1760 map was analysed in order to establish the presence of structures in the area of New Street prior to its construction. The study area was overlaid
onto the map which suggested that a number of structures predating New Street may exist as subsurface structural foundations beneath the modern street. In addition, toward the end of the period the focal point of the town was shifted eastward to the present location of the Diamond. Structures and other features relating to the alteration of the street layout may also be present.

19th century streetscape

The ninteenth century structures still present on New Street give the area a distinctive historic appearance. The built heritage of New Street resides primarily on its southern side, near the junction with the Diamond. These include a number of nineteenth century homes, the two extant structures at the Diamond, the dispensary and an outbuilding.

Street furniture is a common feature at several locations in Malahide town. These include two
post-boxes at the Mall, a gas lamp standard and water hydrant on Old Street, and a gas lamp standard, decorative bootscraper and balcony on James' Terrace.

At several points along New Street the historic kerbing survives in situ. The kerbstones form part of Malahide's historic paving and are also found on Old Street, Church Street and at the Diamond. The Malahide Historic Core Architectural Conservation Area document outlines that if 'works require temporary lifting or removal of paving material, paving units must be properly recorded, carefully removed \& stored and reset following best conservation practice'. Historic photography depicts footpaths with limestone kerbs and cobbled drains (p. 39).

Two areas with nineteenth century garden layers may exist across the study area. The four structures at the Diamond are shown as once

The footpaths along Carlisle Terrace, c. 1900 - from Malahide Historic Society Facebook page

owning gated gardens at their entrances. The area of Ross Cottages is also shown to have once been occupied with gardens associated with the nineteenth century homes on New Street. There is a possibility that both these areas retain their garden layers at a subsurface level.

Subsurface fountain foundation

The fountain that once existed at the centre of the Diamond formed part of the fabric of the 19th century streetscape of Malahide. It is present in Rocque's map in addition to the first edition OS map (1837). It was removed at some point in the late 19th century as it does not appear on photography or maps dating past 1900.

Coal cellars

As part of this assessment the possibility for the presence of coal cellars was examined. This is considered unlikely due to the absence of basements in the suriving New Street properties.

A photo of Malahide dating from 1865-1914, depicting the coal yard adjacent to the estuary

Plan courtesy of DFLA, Fc. 03-DR-2001

Impact assessment

The New Street Public Realm Landscape Plan by DFLA has been examined. The proposed engineering drawings by Punch Consulting Enginneers and Axiseng Consulting Engineers have also been incoporated into the impact assessment.

Repaving of the street and realignment of historic kerbs is likely to require some level of excavation to create a sub-base of hardcore and concrete, which will have a moderate impact. Similarly, while planting areas for grass and flowers, foundations for dining tables, public seating, bins, cycle stands, and similar infrastructure are designed to require a depth of 250 mm to 300 mm , in practise a sub-base will probably require a deeper excavation.

The design intent for the new lighting scheme is based on placing lights on existing buildings, rather than the erection of new lighting poles, which significantly reduces the archaeological impact of the proposals, though ducting will still be required and this is likely to have a moderate impact. These proposed public lighting shall be controlled via PECUs through a 7 pin NEMA socket as per Fingal County Council Public Lighting Specifications. The locations of these are outlined in the plan presented on the following page.

Two levels of subsurface impact are set out below.

Moderate impact

Moderate impacts involve excavation works of c. $400-600 \mathrm{~mm}$ below the existing ground level. This will go through the modern street surface and modern sub base, and in same cases may impact on underlying archaeological deposits if these are present.

Moderate impact areas include repaving and realignment of existing paving, planting areas for grass, flowers, hedges and shrubs, and foundations for dining tables, public seating, bins, cycle stands, and similar infrastructure. The proposed new water feature and water services upgrade, which comprises a central drain running underground down the centre of

New Street, is also categorised as a moderate impact, thought the depth subsurface work required has not been defined at this stage. Rerouted ESB, telecom and gas services will also require trenches of between 450 mm and 600 mm depth, but the locations of these is currently undefined. Any ducting for street lighting will also have a moderate impact.

Deep impact

Deep impacts involve excavation works of 1 m to 1.5 m below the existing ground level. This covers planting areas for trees and the foundations of six proposed telescopic vehicle bollards.

Mitigation measures

Areas that have a moderate or deep sub-surface impact, which effectively covers the entirety of the New Street proposal groundworks, should be archaeologically monitored under license from the NMS. In the event that archaeological material is identified, the archaeologist should halt the groundworks in that zone, assess the archaeological deposits, and revert to the NMS and Fingal County Council regarding the next step.
\because

Planning Permission
axiseng

Bibliography

Byrne, F.J. 1973. Irish Kings and High Kings, London.

Cooney. G. 2000. Landscapes of Neolithic Ireland, London.

D'Alton, E.A. History of Ireland: from the earliest times to present day, 6 volumes, The Gresham Publishing Company: Dublin.

Bradley, J., Fletcher, A.J. \& Simms, A. (2009) Dublin in the Medieval World: Studies in Honour of Howard E. Clarke, Four Courts Press: Dublin.

Greene, R. (2012) Old Malahide, Fingal County Libraries: Dublin.

Halliday, S. 2005. 'Preliminary Excavation Report for Montgorry Site A, County Dublin', Unpublished report, Arch-Tech Ltd.

Hartnett, P.J., Eogan, G. \& Jackson, J.S. (1964) 'Feltrim Hill, Co. Dublin; a Neolithic and Early Christian Site', The Journal of the Royal Society of Antiquaries of Ireland, 94(1), pp. 1-37.

Hurley, L. \& McLoughlin, R. (2008) Slane Village Architectural Conservation Area Character Appraisal, Meath County Council.

Keeling, D., Keeley, V., Cooney, G. \& Farley, E. (1994) 'Excavation of a Flint Scatter on Paddy's Hill (Robswalls), Malahide, County Dublin, Proceedings of the Royal Irish Academy: Archaeology, Culture, History Literature, 94C (1), pp. 1-23.

Lewis, S. 1837. A topographical dictionary of Ireland comprising the several counties, cities. New York, 1970 facsimile reprint of 1837 edition.

Little, G.A. (1948) 'About Malahide', Dublin Historical Record, 10 (1), pp. 1-16.

Macartney, J. \& Crawford, A. (1817) Letter for the opening of the dispensary in Malahide.

McMahon, M. (2011) Fingal Industrial Heritage Survey: Phase 1 - Desktop Survey, Fingal County Council.

McQuade, M. (2012) Excavations at Malahide Parish Centre, St Sylvester's Church, Malahide, Co. Dublin, Archaeological Report.

Moryson, F. The Description of Ireland, translated by Hughes, C. (2014), University College Cork: Ireland.

Ó Danachair, C. (1958) 'The holy wells of county Dublin', Reportorium Novum, 2, pp. 6887.

O'Donnell, E.E. (2008) The Annals of Dublin: Photographs from the Father Browne Collection, Currach Press: Dublin.

O' Reilly, P.J. (1910) 'The Dedications of the Well and Church at Malahide', The Journal of the Royal Society of Antiquaries of Ireland, 40 (2), pp. 147-165.

Railscot (2007) 'Malahide Station', Railscot - Irish Railways.

Reid, P., Farrelly, A. \& McAleese, M. (2017) Fingal Development Plan 2017-2023, Fingal County Council.

Simms, A. \& Fagan, P. (1992) 'Villages in County Dublin', In: Aalen, F.H.A. \& Whelan, K. (eds.) Dublin City and County: From Prehistory to Present, Dublin.

Swift, C. (2004) 'St Patrick and the earliest evidence for local church organisation in Ireland', In: MacShamhráin, A. (ed.) The Island of St Patrick, pp. 61-78, Four Courts Press: Dublin.

Veach, C. (2010) 'King and magnate in medieval

Ireland: Walter de Lacy, King Richard and King John, Irish Historical Studies, 34 (179), pp. 179202.

Websites

Dublin Coal Holes - https://www.thelocals.ie/ features/dublin-coal-holes

St Sylvester's Holy Well - https:/ /pilgrim-agemedievalireland.com/2015/12/31/st-sylvesters-holy-well-at-malahide/

Old Yellow Walls - https:// oldyellowwalls.org/ why-yellow-walls/

Malahide Heritage - https://www.malahideher-itage.ie/The-Village.php

Malahide Name - https://www.logainm.ie/en/ 865

Malahide Castle - https://en.wikipedia.org/wiki/ Malahide_Castle\#/media/File:Ma-
lahide_Castle,_March_2011_(2).jpg
Malahide Hardware Stores Ltd - https:// www.solocheck.ie/Irish-Company/Malahide-Hardware-Stores-Limited-29286

Gallica chart of the Bay of Dublin and sea coast - https://gallica.bnf.fr/ark:/12148/btv1b53010900x/f3.item.r=dublin.zoom

NIAH

Lamp Stardard - https://www.buildingsofire-land.ie/buildings-search/building/11344035/ new-street-malahide-malahide

Malahide Castle - https://www.buildingsofire-land.ie/buildings-search/building/11344019/ malahide-castle-fingal

Malahide Railway Station - https://www.build-ingsofireland.ie/buildings-search/building/ 11344008/malahide-railway-station-dublin-road-malahide-malahide

Malahide Railway Station Master's House - ht-tps://www.buildingsofireland.ie/buildings-search/building/11344007/malahide-railway-
dublin-road-malahide-malahide
Post box - https://www.buildingsofireland.ie/ buildings-search/building/11344036/the-mall-malahide-malahide

Railway Bridge - https://www.buildingsofire-land.ie/buildings-search/building/11344015/ malahide-railway-station-the-strand-malahidemalahide

Signal Box - https://www.buildingsofireland.ie/ buildings-search/building/11344009/malahide-railway-station-dublin-road-malahide-malahide

Excavations

01E0421 - http://excavations.ie/report/2001/ Dublin/0006390/

02E1719-https://excavations.ie/report/2002/ Dublin/0007945/

02E0298 - https://excavations.ie/report/2002/ Dublin/0007811/

04E1066 - https://excavations.ie/report/2004/ Dublin/0011630/

10E0426-http://excavations.ie/report/2010/ Dublin/0021491/

11E0326 - http://excavations.ie/report/2012/ Dublin/0023182/

E4381 - http://excavations.ie/report/2011/
Dublin/0022306/

Topographical files

Bronze lid 1984:146-https://heritagemaps.ie/ documents/NMI_TopographicalFiles/IA-153-1984_1984-146.pdf

Flint scraper 1966:42-https:/ /heritagemaps.ie/ documents/NMI_TopographicalFiles/IA-93-1966_1966-42.pdf

Stone assemblage - 1968:84
https://heritagemaps.ie/documents/NMI_To-pographicalFiles/1968-151-171.pdf

APPENDIX C

Architectural Heritage Assessment by Coady Architects

PUBLIC REALM IMPROVEMENTS FOR A PEDESTRIANISED NEW StREET.

Conservation Report

Table of Contents
Contents
Introduction . 3
History of Malahide . 6
New Street. 8
Chronology of the Site \& Development of Building Footprint - New Street . . 12
The Diamond . 28
Buildings Inventories 32
National Inventory of Architectural Heritage Records 39
Description of Proposed Works
Statement of Significance
Heritage Impact Assessment . 46

Fig. 1: Aerial View - Malahide

Coady Architects are appointed as sub-consultant to DFLA to provide conservation input on the New Street Public Realm Project in Malahide, County Dublin, working in collaboration with Michael O'Boyle, Grade 1 Conservation Architect.

The scope area is located at the centre of Malahide Village. It begins at 'the Diamond' a crossroads where four of the town's most prominent routes, Church St. The Mall, Main St. and New Street meet. The red line boundary begins at the northern perimeter of The Diamond, travelling north along New Street and terminates at Strand St.

Fingal County Council's objectives for the project include the provision of a high quality public space with increased pedestrian flow and enhanced vibrancy which will add to the 'sense of place' and 'local distinctiveness' while responding to local challenges; and a design that highlights and emphasises existing heritage structures while providing a seamless transition with the newly upgraded Green, noting specifically:
'an expertly designed public area that complements the Village Green and enhances the heart of Malahide for the benefit of residents, businesses and visitors alike.

The project is an opportunity to prionitise, upgrade and expand the public realm on New Street and to deliver an improved experience for all users while supporting and balancing the needs of the different users.'

A conservation-led approach was adopted in the development of the proposed design, based on research and analysis of the individual buildings and the streetscape as a whole. We note the following:

1. A record all of the buildings on the street - a photographic survey has been completed alongside a point cloud survey. An inventory of all historical structures on the street will be provided, each record will include a description, photographic record, façade drawing and external inventory and its signficance
2. While there are no protected structures on New Street, the street is included within the Malahide Historic Core Architectural Conservation Area (ACA). The Statement of Character Report for the ACA references a number of architecturally significant buildings on the street, most notably the four-bay corner house at the intersection with The Strand, larger 19th century houses closer to The Diamond, some with shops at ground floor, with similarities of external appearance; and the red brick former Dispensary near The Diamond, which is noted as a building of distinction. Smyth's Pub is another prominent historical building. Other features of note include the intact granite kerbing along New Street. The contribution of these buildings and features is recognised and the proposed design seeks to support and enhance their contribution to the character of New Street and the ACA.
3. The terraced streetscape of New Street collectively has historical, architectural and social heritage value, contributing to the character of the street. Some buildings might also have individual significance
4. An Architectural Heritage ImpactAssessment has been prepared in liaison with DFLA to evaluate the impact of the proposed new public realm design in the context of historical buildings, and the interfaces between the new design and the buildings. An understanding of how the design responds to the context, the character of the new elements inserted into the existing historical fabric, the

Conservation Report

Introduction
retention of granite kerbing, the use of materials and spaces and the extent to which proposed designed structures are reversable have been assessed as part of design collaboration to ensure the integrity of the street is maintained and enhanced.

In preparing this report, we have referred to historical records, the National Inventory of Architectural Heritage, Irish Architectural Archive, Fingal's Local Studies Office and Malahide's Historic Core Architectural Conservation Area - Statement of Character Report. A number of site visits took place during the period June 2022 - August 2022 to assess and record the existing structures. A Photographic Report of New Street accompanies this report. (AppendixA)

Fig. 5: Development Plan Key

The town of Malahide is a coastal settlement located 14 kilometers north west of Dublin City. It's village centre has grown rapidly during the 19th and 20th centuries, as new industries and infrastructure have created a vibrant town with a population of over 17,000 in 2022. The modern name Malahide (Mullagh h-Ide) is thought to have derived from the Norman Invasion during the twelfth century. The town's name translates to 'the sandmills of the Hydes, a Norman family from the Donabate area.

From the 12th century onwards, the town of Malahide developed around Talbot Castle. Among the invading Normans, was Sir Tichard de Talbot, a young knight who served King Henry II, in the invasion and was rewarded with a grant of lands around Malahide in 1185. The Talbots occupied the castle for the majority of eight hundred years, and had an extensive influence over the town's development during this period

The royal land throughout Malahide was intensively tilled to supply cereals, vegetables and hay to the nearby Dublin markets. The ancient local townland name of Yelow Walls suggests that flax may also have been produced to supply a cottage linen spinning and weaving industry. The Talbot family sought to establish a large-scale weaving industry within Malahide, in order to lessen poverty levels in the area.

Although this cotion and linen enterprise had collapsed before the 19 th century, this had led to an increase in the town's population and other trades within the locality. The Talbot's positive influence on Malahide continued into the first half of the 19th century. Becoming a trustee of the Malahide turnpike, established in 1786, Richard W. Talbot played an influential part in improving the road from Dublin to Malahide. At this time, the layout of the main approach road to Malahide was altered.. The original route turned eastwards where Kinsaley Church now stands, traveling northwards along Kinsaley Lane up to and around Malahide Castle, then to Bridge Field and onto Old Street. The turnpike road follows the current route, northwards through Steamstown/ Mabestown past Old Street and commencing at a new village centre at The Diamond. (Fig.6)

The Diamond was laid out as the focal point of the town with a fountain at its centre, and three main roads, New Street, Church Road and the Dublin Road radiated from this central core. In 1792, Richard W. Talbot granted a lease for the first four houses that formed the present day Diamond. This newly formed town centre (including New Street) acted as a catalyst for subsequent development within the Village of Malahide.

With the arrival of the Dublin to Drogheda railway line in 1844, the village became a fashionable destination for day-trippers from the city. The town's reputation of a seaside resort increased with visitors from Ireland and Britain. Industries such as salt harvesting, a steam bakery, silk factory, saw milling and a gasworks were established during the 19th century. By the early-1900's many of these industries had begun to decline, with the exception of the gas works, which continued to expand throughou much of the 20th century.

The outward expansion of Dublin's suburbs from the 1960's onwards, triggered by improved car, bus and rail transport, led to a significant expansion of Malahide as a dormitory town. Although the town has experienced vast growth during the last 60 years, New Street and the Diamond remain as a strong focal point within the commer cial and social centre of the town.

Fig. 6: Malahide to Dublin Road Layouts

Conservation Report

Fig. 7: New St \& Diamond - Aerial View

Fig. 8: New St \& The Diamond - Building Numbering System

Conservation Report

New Street

For consistency and ease of identification in this report and across all of the documents, a numbering system, has been implemented on New Street. Each individual building received a number regardless of its occupancy/use for commercial or residential purposes.

Building No. 1 - Ulster Bank/Sale e Pepe Restaurant Building No. 2 - O'Farrell Deere
Building No. 3-Residential \& Off Licence
Building No. 4-Gibney's Bar
Building No. 5a-Ladbrokes, Roseland Takeaway
Building No. 5b - Doyle's Seafood, Alleens Hair \& Beauty Building No. 5c - II Sorriso Restaurant, Gilbert \& Wright Building No. 6 - Donnybrook Fair

Building No. 7 - Residential Dwelling
Building No. 8 - New Street Mal
Building No. 9 -Residential Dwelling
Building No. 10 - Drums, Orchid Restauran, Al Fresco Restaurant
Building No. 11 - Fowler's Pub
Building No. 12 - Dispensary Building
Building No. 13 -Dial-a-Cab, Bouchon Jewellers

Conservation Report

New Street 1902) and Book (1902-1947)

The following diagram tracks the occupancy and usage of New Street using information provided by the 1901/1911 Census, and the Valuation Records Books (1855-

The numbering system created for this project is used to identify each property below.

3.444

Property No. 8-1901/1911 Censu Owenership: Richard Jones
Tenant: Mary Seaver - House, Office, Shop \& Yard (Late1890s) Tenant: Mick Howard - House, Office, Shop \& Yard (Early1910s)

Property No. 8 - Valuation Records
Owenership: Mary Seaver
Tenant: Flower \& McDonald - Coal Yard (Early 1910s)

Property No. 9-1901/1911 Census
 Owenership: Lord Talbot

Tenant: Thomas, Bridget Dunne \& Family - House, Office, \& Yard (Late1890s - Early 1910s) Occupation: Dairy Owner

Tenant: Michael Howard - House, Office \& Yard (Late1890s) Occupation: Victualler \& Farmer Tenant: Lawrence Howard - House, Office \& Yard (Early1910s) Occupation: Victualler

Property No. 11-1901/1911 Census Owenership: Repo - McAlpin
Tenant: Patrick Hogan - Licensed House, Office \& Yard (Late1890s) Occupation: Grocer, Shopkeeper Tenant: Joseph Hogan - Licensed House, Office \& Yard (Early1910s) Occupation: Grocer, Shopkeepe

```
Property No. 12 - Valuation Records
    Dispensary Building
```

s Works

Property No. 7 - Valuation Records Owenership: Lord Talbo
Tenant: Jane Taylor - House \& Garden (Late 1890s) ant: P. Bissett - House, Shops, Office, Motor Garage (Early 1900s)

Chronology of the Site \& The Development of New Streets Building Footprint

Conservation Report

Chronology of the Site \& Development of Building Footprint

The following mapping documents dating from 1760 to 2022 have been sourced from The Ordinance Survey Ireland online database, Fingal Local Studies Office, The Glucksman Map Library Trinity College Dublin, The Irish Architectural Archive and Fingal County Council. These archives can be used to track the growth and development of New Street and its context, through the 18th, 19th and 20th centuries. The occupancy and use of some of the historic structures on the street can also be studied, alongside the changes in building footprint seen in the area during this time

Fig. 9: John Taylor Map of Malahide - 1816

1. 1760 John Rocque, Dublin County North East

This document (Fig.10) provides the earliest detailed record of the planning of Malahide Village. Throughout the 17th \& 18th Century Malahide remained a small settlement centered on Old Street, Strand Street and the Back Strand. The majority of the town's social and commercial activity occurred on the junction of Old Street and Railway Avenue, the present location of St. Sylvester's Church, well and surrounding cottages. The Civil Survey of 1654-56 states:
In ye town of Malahide about 20 thatch houses, one sea water mill. Also a stone thatch house with two small thatch houses in possession of Thomas Jones. Also an orchard and garden with a fishing harbour and a conny warren.' (Green 2012)
New Street, outlined in red on (Fig. 10) with the aid of geo-referencing, cannot be identified on this map. However, Rocque gives us a valuable insight into Malahide before the creation of New Street and The Diamond.

2. 1816 John Taylors Map of Dublin \& Environs

John Taylor's 1816 (Fig.9) map provides a first glimpse into the layout and plan of New Street, Malahide following the formation of the Diamond, and is used as a starting point, to map the development of the street and its immediate context through the 19th and 20th centuries. The map identifies New Street, some building either side of the street, the Diamond and the coal yard to the north.

Indenture, 1792 - Map of The Diamond, Malahide.
Although John Taylor's 1816 map provides an initial view of New Street and its context, an indenture dated 24 years earlier in 1792 (fig. 12) provides an early insight of The Diamond development, planned by the Talbo family. The legal document provided by Richard Wogan Talbot grants James Crawford twenty-four perches with 'a House and Garden in the new street in the Town of Malahide' for a term of seventy-one years at a year ly "Rent of Five pounds thirteen shillings and nine pence".

The map which accompanies the indenture, shows an elevation of a two-story, five-bay slated house with a door at the centre and chimneys located on either gable. The property is located on the newfound intersection of 'New Street to the Sea' and 'New Street to the Green'. (Greene 2012)

Diamond development is discussed in further detail, in Chapter 5 of this report

Fig. 12: Indenture, dated 1792, granting land with 'a House and Garden in the new street in the Town of Malahide' for a term of seven-ty-one years

2. 6 Inch Ordinance Survey Map 1829-43 Map

Between 1829 and 1842 Ordinance Survey Ireland completed the first ever large-scale survey of the entire country. Due to the fact The Grand Hotel and the Mall road from the Diamond does not appear on this document (Fig 14) his would indicate that the map predates 1835 , the year the hotel opened.

When this map is compared to John Taylor's 1816 drawing, it is clear there has been substantial development hroughout New Street and its surrounding context. The reason for this expansion has often been accredited to the introduction of the Dublin to Drogheda railway line. (First planned in mid 1830s with works commencing 1840).

The form of the Diamond with a central water fountain can be seen alongside increased development along 'The Mall' '/Main Street'. Towards The Green, there is further development that defines New Street at this period in time Construction to the rear of properties along the street is more apparent. The map also depicts possible demolition work to the area marked with a dotted red line on page 16 (Fig.15). Note, a 'police station' was also located within the Diamond on the 6 Inch Ordinance Survey Map 1829-43 Map.

The lane way to Ross' Cottages (marked in blue) is also beginning to form, creating potential for increased expansion to the east of New Street

The early-nineteenth century evolution of the buildings and sites along New Street can be tracked by a compariso between the (1816) Taylor Map and the first edition Ordnance Survey map (see Fig. 15 \& 16) on page 16.

Fig．15：John Taylor Map of Malahide－ 1816

Alterations to Building Footprint：

－Potential demolition to structures to north－west of New Street．（Outlined in red dashed line）
－The early formation of Ross＇Cottages（Dispensary Lane）can be seen．
－Development begins along Main Street towards Dublin－extending from The Dia mond
－The water fountain at the centre of The Diamond can now be seen．
－Out－housing and other structures to the rear of New Street properties can be seen forming，populating the lands to the rear of the properties．
This map illustrates the consolidation and development of the plots to the rear of New Street and the Diamond in the period between the Taylor Map（1816）and the first edition Ordnance Survey map．In some cases，the buildings fronting onto New Street on the O．S．map may not necessarily be the same buildings that were shown on the earlier Taylor map

Further Developmen

ーーー Apparent New Route Formed
－－－Potential Demolition of Building Footprint

3. 1851 Survey of Town \& Lands of Malahide Co. Dublin. The Estate of the Right Honorable Lord Talbot of Malahide. (Fig. 18).

Halfway through the 19th century the development of the Malahide's new train station is visible on the 185 map (See Fig 18) 'The Mall' has now been extended eastwards from the Diamond, to allow for access to the Grand Hotel (constructed 1935). Due to the increase of horse and cariage transport along The Mall, the central fountain within the Diamond has been removed. (Green 2012).

Further development throughout the town continues, with the appearance of Townyard Lane and St James Terrace, indicated in orange.

The dwellings of New Street remain similar to previous maps, however further accommodation to Ross Cottages lane way can be seen. (Outlined in blue). Increased construction activity within the backlands between New Street and neighbouring Townyard Lane is evident.

1792 1851 Magan Indenture Lord Talbot Estate Survey Map							
1750	1800	1850		1900	1950	2000	2022
$\begin{gathered} 1760 \\ \text { John Rocque } \end{gathered}$	$\begin{aligned} & 1816 \\ & \text { John Taylor } \end{aligned}$	$\begin{gathered} 1843 \\ 6 \text { Inch OSI } \end{gathered}$	$\begin{gathered} 1869 \\ 25 \text { Inch OSI } \end{gathered}$	$\begin{gathered} 1906 \\ 25 \text { Inch OSI } \end{gathered}$	$\begin{aligned} & 1940 \\ & \text { ost } \end{aligned}$		$\begin{aligned} & \text { 2022 } \\ & \hline \text { SIt } \end{aligned}$

Conservation Report

Chronology of the Site \＆Development of Building Footprint

	$\begin{gathered} 1792 \\ \text { Richard Wogan Indenture } \\ \text { Map } \end{gathered}$	$\begin{gathered} 1851 \\ \text { Lord Talbot } \\ \text { Estate Survey } \end{gathered}$					
1750	1800	1850		1900	1950	2000	2022
$\begin{gathered} 1760 \\ \text { John Rocque } \\ \text { Map } \end{gathered}$	$\begin{gathered} 1816 \\ \text { John Taylor } \\ \text { Map } \end{gathered}$	1843 6 Inch OSI Survey Map	1869 25 Inch OSI Survey Map	$\begin{aligned} & 1906 \\ & 25 \text { Inch OS } \\ & \text { Survey Map } \end{aligned}$ surve riap	$\begin{gathered} \text { 1940 } \\ \text { OSI } \\ \text { Survey Map } \end{gathered}$		$\begin{gathered} 2022 \\ \text { Susi } \\ \text { Survy Map } \end{gathered}$

Alterations to Building Footprint
－Increased development at Dispensary Lan
－Large＇U－shaped＇development south of Dispensary Lane．Use unknown．
The extension of the Mall eastwards due to the opening of the Grand Hote
The removal of the fountain at the centre of The Diamond．
－Potential demolition of structures to rear of New Street properties
This map illustrates the consolidation and development of the plots to the rear of New Street and the Diamond in the period between the first edition Ordnance Survey map and the 1851 Talbot Estate Map．In some cases，the buildings fronting onto New Street on this later map may not necessarily be the same buildings that were shown on the earlier O．S．map．
\square Further Development
ーーー Apparent New Route Formed
－－－Potential Demolition of Building Footprint

Conservation Report

25 Inch Ordinance Survey Map 1869 (Fig. 22).

Further development is apparent within Malahide towards the end of the 19th century. South of the Diamond Whurch St is further framed by the inclusion of Carlisle and Windsor Terrace. The Post Office, previously indicat Church St. is further framed by the inclusion of Carisle and Windsor Terrace. The

Kerb lines are now indicated on the 1869 map along New Street's buildings. Although the structures along New Ktreet remain similar to previous maps, some further building has taken place to the rear of these buildings,

An extension to the coal yard and gas works to the north of New Street is now evident.
The rapid development of Ross' Cottages seen through the previous maps has now subsided. The Dispensan building has been annotated within Ross Cottage's Lane way. Previously this has been indicated to the south New Street, close to the Diamond. See 6 Inch Ordinance Survey Map 1829-43 Map. (Fig.14).

Conservation Report

Chronology of the Site \＆Development of Building Footprint

	$\begin{gathered} 1792 \\ \text { Richard Wogan Indenture } \\ \text { Map } \end{gathered}$	$\begin{gathered} 1851 \\ \text { Lord Talbot } \\ \text { Estate Survey } \end{gathered}$					
1750	1800	$18 \frac{1}{0}$		1900	1950	2000	2022
1760	1816	1843	1869	1906	1940		2022
John Rocque	John Taylor	6 Inch OSI	25 Inch OSI	25 Inch OSI	OSI		OSI

Fig． 23.1851 Survey of Town \＆lan

Alterations to Building Footprint

－Extension to coal and gas works to the north of New Stree
－First indication of pedestrian footpaths to street．
First apparent building can be seen on the extension of the Mall road，towards The Gand Hotel．This has been indicated as a Post office．
Development to rear of properties at New Street．
Further Development
ーーー Apparent New Route Formed
－－－Potential Demolition of Building Footprint

Conservation Report

Chronology of the Site \& Development of Building Footprint

5. 190625 Inch OSI Map (Pub. 1908) (Fig.26)

At the beginning of the 20th century, the industrial activities of gas and coal to the north of New Stree continue to grow.

The lane way to Ross' Cottages seems to have undergone some demolition works, decreasing the building footprint between New Street and Townyard Lane

The Dispensary Building is now located to the south-west of New Street. moving from Ross Cottages a seen in previous maps A building within the Diamond is now referenced as a bank.

Also worth noticing, the Constabulary Block is located between New St. and Old St. on the previous map dated 1869. (Fig. 25). However, this institution is now referenced within the Diamond. A police station was previously indicated in this location on the 6 Inch map (1829-43) (Fig.14).

Alterations to Building Footprint：

－Development now evident on the extension of the Mall Road，towards The Grand Hotel．
－ 1 minor instance of potential demolition to the rear of properties on New Street
－Development to Ross＇Cottages（Dispensary Lane）demolished．
Further development can be seen throughout New Street to rear of properties

Further Development
ーーー Apparent New Route Formed
ーーー－Potential Demolition of Building Footprint

Conservation Report

Chronology of the Site \& Development of Building Footprint

4. 1940 Ordinance Survey Ireland, Malahide Map (Fig. 30)

Further development has appeared within the Ross' Cottages lane way, which suggests to have re placed previous building stock from the 19th Century.

Some waterworks infrastructure now appears to be mapped throughout New Street and its environs his framework includes a well, situated east of New Street. Two pumps, are located to the north and south of Ross' Terrace. A pump also existing to the south-west of The Diamond, behind the former RIC Barracks.

New properties and urban buildings such as the Carnegie Library (constructed 1909) are now depicted south of The Mall.

Alterations to Building Footprint

- New development to Ross' Cottages to replace previous demolition
- Potential demolition to properties on Dispensary Lane and to rear of properties on New Street.
- Further development to properties at north and south of New Street.
- Waterworks infrastructure now visible. (Eg. Wells, Pumps)

Conservation Report

Chronology of the Site \& Development of Building Footprint

4. 2022 Fingal Co. Co. Map - Malahide (Fig. 34)

The final map of Malahide which has been reviewed in this study is the 2022 OSI survey map retrieved from OSI.ie as part of the planning package.

The suburban expansion of Malahide began during the 1960s, feeding a sustained pace of housing construction within the town and its environs. As a result of this influx of people settling and visiting the town, the services within Malahide grew as well. These developments include, New Street Mall (Constructed 1980s), Malahide Shopping Centre, large-scale extensions to hospitality premise and the introduction of a new convenience store in 2015 replacing the previous Malahide Hardwar Store.

Conservation Report

Chronology of the Site \& Development of Building Footprint

Fig. 36: 2022 OSI Survey Map

Alterations to Building Footprint

- Larger scale development has occurred throughout the street. The former coal yard to the north west, of the street, has been infilled with New Street Mall during the late 1980s.
- Considerable extension to Fowlers bar, beside the current Dispensary building has occurred.
- Considerable extension to Gibneys Bar \& Restaurant
- Development of Malahide Shopping Centre

Re-development of Malahide Hardware Store to a convenience store in 2015.

Further Development

_— Site Boundary

Fig. 38: (View A) New Street - 2022 - Image taken from The Diamond

Above are two still images of New Street dating from early 1900 (Fig. 37 \& 39). (Source: Fingal Local Studies Collection). These historic images show the appearance of the street from more than 100 years ago. It also allows the viewer to make comparisons between the past streetscape and the current design of New Street.
A. Fig. 37 is an image from The Diamond, facing north towards New Street, with a clear view of the Marina beyond. Firstly we notice the defined pedestrian paths to either side of the street. In the foreground, hard landscaping detailing is visible, consisting of a kerb (likely granite) with a footpath and road surface. Fig. 37 shows two horses tied up outside Cook's Aber Mon (no of the street. The developmentof the Marina during the the view of the estuary from The Diamond is now lost.

The buildings on the north-east and north-west sides of The Diamond survive from the earlier (c.1900) photograph, with some modifications. These have been modified throughout the 20th century with the implementation of shop fronts. The red-brick Dispen sary which is located close to The Diamond still remains on the west side of New Street.

These surviving buildings make a significant contribution to the character and architecturThese surviving buildings make a significan

Fig. 39: (View B) New Street - Image taken from Strand Street.

Fig. 40: (View B) New Street - 2022 - Image taken from Strand Street
B. View B (fig.39) is positioned on Strand Street facing south towards New Street. Th historic image has also clearly defined pedestrian pathways which frame the street. The gabled building on the south-east corner (left side in foreground) survives from the earier photograph and continues to make a significant contribution to the streetscape. The single-storey 4-bay cottage to its rear has been replaced with a modern two-storey commercial building
The now-demolished No. 9 New Street is visible on the west side of the street in the earlier photograph (fig. 40, right hand side). Using the Valuation Records, No. 8 was used as a shop, off license, house and garden". Behind No. 8, we can see a large undeveloped plot. This can also been seen on each of the historic maps, sourced for this report. Using centuris This pot posiblil site beside The Green.

In the modern photo (fig. 40), this plot has been infilled. The surrounding context has been redeveloped with the construction of the New Street Mall, a two-storey terraced building with a prominent pitched roof, incorporating attic accommodation.

5 Conservation Report
 The Diamond

The Diamond

The Diamond became the central hub of Malahide in the early 19th century when the Talbot family restructured the Dublin Rd. and created New Street. The square became the central crossroads where the major routes of Church Rd., Dublin Rd. New Street, and later The Mall, meet.

By an indenture dated 1792, Richard Wogan Talbot, heir to Richard Talbot, granted James Crawford of Seafield twenty-four perches with "a House and Garden in the new street in the Town of Malahide" for a term of 71 years. The indenture also stipulat ed that:
"The said James Crawford, his Heirs and Assigns, shall not build or cause to be built any House, Stable or Hut on the front of the new street without the same to be at least as high as the House which is now built thereon."

Th associated map with the indenture (Fig.43) shows the proposed form the building must take. A five-bay, two storey house, with a centre door, and chimneys at either gable. This would appear to be the first of four buildings that framed The Diamond. The instructions Richard Talbot gave to James Crawford provides clues to an interest in town planning, before future development took place along New Street and The Diamond.

As a result, the four original houses which completed the Diamond were identical. A sprinkler water fountain occupied the centre of The Diamond, however this was possibly moved due to construction of The Grand Hotel in 1835. This was to allow large stage-coaches to maneuver The Diamond on their route towards the hotel to the east. (Greene 2012). When constructed, each of these buildings had front railings,

Fig. 44: View of The Diamond from West with RIC Barracks on the left - Early 1900

Fig. 45: View B - From The Diamond facing east towards The Grand Hotel

5 Conservation Report

enclosing a piece of land. Building No. 1 (currently Ulster Bank) has the last example of these railings. These railings can be seen in fig. 46 \& later in fig. 48 .

Corner Blocks $1 \& 2$ are the existing structures which were constructed to form the original Diamond square.

Building No. 3 housed the RIC barracks, which can be located on the 190825 Inch OSI Map on page 21. The station seems to have relocated to the centre of town as it can be found on Old Street on the 25 Inch Ordinance Survey Map 1869 on page 22 of this report. The RIC Barracks on The Diamond was burned down in 1922, by the I.R.A as a retaliation to a Black and Tan attack on Balbriggan in 1920. (fig. 47).

5 Conservation Report

Block $3 \& 4$ have been rebuilt to imitate the previous facade features seen in the early 19th century structures. Block 4 can be seen in its previous form in fig. 49, and later in its current imitative design in fig. 50 .

Once again, the black railings which can be seen in front of Block $3 \& 4$ in fig.49, have been removed as these structures were rebuilt. These former enclosed garden areas have been given back to the public realm as the use of these buildings has changed from residential to commercial. The restaurant occupying Block 4 currently uses this area for outdoor furniture. Similar to New Street, the historic granite kerbing is still in situ, marking the threshold between pedestrian and vehicular activity at The Diamond and southwards onto Church Road.

Fig. 50: View C from the Diamond facing south towards Church Street - 2021

6 Conservation Report
 Buildings Inventories

Building Numbering System
For consistency and ease of identification in this report and across all of the documents, a numbering system, has been implemented on New Street. Each individual building received a number regardless of its occupancy/use for commercial or residential purposes (fig.52). A photographic study and point cloud survey have been completed and can be viewed in Appendix A\&B of this report

No. 1 The Diamond - Ulster Bank, Sale e Pepe Restaurant

The building forms part of the original Diamond development at the centre of Malahid in the early 19 th century. By an indenture dated 1792 , the Talbot family granted James Crawford of Seafield, twenty - four perches with a "House and Garden in the new street in the Town of Malahide" for a term of seventy-one years at a "Rent of Five pounds thirteen shillings and nine pence". This would appear to be the first of four houses that stood facing each other to form The Diamond. (Greene 2012).

The building has rendered walls and natural slate roofs, a chimney was positioned over the apex of both gables of the north-western building however this has been removed from the building. Raised quoins on the corners lend architectural formality to the build ings. A section of railing survives outside the building which is now occupied by a bank. This marks the boundary of the earlier curved front garden, which existed historically on all four sides of The Diamond

Fig. 52: Key Map

6 Conservation Report

Fig. 53 Building 2

No. 2 O'Farrell Deere
Single-storey commercial building, possibly retaining some fabric from early-nineteenth century building shown on first edition O.S. map. Fibre cement tiled roof.

Fig. 54: Building 3

Fig. 55: Building 4

No. 4 -Gibneys Pub
Six-bay two-storey nineteenth century building, with early-twentieth century shopfront. This public house has a long-standing presence on New Street. The front door with elliptical fanlight, slate roof and timber sash windows, together with the later stucco additions (quoins, mouldings to the front door) and shop front all make a significant contribution to the streetscape and character of the ACA. Blue natural slate tiles to roof.

The Gibney family purchased the property in 1937 . When the family arrived they were greeted with a very basic, 'spit and sawdust' pub with an apple garden and piggery to the rear. (Gibney Website). The property has a history of hospitality. In 1937, and for many years beforehand, the Malahide pub had been known as the Abercorn Tavern then heen adopted by Henry Barton Cooke on when eacquird pub from James O Hara and the ground landlord, Richard Hogan appears to have been administered by his daughter Alice until the sale to the Gibneys.

It was through Colonel Richard Talbot, that the pub first came to prominence in the 1740's as the famous gold Lion Inn' At this time Colonel To prominence in the an inn to be constructed his lands near the Village Green, which was known locally to an in to be the visiting Circuses and strolling players who spread their tent there.

6 Conservation Report
 Buildings Inventories

No. 5a - Ladbrokes, Roseland.
No. 5b - Doyle's Seafood, Aileens Hair \& Beauty. No. 5c - II Sorisso, Gilbert \& Wright

This terrace of three two-storey 3-bay double-fronted houses was constructed in the ear-ly-nineteenth century. The front facades are set back from the primary building line and the removal of their historic front gardens (visible on the earlier historic maps, (fig.22)) has created a widening of the footpath. The former houses are now primarily in commercial use, with shopfronts added during the twentieth century. The removal of render to expose the underlying stone rubble on Building 5 c is visually incongruous. The natural slate roofs, surviving chimney stacks, central front doors with elliptical fanlights, and Georgian window proportions, are important contributors to the character of New Street.

No. 6 - Donnybrook Fair
Five-bay two-storey late-twentieth century building of limited architectural significance. The current use as a busy food store adds to the vibrancy and foot fall on the east side of New Street.

From 1976-1986, The property also included No. 1-4 Dispensary Lane, then owned The Bissett Family. A hardware store occupied the plot from the mid 1960s owned by the Bissett Family. This closed in 2015, with the plot to the rear of the dwelling re-developed into a convenience store/cate.

No. 7 -Residential Dwelling
The large four bay comer house (fig. 58) at the intersection with The Strand has an elliptical - headed door opening and timber sashes, simply ornamented with eaves brackets and corner quoins. From researching The Valuation Records available we can track the usage and occupancy of this building can be traced from 1855 onwards. The roof covering is fibre cement tling

Lord Talbot was the immediate lessor of the building, with a Miss Jane Taylor occupying the 'house and garden' until early 1900s, where Margaret Seaver converted part of the property to a 'shop \& yard'

The occupancy continued to change on a regular basis as did the recorded building use From 1902-1947, the property now held a 'shop, off license, motor garage, yard and the inclusion of 16 The Strand, to the rear of the property.

6 Conservation Report
 Buildings Inventories

Fig. 59: No. 8 - New Street
Fig. 60: No. 9 - New Street

No. 8 - New Street Mall
Two-storey multi-bay late-twentieth century commercial terrace with ground floor shop units and mixed use first floor and attic level. This modern building encloses the west side of New Street, with the shop units consolidating the established retail character of New Street.

No. 9-Residential Dwelling

Two-storey five-bay mid-terrace house, dating from the first half of the nineteenth century The dashed render to the front facade dates from the early-twentieth century. Still in residential use, the central front door with fanlight, Georgian-proportioned window openings, wrought iron railings, pitched slate roof and chimney stacks contribute to the character of New Street. The roof covering is fibre cement tiling.

The attached two-bay 2-storey structure to the south, with twentieth century shopfron and white-painted render, appears to be contemporaneous.

6 Conservation Report
 Buildings Inventories

Fig. 61 : No. 10 - New

No. 10 - Drums, Orchid Restaurant \& Al Fresco Restaurant
This six-bay two-storey terrace of three buildings was constructed in the early-nineteenth century, with shopfronts introduced during the twentieth century. Two of these shopfronts - Drums (to the north) and Orchid Restaurant (centre) - incorporate early-twentieth century turned joinery details of high quality. The window openings at first floor level and pitched slate roof contribute to the character of the streetscape. Alaneway to the north of the terrace leads to a small yard with a two-storey gabled carriage house, incorporating unusual (possibly relocated) historic features, visible from the street.

Fig. 62: No. 11 - New Street

No. 11 - Public House
Two-storey commercial building, with former residential accommodation on upper floor. The interior may incorporate fabric from an earlier (nineteenth century) building on the site. The central tripartite sash window with gabled roof is an interesting feature. The shopfronts are modern but well-proportioned.

Fig. 63: No. 12 - New Street

No. 12 - Dispensary Building
This red brick building has considerable presence and is an important landmark at the south end of New Street. Its use of red brick with profiled red brick details adds to the richness and diversity of the streetscape. The building has flat-arched window openings, with surviving timber sash windows, a fibre cement tiled roof, red brick chimneys and cast iron rainwater goods.

6 Conservation Report

Buildings Inventories

No. 13-Dial-a-Cab, Bouchon Jewellers
The building forms part of the original Diamond development at the centre of Malahide in the early 19th century. This structure is included on the National Inventory of Architectural Heritage. Reg no. 11344046. (fig. 46)

It has retained its original sash fenestration to first floor level. The ground floor has been remodeled extensively during the 1970s with a pair of aluminum shop fronts fitted The remodeled extensively during the 1970 s with a pair of aluminum shop fronts fitted. The natural slate covered unit with concrete ridge tiles. The walls are roughcast, painted with raised nap rendered corner quoins. (NIAH 2022).

The original openings to first floor level are square headed with stone cills with $2 / 2$ sash timber windows fitted.

National Inventory of Architectural Heritage Records

Conservation Report

National Inventory of Architectural Heritage Records

1. On New Street, one structure/monument is listed on the National Inven tory of Architectural Heritage. Freestanding cast-iron gas lamp standard, c.1900, comprising chamfered square pedestal with foliated shaft, decorativ double lamp fitting above The light fixture has since been removed and re placed with a modern LED unit. Based on information provided by Fingal Co. Co . This lamp standard is not original to its location nor does it carry any historic significance.

2. Corner-sited end-of-terrace five-bay two-storey former house, c. 1835, retain ing original fenestration to first floor. Single-bay single-storey extension to east c.1890. Ground floor remodelled c. 1975 with pair of aluminum shopfronts. Unit is current vacant. Date (1820-1850). (Fig 67).

Fig. 67: Image NIAH record on file for the
Fig. 67: Im
property.

Strand Street

The Mall The Mall

A Design Rationale Report has been prepared by DFLA. This document explains in detail the aspects of design proposed for New Street's public realm improvements at a pedestrianised New Street.

The design principles help to generate a strategy for the public realm at New Street which was formulated in conjunction with FCC and the design team in order to integrate he existing site context, architecture improved circulation and accessibility, traffic, civil engineering, lighting, archaeological and ecological considerations with the overarching public realm design and the key objectives of the brief. These include:

- Provision of a high-quality urban environment which enhances the 'sense of place on the street and respects the context as part of Malahide's Historic Core Architec tural Conservation Area;
Consider accessibility and safety for people of all ages and abilities
- Find a balance between existing and possible future proposed uses along the street in a way which is attractive to visitors and locals alike;
Innovate, taking into account principles of sustainability and resilient public spaces - Ensure access for local residents, deliveries, fire tender, emergencies and refue collection;
- Provide opportunities for resting and socialising to increase dwell time, while at the same time taking into consideration overall functionality;
Provide a biodiverse environment where possible, with trees and planting as well as incorporating sustainable drainage solutions.

New Street is a key node within Malahide's town centre. The public realm improvements increase the area provided for civic amenity along the thoroughfare and improve pedestrian priority and accessibility for the public. It creates new opportunities for visitors and passers-by to engage and enjoy the space by increasing the width of the footpath on either side of the street. The eastern side remains sunny for the majority of the day, therefore an asymmetric layout is proposed, taking full advantage of the orientation. Large rees are proposed to 'book-end' the street and signify threshold, tying the public realm into its surrounding context. Areas of planting are proposed as the main organisational device, incorporating sustainable urban drainage (SuDS) and increasing biodiversity on site. Opportunities for seating, art and informal play installations are proposed to be located in between the areas of soft landscape. Some areas of planting are also proposed to be introduced to act as buffer zones between public use and existing residential buildings, creating defensible space in front of the dwellings. Clearly marked zones for outdoor dining are proposed to be organised in linear strips on both sides of the narrowed central carriageway.

Fig. 75: Artist impression of New Street public realm, facing north towards Strand Stree
 The Diamond

The layout and morphology of New Street and The Diamond, to its immediate south, were an integral part of the realignment of the centre of Malahide undertaken by the Talbot Family at the start of the nineteenth century and are of considerable architectural historical, and social interest. This early-nineteenth century planned town centre provides tangible evidence of the important role of the Talbot Family in the evolution and growth of the town. Many of the two-storey terraced buildings that face onto The Diamond and New Street date from the early-nineteenth century and are contemporaneous with the construction of the planned town centre. The survival of these buildings, with their Geor-gian-proportioned window opening (some with surviving sash windows), front doors with well-crafted fanlights, slate roofs and chimney stacks helps to define the character and sense of place of the Malahide Historic Core Architectural Conservation Area.

The transition of New Street from a predominantly residential street to a vibrant retail street took place gradually over the course of the twentieth century. The terraced streetscape incorporates high quality early-twentieth century shopfronts with well-crafted joinery, which are of significance in their own right and add to the character and sense of place within the ACA. The embellishment of a number of the nineteenth century facades with high-quality early-twentieth dashed render and stucco details, is typical of many Irish towns and adds to the visual interest of the street. The late-twentieth century buildings at the northern end of the street, while not of the same architectural quality as the earlier historic buildings, replicate the terraced streetscape and consolidate the established retail activity along the street.
The growth of retail activity along New Street during the twentieth century led to the incremental loss of historic features that contributed to the streetscape. Earlier railed front gardens along New Street and on the chamfered comers of The Diamond have now been lost. There are no historic lamp standards on the street. The ground floor window railings on some of the buildings provide a visual reminder of the quality and character of the earlier boundary railings. The surviving granite kerb stones along New Street make a strong visual contribution to the quality of the public realm.
New Street embodies a social and cultural significance as a place where generations of Malahide residents go to shop and socialise. The present-day New Street acts as an important pedestrian and visual connection between The Diamond, the historic centre of the town during the nineteenth century, and the Marina and waterfront, which has become a focal point for commercial and recreational activity.

Fig. 78: New Street - circa 1930s

Heritage Impact Assessment

The overarching objectives of the proposed development are very positive for the town centre and will enhance the established character of the ACA. The public realm improvements will facilitate the permanent pedestranisation of New Street and improve the public ealm that supports and consolidate the established retail, restaurant and hospitality uses along the street. This early-nineteenth century street was laid out at a time when motoised transport did not exist. The removal of traffic away from the street has made New Street a safer and more attractive place for visitors and locals to visit and linger.

The historic cut stones (fig. 79) are an important surviving feature of the existing landscaping of New Street. It is proposed that these will be retained in their existing (hisoric) alignment, with the individual stones re-laid to suit the new pavement levels. The etention of these kerbstones and their incorporation into the new landscaping is a key conservation component of the proposed design.

The selection of new paving materials will be a key decision in the development and finalsation of the new landscaping design. Where new paving stones are proposed, these shall comprise local (lrish) stone - Leinster granite, blue-grey limestone, or a combination of the two. The paving design, as shown on the proposed drawings, adopts unfussy orthogonal coursing using a limited palette of materials. The avoidance of unnecessary pattern or embellishment will be essential to ensure that the new hard landscaping is appropriate to the scale and width of the street, and the sensitive receiving environment of the predominantly early-nineteenth century buildings that front onto New Street. The final paving design shall include curved paving stones to mark the line of the early-nineteenth century curved front gardens on the north-east and north-west corners of The Diamond. It will also be important to ensure that the selected paving materials are durable, easy to clean and resistant to staining from oil and grease. Prior to the finalisation of the selection of materials, evidence shall be provided to Fingal County Council (FCC) of the successfu use of those materials in comparable urban locations. Samples of the proposed mateials will be presented for review and agreement by the project Grade 1 Conservation Architect at a meeting with the Architectural Conservation Officer (ACO) of FCC

The introduction of level plateau areas of planting, is a welcome addition with the potential to significantly enhance the sense of place and human scale of New Street. Detailed drawings will be prepared to demonstrate that the work will not adversely impact on nineteenth century stone entrance steps and architecturally significant door surrounds.
 use. These locations will not be used for formal outdoor seaing. These detalls are to be agreed with the project Grade 1 Conservation Architect be presented to the ACO for review and agreement.

The drawings include examples of proposed benches, planters, and other items of street furniture. The proposed street furniture will adopt a limited palette of materials, with metal urfaces adopting a single uniform colour where possible. The final locations of street furiture will be selected to minimise visual clutter along the street and to avoid physical bariers along the more heavily used footpaths. Pavement access covers will include integral paving. These details are to be agreed with the project Grade 1 Conservation Architect in the first instance and will then be presented to the ACO for review and agreement.

The proposed development includes for designated areas of outdoor seating and dining, which shall be made available to the restaurant, bar and café businesses along the street. Final details of such seating will be subject to review and agreement with the ACO of Fingal County Council. Such seating, tables, and associated furniture (umbrellas, signage) shall be fully demountable and capable of being removed and stored indoors each area. The proposed development does not include for fixed outdoor furniture in these locations. The lighting strategy requires careful consideration and is to be detailed sympathetically in respect to the surrounding historical buildings. Final details of lighting ixtures and placement are subject to review and agreement with the project Grade 1 Conservation Architect.

In summary, the proposed public realm upgrading of New Street represents a change fom its current (and historic) configuration of a central carriageway with footpaths on both sides. This change is necessary and appropriate to enhance the setting of the historic buildings and consolidate and support the established retail character of this important street. The recommendations noted above are intended to mitigate and manage the mpact of the proposed alterations on the character, fabric and features of the Architectural Conservation Area.

Fig. 79: New Street Existing Kerbing
 - Existing Foxtrath Along Existing Fotrpath Along
Fig. 80: New Street Existing Kerbing Location

Literature

1. Kingston, G. (2018). Malahide Snapshot 1901. Gerry Kingston \& Fingal Co. Co
2.Greene, R. (2012). Old Malahide. Publisher
2. McLoughlin R. - Lotts Architecture (2008). Malahide Historic Core - ACA - Statement of Character. Fingal Co. Co
3. http://www.barrygibney.com/history.html Gibneys History
4. Flanagan, N. (1984) Malahide Past and Present. Publisher

Mapping Data

1. 1760 John Rocque, Dublin County North East. - Dublin Historic Maps, Boundaries and OSM Miscellany Online.
2. 1816 John Taylor Environs of Dublin Map - Dublin Historic Maps, Boundaries and OSM Miscellany Online.
3. OSI 6 Inch Ordinace Survey Map 1829-43 - The Glucksman Library Trinity College Dublin.
4. 1851 Survey of Town \& Lands of Malahide, Co. Dublin. The Estate of the Right Hon. Lord Talbot of Malahide. Irish Architectural Archive.
5. 1869 OSI Ordinace Survey Map - The Glucksman Library Trinity College Dublin.
6. 1897-1913 25 inch OSI Map - GeoHive Map Viewer Online
7.1940 Ordinace Survey Map - The Glucksman Library Trinity College Dublin.

Imagery

1. National Architectural Archive Ireland
2. Fingal Co. Co. Local Studies Office
3. Malahide Library
4. National Library of Ireland

Appendix A
Photographic Study - New Street Elevation

A Conservation Report
Photographic Study - New Street Elevations

A Conservation Report

Photographic Study - New Street Elevations

Building 1

Building 1

Building 2

A |Conservation Report

Photographic Study - New Street Elevations

A Conservation Report

Photographic Study - New Street Elevations

A ${ }^{\text {Conservation Report }}$

Photographic Study - New Street Elevations

Building 3

A Conservation Report

Photographic Study - New Street Elevations

Building 4

A Conservation Report
 Photographic Study - New Street Elevations

Building 5

Ross Cottages (Laneway), Malahide

A Conservation Report

Photographic Study - New Street Elevations

Building 7

A | Conservation Report

Photographic Study - New Street Elevations

Building 8

A | Conservation Report

Photographic Study - New Street Elevations

Building 9

A Conservation Report

Photographic Study - New Street Elevations

Building 9

Building 10

Building 10

Building 12

Building 13

A
Conservation Report
Photographic Study - New Street Elevations

Building 13

A ${ }^{\text {Conservation Report }}$

Photographic Study - New Street Elevations

Ross Cottages

Ross Cottages

Ross Cottages

Ross Cottages

8 Conservation Report

Appendix B - Point Cloud Survey Drawings - New Street \& Diamond

Elevation A-1:200

Elevation A (Cont) - 1:200

Elevation B-1:200

Key Map

8 Conservation Report

Appendix B - Point Cloud Survey Drawings - New Street \& Diamond

Elevation C-1:200

Elevation E-1:200

Elevation D-1:200

Elevation F-1:200

APPENDIX D

Report for Screening for Appropriate Assessment by Faith Wilson Ecological Consultant

Public Realm Improvements for a Pedestrianised New Street

Appropriate Assessment Screening Report

27th February 2023

Faith Wilson

ECOLOGICAL CONSULTANT

Faith Wilson Ecological Consultant BSc (Hons) CEnv MCIEEM
Kestrel Ridge, Tigroney West, Vale of Avoca,, Co. Wicklow

Public Realm Improvements for a Pedestrianised New Street

Appropriate Assessment Screening Report

Table of Contents

1. INTRODUCTION 3
1.1 Background 3
1.2 Legislative Background 3
1.3 Methodology 6
1.4 Guidance and Data Sources 8
1.5 Stages of Appropriate Assessment 9
2. SCREENING FOR APPROPRIATE ASSESSMENT 10
2.1 Project Description 10
2.2 Desk Study 15
2.3 Description of the Receiving Environment 15
2.4 Identification of European Sites 17
2.5 Site Location and European Sites 19
2.6 Identification of Potential Likely Significant Effects on European Sites 39
2.6.1 Overview of the Proposed Development 39
2.6.2 Potential Impacts from the Proposed Development on European Sites40
2.7 Mitigation Specific to European Sites 57
2.8 In Combination Effects 58
2.9 Screening Assessment Conclusion 62
3. REFERENCES 64
4. APPENDICES 68

Public Realm Improvements for a Pedestrianised New Street

Appropriate Assessment Screening Report

1. INTRODUCTION

1.1 Background

Fingal County Council (Environment, Climate Action \& Active Travel Department) are proposing public realm improvements for a pedestrianised New Street in Malahide. The development extends to the full length of New Street (being approximately 150 m , with an area of 0.22 ha) from Main Street/ The Mall (also known as The Diamond) in the south to Strand Street to the north at Malahide, Co. Dublin.

Dermot Foley Landscape Architects (DFLA) were appointed by Fingal County Council (FCC) to lead an Integrated Design Team (IDT) for the design of public realm improvements for a pedestrianised New Street in Malahide. The IDT were engaged to develop the project from Stage 1 (Preliminary) through to Stage 2A (Developed Design \& Planning).

Faith Wilson Ecological Consultant was commissioned by DFLA to prepare an Appropriate Assessment Screening Report for the proposed public realm improvements for a pedestrianised New Street in Malahide, Co. Dublin on behalf of Fingal County Council (FCC).

This report has been completed by Faith Wilson BSc CEnv MCIEEM. Faith is a highly experienced and qualified ecologist, with over twenty five years of experience in ecological and environmental surveys and consultancy, across a wide range of sectors. Faith is a Chartered Environmentalist (CEnv) and a full member of the Chartered Institute of Ecology and Environmental Management (CIEEM).

This report contains information to assist the competent authority to undertake the screening for Appropriate Assessment in respect of the proposed public realm improvements at New Street in Malahide, Co. Dublin. This report was carried out in accordance with the legal context outlined in Section 1.2.

1.2 Legislative Background

The aim of the European Habitats Directive (Council Directive 92/43/EEC on the conservation of wild habitats and of wild fauna and flora) is to create a network of protected wildlife sites across Europe, which are to be maintained at a favourable conservation status.

Each member state must designate their most important natural areas as Special Areas of Conservation (SAC). The Directive specifies the scientific criteria on the basis of which SAC sites must be selected and very strictly curtails the grounds that can be used as justification for impacting on a site. The network of sites is referred to as the NATURA 2000 network and
includes SACs (Special Areas of Conservation) for protected habitats and species and SPAs (Special Protection Areas) for birds, which are designated under the European Birds Directive (Council Directive 79/409/EEC as amended by Directive 2009/147/EC).

It is a requirement of the Habitats Directive ((92/43/EEC) that the competent authority must ensure that a proposal, which is likely to have a significant effect on an SAC or SPA, is authorised only where the competent authority is satisfied it will not adversely affect the integrity of the Natura 2000 site and that an appropriate assessment of the implications of the development for the conservation status of the site is undertaken.

The European Parliament, in a communication to the European Council in September 2000, states:
"The implementation of the European Habitats Directive and Birds Directive, both with respect to species conservation and with respect to the establishment of the Natura 2000 network, is one of the most important tools for achieving the objectives of the Convention on Biological Diversity in the European Union and member states (European Parliament 2000)".

Article 6 of the Habitats Directive provides a strict assessment procedure for any plan or project not directly connected with or necessary to the management of a European site but is likely to have a significant effect on the site in view of the site's conservation objectives. The proposed public realm improvements are not directly connected with or necessary for the management of any European Site.

Articles 6(3) and 6(4) of the Habitats Directive set out the decision-making tests for plans and projects likely to have a significant effect on Natura 2000 sites (Annex 1.1).

Article 6(3) establishes the requirement for Appropriate Assessment (AA):
"Any plan or project not directly connected with or necessary to the management of the [Natura 2000] site but likely to have a significant effect thereon, either individually or in combination with other plans or projects, shall be subjected to appropriate assessment of its implications for the site in view of the site's conservation objectives. In light of the conclusions of the assessment of the implications for the site and subject to the provisions of paragraph 4, the competent national authorities shall agree to the plan or project only after having ascertained that it will not adversely affect the integrity of the site concerned and, if appropriate, after having obtained the opinion of the general public."

Article 6(4) states:
"If, in spite of a negative assessment of the implications for the [Natura 2000] site and in the absence of alternative solutions, a plan or project must nevertheless be carried out for imperative reasons of overriding public interest, including those of a social or economic nature, Member States shall take all compensatory measures necessary to ensure that the overall coherence of Natura 2000 is protected. It shall inform the Commission of the compensatory measures adopted. Where the site concerned hosts a priority natural habitat type and/or a priority species, the only
considerations which may be raised are those relating to human health or public safety, to beneficial consequences of primary importance for the environment or, further to an opinion from the Commission, to other imperative reasons of overriding public interest."

In Ireland, the requirements of Article 6(3) and (4) of the Habitats Directive have been transposed into Irish law by Part XAB of the Planning and Development Act 2000 (as amended) (the " $\mathbf{2 0 0 0}$ Act") and by the European Communities (Birds and Natural Habitats) Regulations 2011 (S.I. No. 477 of 2011) (as amended) (the "2011 Regulations").

In relation to AA Screening, Section $177 \mathrm{U}(1)$ of the 2000 Act provides that " A screening for appropriate assessment of a draft Land use plan or application for consent for proposed development shall be carried out by the competent authority to assess, in view of best scientific knowledge, if that Land use plan or proposed development, individually or in combination with another plan or project is likely to have a significant effect on the European site."

Section 177U(5) of the 2000 Act goes on to provide that "The competent authority shall determine that an appropriate assessment of a draft Land use plan or a proposed development, as the case may be, is not required if it can be excluded, on the basis of objective information, that the draft Land use plan or proposed development, individually or in combination with other plans or projects, will have a significant effect on a European site."

Similarly, Regulation 42 of the 2011 Regulations provides as follows:-
"42. (1) A screening for Appropriate Assessment of a plan or project for which an application for consent is received, or which a public authority wishes to undertake or adopt, and which is not directly connected with or necessary to the management of the site as a European Site, shall be carried out by the public authority to assess, in view of best scientific knowledge and in view of the conservation objectives of the site, if that plan or project, individually or in combination with other plans or projects is likely to have a significant effect on the European site.
(2) A public authority shall carry out a screening for Appropriate Assessment under paragraph (1) before consent for a plan or project is given, or a decision to undertake or adopt a plan or project is taken.
(7) The public authority shall determine that an Appropriate Assessment of a plan or project is not required where the plan or project is not directly connected with or necessary to the management of the site as a European Site and if it can be excluded on the basis of objective scientific information following screening under this Regulation, that the plan or project, individually or in combination with other plans or projects, will have a significant effect on a European site."

1.3 Methodology

This report is based on a desk study, a site visit conducted in August 2022, and a review of the other reports created by the members of the integrated design team which are presented in the Appendices. These include the:

- Site Location and Site Layout Plans prepared by DFLA.
- Archaeological Assessment by Archaeology Plan.
- Architectural Heritage Assessment by Coady Architects.
- Design Rationale - Landscape Architecture by DFLA.
- Environmental Impact Assessment Screening Report by BMA Planning.
- Engineering Planning Report by Punch Consulting Engineers.
- Construction Management Plan by Punch Consulting Engineers.
- Construction \& Demolition Waste Management Plan by Punch Consulting Engineers.
- Site Specific Flood Risk Assessment by Punch Consulting Engineers.
- Traffic \& Transport Assessment by Punch Consulting Engineers.
- Arboricultural Report by the Tree File Consulting Arborists.
- Mechanical and Electrical Services Installations Report by Axis Consulting Engineers.

The assessment was undertaken in July and August 2022 of the proposed development site at New Street and its environs. The assessment focussed on habitats and species that are listed as Qualifying Interests (QI) (in the case of SACs) and Special Conservation Interests (SCI) (in the case of SPAs) for European Sites. Assessments of habitat suitability for species with links to European Sites were undertaken, in order to appraise the potential for ex-situ effects on European Sites.

Information was collated from a variety of data sources, organisations and websites. These include:

- Fingal County Council (FCC)
- Environmental Protection Agency (EPA)
- Google Maps © 2022
- National Biodiversity Data Centre (NBDC)
- National Parks and Wildlife Service (NPWS)
- OpenStreetMap © 2022

This information was then used to determine the potential for likely significant effects arising from the proposed public realm improvements on the European Sites.

If the outcome of the screening exercise is that there are no likely significant effects, then any further stages in the Appropriate Assessment process are not required. If, based upon the currently available information, there are aspects of the proposed development that could have a significant effect on any European Sites, then further analysis in the form of a Natura Impact Statement (NIS) to inform the Appropriate Assessment is required.

The information presented in Section 2 of this report is therefore as follows:

- Description of the proposed development.
- Identification of relevant European Sites within the zone of influence of the proposed development.
- A description of the existing ecological environment/sensitive receptors at the site.
- An assessment of likely significant effects on any European Sites.
- Appropriate Assessment Screening conclusions.

1.4 Guidance and Data Sources

This report has been prepared with regard to the following guidance documents as appropriate:

- OPR Practice Note PN01. Appropriate Assessment Screening for Development Management. (Office of the Planning Regulator, 2021).
- Assessment of plans and projects in relation to Natura 2000 sites Methodological guidance on the provisions of Article 6(3) and (4) of the Habitats Directive 92/43/EEC 2021/C 437/01. (Commission notice C/2021/6913. Dated 28.10.2021).
- Assessment of Plans and Projects Significantly Affecting Natura 2000 Sites: Methodological Guidance on the Provisions of Article 6(3) and (4) of the Habitats Directive 92/43/EEC (European Commission Environment Directorate General, 2001)
- Managing Natura 2000 Sites: The Provisions of Article 6 of the Habitats Directive 92/43/EEC (Commission Notice C(2018) 7621 final, Brussels, 21.11.2018)
- Managing Natura 2000 Sites: The Provisions of Article 6 of the Habitats Directive 92/43/EEC (EC Environment Directorate General, 2000)
- Appropriate Assessment under Article 6 of the Habitats Directive: Guidance for Planning Authorities Circular NPW 1/10 \& PSSP 2/10. (Department of Environment, Heritage and Local Government, 2010).
- Appropriate Assessment of Plans and Projects in Ireland - Guidance for Planning Authorities. (Department of Environment, Heritage and Local Government, 2010 revision)
- Guidelines for Good Practice, Appropriate Assessment of Plans under Article 6(3) Habitats Directive (International Workshop on Assessment of Plans under the Habitats Directive, 2011)
- Guidance Document on Article 6(4) of the Habitats Directive 92/43/EEC. Clarification of the Concepts of Alternative Solutions, Imperative Reasons of Over-riding Public Interest, Compensatory Measures, Overall Coherence. Opinion of the European Commission (European Commission, January 2007)

1.5 Stages of Appropriate Assessment

The competent authority is required to carry out a Screening for Appropriate Assessment and, if required, an Appropriate Assessment, as required by Article 6(3) and 6(4) of the Habitats Directive, as follows:

- Stage 1: Screening for Appropriate Assessment

The first step to establishing if an appropriate assessment is required is referred to as 'screening' and its purpose is to determine, on the basis of objective information and in view of best scientific knowledge and applying the precautionary principle, if the proposed development, either individually or in combination with other plans or projects, and in the absence of mitigation is likely to have a significant effect on a Natura 2000 site in view of the sites conservation objectives. The process identifies any likely impacts upon a Natura 2000 Site, either alone or in combination with other projects or plans, and considers whether these impacts are likely to be significant.

- Stage 2: Appropriate Assessment

This is required if it cannot be excluded, on the basis of objective information, and in view of best scientific knowledge and applying the precautionary principle, that the proposed development, individually or in combination with other plans or projects, and in the absence of mitigation, will have a significant effect on a Natura 2000 site.

The appropriate assessment must include a final determination by the competent authority as to whether or not a proposed development would adversely affect the integrity of a Natura 2000 site in view of the site's conservation objectives. In order to reach a final determination, the competent authority must undertake examination, analysis and evaluation, followed by findings, conclusions and a final determination. The appropriate assessment must contain complete, precise and definitive findings and conclusions, and may not have lacunae or gaps.

- Stage 3: Assessment of Alternative Solutions

This stage examines alternative means of achieving the objectives of the project or plan that aim to avoid adverse impacts on the integrity of the Natura 2000 site.

- Stage 4: Assessment where no alternative solutions exist and where adverse impacts remain
This stage is the main derogation process outlined in Article 6(4) which examines whether there are imperative reasons of overriding public interest (IROPI) for allowing a plan or project, which will have adverse effects on the integrity of a Natura 2000 site, to proceed.

2. SCREENING FOR APPROPRIATE ASSESSMENT

2.1 Project Description

New Street (the subject site) is situated in the centre of Malahide Village. New Street is rectangular in shape, approximately 14 m wide and 150 m in length, with an area of 0.22 ha), stretching from the Diamond junction to the south, to the Malahide Marina and Strand Street junction to the north and interfacing with the recently refurbished Malahide Green as shown on Figure 2.1 below.

Prior to the outbreak of Covid-19 in March 2020, New Street, Malahide accommodated two-way traffic movement. Following a government mandate to review road networks in urban areas to identify areas that could prioritise pedestrian and cycle movements, New Street was pedestrianised from June 2020 to December 2020. This arrangement was modified to a oneway system for vehicular traffic from December 2020 to June 2021. In June 2021, Fingal County Council pedestrianised New Street. As a result, there is currently time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Diamond to New Street and two-way access from Strand Street to Ross's Terrace via New Street.

The proposed public realm improvements are now being brought forward for a pedestrianised New Street to enhance the public realm in line with local, regional and national land use planning and transportation policies.

The proposed public realm improvements for a pedestrianised New Street will bring positive impacts in terms of enhancing the streetscape at New Street and promoting active travel modes with improved facilities for pedestrians and cyclists. This AA Screening Report considers whether the pedestrianisation and proposed public realm improvements to New Street, either individually or in combination with other plans or projects, are likely to have a significant effect on any European Site(s), in view of the sites' conservation objectives, compared with the position in 2019 when there was two-way traffic on New Street. In addition, and for completeness, this AA Screening Report has also considered whether there are any such likely significant effects arising when comparing the proposed public realm improvements for a pedestrianised New Street with the current position on New Street today.

The proposed public realm improvements involve the widening of footpaths and provision of new kerb edges to the widened footpaths and public spaces on New Street, Malahide (c.150m in length, 0.22 ha). The trafficable section of New Street will be realigned and narrowed and control measures will be inserted to provide for revised traffic flow routes, restrictions, car parking and loading arrangements.

All street surfaces will be upgraded and existing street trees replaced with new trees and additional soft landscaping. Outdoor dining zones will be identified and new street furniture installed. New public lighting will be provided and the water services and utilities networks within the street will be upgraded.

The proposed public realm improvement works will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c. 150 m in length) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2 no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for $23 n o$. cycle parking spaces.
vi. Removal and replacement of 11no. existing trees with 37no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting comprising 12no. fixtures.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs (including regulatory signs which give effect to a pedestrianisation of New Street) in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed works are further detailed and outlined in the following reports and assessments, which accompany this report and are presented in the Appendices:

- Site Location and Site Layout Plans prepared by DFLA.
- Archaeological Assessment by Archaeology Plan.
- Architectural Heritage Assessment by Coady Architects.
- Design Rationale - Landscape Architecture by DFLA
- Environmental Impact Assessment Screening Report by BMA Planning.
- Engineering Planning Report by Punch Consulting Engineers.
- Construction Management Plan by Punch Consulting Engineers.
- Construction \& Demolition Waste Management Plan by Punch Consulting Engineers.
- Site Specific Flood Risk Assessment by Punch Consulting Engineers.
- Traffic \& Transport Assessment by Punch Consulting Engineers.
- Arboricultural Report by the Tree File Consulting Arborists.
- Mechanical and Electrical Services Installations Report by Axis Consulting Engineers.

The proposed public realm improvements for a pedestrianised New Street are shown on Figure 2.2 below and consist of a variety of both soft and hard landscaping elements.

Figure 2.1 Site Location - outlined in red.

Figure 2.2 Proposed Public Realm Improvements at New Street, Malahide, Co. Dublin (Source: DFLA).

2.2 Desk Study

In addition to a site visit on 31 August 2022, a desk study was carried out to collate the available information on the ecological environment potentially impacted by the proposed public realm improvements at New Street and to determine the proximity of the proposed development to designated areas for conservation.

A review of existing information on European Sites, their Qualifying Interests and Conservation Objectives, and other available information on the terrestrial and marine ecology in the vicinity of the proposed development was conducted.

Data sources relevant to each European site include the Site Synopsis, Conservation Objectives, the Conservation Objectives backing documents, and the Natura 2000 Standard Data Form, all of which are publicly available online at www.npws.ie were also reviewed.

The National Parks and Wildlife Service (NPWS) of the Department of Housing, Local Government and Heritage database of designated conservation areas and NPWS records of rare and protected plant species as listed under the Irish Red List - Vascular Plants (Wyse Jackson, et al. 2016) or protected under the Flora (Protection) Order 2022 were checked with regard to the location of the lands at New Street.

Information on protected species of fauna and flora listed for protection under Annex II of the EU Habitats Directive (92/43/EEC), Annex I of the Birds Directive (79/409/EEC) and the Wildlife (Amendment) Act (2000) was also sought from NPWS, the National Biodiversity Data Centre and published sources.

Further ecological information was gathered in relation to the study area by examining GIS datasets, maps and aerial photographs, and by drawing on other existing information.

2.3 Description of the Receiving Environment

New Street was visited for the purposes of this AA Screening Report on 31st August 2022. The existing public realm at New Street is that of the built environment, which is urban, hard-standing and impervious in nature. From consultation with Fingal County Council and a review of Google Street view imagery the only significant changes to the streetscape since 2020 has been the removal of two-way traffic movement and time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Diamond to New Street and two-way access from Strand Street to Ross's Terrace via New Street. However, this AA Screening Report considers whether the pedestrianisation and proposed public realm improvements to New Street, either individually or in combination with other plans or projects, are likely to have a significant effect on any European Site(s), in view of the sites' conservation objectives, compared with the position in 2019 when there was two-way traffic on New Street. In addition, and for completeness, as is evident from the content of this AA Screening Report, it has also considered
whether there are any such likely significant effects arising when comparing the proposed public realm improvements for a pedestrianised New Street with the current position on New Street today.

There are no areas of natural habitat present except for a treeline of large Norway Maple (Acer platanoides), which are of planted origin. These street trees run along the western footpath of the street as shown on the tree survey drawings and arboricultural impact assessment prepared by The Tree File Ltd (2023). An additional smaller alignment is situated at the eastern side, close to the junction with Strand Street. There are 11 no. trees in total within New Street. 3 trees have been identified by the project arborist as 'Category B2' which are of moderate quality and 7 trees are noted as 'Category C2', of generally poor-quality and of limited value. Tree no. 1782, to the north, has been classed as 'Category U'. This tree has been identified as unsuitable for retention due to extensive damage and decay/fracture of underlying timber observed. A series of window boxes, planters, etc. containing ornamental planting are found throughout the streetscape.

Plate 1. Photo taken from the centre of New Street, looking south, towards the Diamond.

Plate 2. Photo taken from New Street, looking east, towards the laneway to the Ross Cottages.

Plate 3. Photo taken at the entrance to Malahide Green, looking towards the Marina.

2.4 Identification of European Sites

In line with the guidance documents listed above in Section 1.4 a review of all European Sites that could be potentially affected by the proposed project was made using the NPWS online map viewer. These included any European Sites within or adjacent to the lands at New Street and any European Sites within the zone of impact of the proposed development
(using the source - pathway - receptor model) including any downstream. These are summarised in Table 2.5.1 below.

The source-pathway-receptor model, dictates that, for an effect to occur, there must be a 'source' (such as a construction site); a 'receptor' (such as a designated site for nature conservation); and a 'pathway' between the two (such as a watercourse). If there is a possibility of ecological or environmental impacts occurring this is identified as a potential effect. The level and significance of that effect depends upon the nature and exposure to the potential effect and the characteristics of the receptor. Although there may be a risk of an effect, it may not necessarily occur, and if it does occur, it may not be significant.

There are no set recommended distances for projects to consider European Sites as being relevant for assessment. DoEHLG (2010, pp. 31 - 32) states that:
"The approach to screening is likely to differ somewhat for plans and projects, depending on scale and on the likely effects, but the following should be included:

1. Any Natura 2000 sites within or adjacent to the plan or project area
2. Any Natura 2000 sites within the likely zone of impact of the plan or project. A distance of 15 km is currently recommended in the case of plans, and derives from UK guidance (Scott Wilson et al., 2006). For projects, the distance could be much less than 15 km , and in some cases less than 100 m , but this must be evaluated on a case-by-case basis with reference to the nature, size and location of the project, and the sensitivities of the ecological receptors, and the potential for in combination effects
3. Natura 2000 sites that are more than 15 km from the plan or project area depending on the likely impacts of the plan or project, and the sensitivities of the ecological receptors, bearing in mind the precautionary principle. In the cases of sites with water dependent habitats or species, and a plan or project that could affect water quality or quantity, for example, it may be necessary to consider the full extent of the upstream and/or downstream catchment."

It is common practice to include all European Sites within 15 km when conducting a screening for appropriate assessment. In some situations a whole river catchment or a groundwater aquifer may need to be included if there are hydrological connections. In some situations such as where bird flight paths are involved and potential barriers such as wind turbines are proposed, there may be the potential for impacts on SPAs more than 15 km away. In this assessment both sites within a 15 km radius of New Street and those identified using the source-pathway-receptor model have been considered.

2.5 Site Location and European Sites

The lands at New Street, Malahide are not currently designated for any nature conservation purposes. A number of European designated sites occur in the vicinity of Malahide as shown on Figure 2.3 below. There are nineteen European Sites designated for nature conservation (nine Special Areas of Conservation (SACs) and ten Special Protection Areas (SPAs)) within the general environs of New Street and Malahide Village. These are known collectively as Natura 2000 sites and are as follows;

- Baldoyle Bay SAC (Site Code: 000199)
- Baldoyle Bay SPA (Site Code: 004016)
- Howth Head Coast SPA (Site Code: 004113)
- Howth Head SAC (Site Code: 000202)
- Ireland's Eye SAC (Site Code: 002193)
- Ireland's Eye SPA (Site Code: 004117)
- Lambay Island SAC (Site Code: 000204)
- Lambay Island SPA (Site Code: 004069)
- Malahide Estuary SAC (Site Code: 000205)
- Malahide Estuary SPA (Site Code: 004025)
- North Bull Island SPA (Site Code: 004006)
- North Dublin Bay SAC (Site Code: 000206)
- Rockabill SPA (Site Code: 004014)
- Rockabill to Dalkey Islands SAC (Site Code: 003000)
- Rogerstown Estuary SAC (Site Code: 000208)
- Rogerstown Estuary SPA (Site Code: 004015)
- Skerries Islands SPA (Site Code: 004122)
- South Dublin Bay SAC (Site Code: 000210)
- South Dublin Bay/Tolka Estuary SPA (Site Code: 004024)

The most relevant of these for the purposes of this AA Screening Report is the Malahide Estuary SAC (Site Code: 000205) and Malahide Estuary SPA (Site Code: 004025), the boundaries of which are shown on Figure 2.4 and 2.5 below. They are located within 200m of New Street as shown on Figure 2.6 and 2.7 below. Surface waters from New Street currently provide a hydrological link (using the source - pathway - receptor model) from New Street to these sites.

Figure 2.3. Natura 2000 sites and pNHAs within the zone of influence (sites within a 15 km radius of New Street and those identified using the source-pathway-receptor model) of the New Street public realm improvements. The indicative location of New Street is indicated by the red arrow

Figure 2.4. Malahide Estuary SAC (Site Code: 000205). (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SAC 000205).

Figure 2.5. Malahide Estuary SPA (Site Code: 004025). (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SPA 004025.)
 Street (indicated by the red arrow). (Source: National Parks and Wildife Service).

Figure 2.7. Malahide Estuary SAC (Site Code: 000205) (shown in orange hatching) and Malahide Estuary SPA (Site Code: 004025) (shown in black hatching) are in close proximity to and downslope of New Street (indicated by the red outline). (Source: National Biodiversity Data Centre).

Conservation Objectives:

Detailed site specific conservation objectives are available for the European Sites within the zone of influence of the proposed development. The conservation objectives for each of the European Sites outlined above were examined on the $18^{\text {th }}$ October 2022 and rechecked on $13^{\text {th }}$ February 2023 and are summarised below in Table 2.5.1.

Hydrological Links to European Sites:

The current surface water system from New Street outfalls into the estuary at the marina and near the Strand Street/James Terrace corner. There is therefore an existing hydrological link between New Street and the Malahide Estuary SAC (Site Code: 000205) and Malahide Estuary SPA (Site Code: 004025).

National Designations for Nature Conservation

Some of these Natura 2000 sites and a number of other sites in the area are also designated as proposed Natural Heritage Areas (pNHAs). There are eighteen in total, as shown on Figure 2.3 below, include:

- Baldoyle Bay pNHA (Site Code: 000199),
- Bog of the Ring pNHA (Site Code: 001204),
- Dolphins, Dublin Docks pNHA (Site Code: 000201),
- Feltrim Hill pNHA (Site Code: 001218),
- Grand Canal pNHA (Site Code: 002104),
- Howth Head pNHA (Site Code: 000202),
- Ireland's Eye pNHA (Site Code: 000203),
- Knock Lake pNHA (Site Code: 001203),
- Lambay Island pNHA (Site Code: 000204),
- Loughshinny Coast pNHA (Site Code: 002000),
- Malahide Estuary pNHA (Site Code: 000205),
- North Dublin Bay pNHA (Site Code: 000206),
- Portraine Shore pNHA (Site Code: 001215),
- Rogerstown Estuary pNHA (Site Code: 000208),
- Royal Canal pNHA (Site Code: 002103),
- Santry Demesne pNHA (Site Code: 000178),
- Sluice River Marsh pNHA (Site Code: 001763),
- South Dublin Bay pNHA (Site Code: 000210).

Table 2.5.1. Designated European Sites of relevance to the proposed public realm proposals at New Street.

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
000205	Malahide Estuary SAC	0.2 km N	Source: NPWS (2013). Conservation Objectives: Malahide Estuary SAC 000205. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the Annex I habitats for which the SAC has been selected: - (1140) Mudflats and sandflats not covered by seawater at low tide - (1310) Salicornia and other annuals colonizing mud and sand - (1320) Spartina swards (Spartinion maritimae) - (1330) Atlantic salt meadows (Glauco-Puccinellietalia maritimae) - (1410) Mediterranean salt meadows (Juncetalia maritimi) - (2130) Fixed coastal dunes with herbaceous vegetation (grey dunes)* - (2120) Shifting dunes along the shoreline with Ammophila arenaria (white dunes)	The surface waters (i.e. the run-off from the hard surfaces associated with New Street) from New Street currently discharge in an untreated manner to the waters of the Malahide Estuary SAC via the existing stormwater network thereby forming a Source-Pathway-Receptor Link between the proposed development and this Natura 2000 site. It is likely that private foul pipes are currently discharging to the stormwater network given the absence of a dedicated foul line on New Street. The surface water runoff from New Street is currently likely to contain foul waste as well as contaminants and pollutants such as vehicle fuel, oils and other hydro-carbons from vehicles, as well as other waste and litter. During the construction phase, any emission of surface waters from the streetscape to the existing surface water infrastructure will be minor given the nature of the works and are not likely to have a significant effect on any European Site. During the operational phase, the proposed public realm improvements will not lead to any increase in the

| Site
 Code | Site Name
 and
 Designation | Approximate
 distance from
 New Street | Qualifying Interest and Conservation Objectives |
| :--- | :--- | :--- | :--- | :--- |
| | | | Discussion of Source-Pathway-
 Receptor Link/Potential for Likely
 Significant Effects |

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
004025	Malahide Estuary SPA	0.2 km N	Source: NPWS (2013). Conservation Objectives: Malahide Estuary SPA 004025. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 th February 2023. To maintain the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Great Crested Grebe (Podiceps cristatus) [A005] - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - Shelduck (Tadorna tadorna) [A048] - Pintail (Anas acuta) [A054] - Goldeneye (Bucephala clangula) [A067] - Red-breasted Merganser (Mergus serrator) [A069] - Oystercatcher (Haematopus ostralegus) [A130] - Golden Plover (Pluvialis apricaria) [A140] - Grey Plover (Pluvialis squatarola) [A141] - Knot (Calidris canutus) [A143] - Dunlin (Calidris alpina) [A149] - Black-tailed Godwit (Limosa limosa) [A156] - Bar-tailed Godwit (Limosa lapponica) [A157] - Redshank (Tringa totanus) [A162] - Wetland and Waterbirds [A999] To maintain the favourable conservation condition of the wetland habitat in Malahide Estuary SPA as a resource for the regularlyoccurring migratory waterbirds that utilise it.	The surface waters (i.e. the run-off from the hard surfaces associated with New Street) from New Street currently discharge in an untreated manner to the waters of the Malahide Estuary SPA via the existing stormwater network thereby forming a Source-Pathway-Receptor Link between the proposed development and this Natura 2000 site. It is likely that private foul pipes are currently discharging to the stormwater network given the absence of a dedicated foul line on New Street. The surface water runoff from New Street is currently likely to contain foul waste as well as contaminants and pollutants such as vehicle fuel, oils and other hydro-carbons from vehicles, as well as other waste and litter. During the construction phase, any emission of surface waters from the streetscape to the existing surface water infrastructure will be minor given the nature of the works and are not likely to have a significant effect on any European Site. During the operational phase, the proposed public realm improvements will not lead to any increase in the amount of surface water run-off from

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
				contaminants and pollutants it contains. Therefore, even without taking into account any SUDs measures, there is no possibility of any likely significant effects on the European Site arising from the proposed development (either during the construction or operational phase) and there is no reasonable scientific doubt in relation to this conclusion. In fact, the permanent pedestrianisation of New Street, with limited vehicular access for deliveries to the street, is to be welcomed as some of these pollutants will be reduced from the streetscape resulting in a positive effect. Furthermore, the project design includes the provision of a dedicated foul line serving New Street which will remove any foul effluent from the surface water network with positive effects on the qualifying interests of the Malahide Estuary SPA. The water quality of surface waters leaving the street will be further improved by the public realm design as the surface waters will pass through the proposed bio-retention areas prior to discharge and the water quality within the surface water run-off will be significantly improved as a result.
000199	Baldoyle Bay SAC	3.7 km SE	Source: NPWS (2012). Conservation Objectives: Baldoyle Bay SAC 000199. Version 1.0. National Parks and Wildlife Service,	There is no direct or in-direct Source-Pathway-Receptor link between this site

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			Department of Arts, Heritage and the Gaeltacht. Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the Annex I habitats for which the SAC has been selected: - (1140) Mudflats and sandflats not covered by seawater at low tide - (1310) Salicornia and other annuals colonizing mud and sand - (1330) Atlantic salt meadows (Glauco-Puccinellietalia maritimae) - (1410) Mediterranean salt meadows (Juncetalia maritimi)	and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary not in a southerly direction to Baldoyle Bay. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Baldoyle Bay. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004016	Baldoyle Bay SPA	3.7 km SE	Source: NPWS (2013). Conservation Objectives: Baldoyle Bay SPA 004016. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - \quad Shelduck (Tadorna tadorna) [A048] - Ringed Plover (Charadrius hiaticula) [A137] - Golden Plover (Pluvialis apricaria) [A140] - Grey Plover (Pluvialis squatarola) [A141] - Bar-tailed Godwit (Limosa lapponica) [A157] - Wetland and Waterbirds [A999] To maintain the favourable conservation condition of the wetland habitat in Baldoyle Bay SPA.	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary not in a southerly direction to Baldoyle Bay. Surface waters from New Street drain in a northerly direction to Malahide Estuary not in a southerly direction to Baldoyle Bay. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Baldoyle Bay. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
003000	Rockabill to Dalkey Islands SAC	5.4 km E	Source: NPWS (2013). Conservation Objectives: Rockabill to Dalkey Island SAC 003000. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the Annex I habitat and the Annex II species for which the SAC has been selected: - (1170) Reefs - (1351) Harbour Porpoise (Phocoena phocoena)	northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Rockabill to Dalkey Islands SAC. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
000208	Rogerstown Estuary SAC	5.4 km N	Source: NPWS (2013). Conservation Objectives: Rogerstown Estuary SAC 000208. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the Annex I habitats for which the SAC has been selected: - (1130) Estuaries - (1140) Mudflats and sandflats not covered by seawater at low tide - (1310) Salicornia and other annuals colonizing mud and sand - (1330) Atlantic salt meadows (Glauco-Puccinellietalia maritimae) - (1410) Mediterranean salt meadows (Juncetalia maritimi) - (2120) Shifting dunes along the shoreline with Ammophila arenaria (white dunes) - (2130) Fixed coastal dunes with herbaceous vegetation (grey dunes)*	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Rogerstown Estuary SAC. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004015	Rogerstown Estuary SPA	5.4 km N	Source: NPWS (2013). Conservation Objectives: Rogerstown Estuary SPA 004015. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023.	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			To maintain the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Greylag Goose (Anser anser) [A043] - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - \quad Shelduck (Tadorna tadorna) [A048] - Shoveler (Anas clypeata) [A056] - Oystercatcher (Haematopus ostralegus) [A130] - Ringed Plover (Charadrius hiaticula) [A137] - Grey Plover (Pluvialis squatarola) [A141] - Knot (Calidris canutus) [A143] - Dunlin (Calidris alpina) [A149] - Black-tailed Godwit (Limosa limosa) [A156] - Redshank (Tringa totanus) [A162] - Wetland and Waterbirds [A999] To maintain the favourable conservation condition of wetland habitat in Rogerstown Estuary SPA as a resource for the regularly occurring migratory waterbirds that utilise it.	Estuary and hence the Irish Sea would be diluted before reaching Rogerstown Estuary SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004117	Ireland's Eye SPA	6.8 km SE	Source: NPWS (2022). Conservation objectives for Ireland's Eye SPA [004117]. First Order Site-specific Conservation Objectives Version 1.0. Department of Housing, Local Government and Heritage. Accessed $18^{\text {th }}$ October 2022 and checked on $13^{\text {th }}$ February 2023. To maintain or restore the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Cormorant (Phalacrocorax carbo) [A017] - Herring Gull (Larus argentatus) [A184] - Kittiwake (Rissa tridactyla) [A188] - Guillemot (Uria aalge) [A199] - Razorbill (Alca torda) [A200]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Ireland's Eye SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
000206	North Dublin Bay SAC	7.3 km SE	Source: NPWS (2013). Conservation Objectives: North Dublin Bay SAC 000206. Version 1. National Parks and Wildlife Service,	There is no direct or in-direct Source-Pathway-Receptor link between this site

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			Department of Arts, Heritage and the Gaeltacht. Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain or restore the favourable conservation condition of the Annex I habitat(s) and/or the Annex II species for which the SAC has been selected: - (1140) Mudflats and sandflats not covered by seawater at low tide - (1210) Annual vegetation of drift lines - (1310) Salicornia and other annuals colonizing mud and sand - (1320) Spartina swards (Spartinion maritimae) - (1330) Atlantic salt meadows (Glauco-Puccinellietalia maritimae) - (1395) Petalwort (Petalophyllum ralfsii) - (1410) Mediterranean salt meadows (Juncetalia maritimi) - (2110) Embryonic shifting dunes - (2120) Shifting dunes along the shoreline with Ammophila arenaria (white dunes) - (2130) Fixed coastal dunes with herbaceous vegetation (grey dunes) - (2190) Humid dune slacks	and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching North Dublin Bay SAC. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004006	North Bull Island SPA	7.3km SE	Source: NPWS (2015). Conservation Objectives: North Bull Island SPA 004006. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - Shelduck (Tadorna tadorna) [A048] - Teal (Anas crecca) [A052] - Pintail (Anas acuta) [A054] - Shoveler (Anas clypeata) [A056]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching North Bull Island SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.

| Site
 Code | Site Name
 and
 Designation | Approximate
 distance from
 New Street | Qualifying Interest and Conservation Objectives | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | - Oystercatcher (Haematopus ostralegus) [A130]
 - Golden Plover (Pluvialis apricaria) [A140]
 - Grey Plover (Pluvialis squatarola) [A141]
 - Knot (Calidris canutus) [A143]
 - Sanderling (Calidris alba) [A144]
 - Dunlin (Calidris alpina) [A149]
 - Black-tailed Godwit (Limosa limosa) [A156]
 - Bar-tailed Godwit (Limosa lapponica) [A157]
 - Curlew (Numenius arquata) [A160]
 - Redshank (Tringa totanus) [A162]
 - Turnstone (Arenaria interpres) [A169]
 - Black-headed Gull (Chroicocephalus ridibundus) [A179]
 - Wetland and Waterbirds [A999] | Discussion of Source-Pathway-
 Receptor Link/Potential for Likely
 Significant Effects |

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			habitat and the Annex II species for which the SAC has been selected: - (1230) Vegetated sea cliffs of the Atlantic and Baltic coasts - (1170) Reefs - (1364) Halichoerus grypus - (1265) Phoca vitulina	diluted before reaching Lambay Island SAC. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004069	Lambay Island SPA	9.1 km NE	Source: NPWS (2022) Conservation objectives for Lambay Island SPA [004069]. First Order Site-specific Conservation Objectives Version 1.0. Department of Housing, Local Government and Heritage. Accessed 18 th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the bird species listed as Special Conservation Interests for this SPA: - Fulmar (Fulmarus glacialis) [A009] - Cormorant (Phalacrocorax carbo) [A017] - Shag (Phalacrocorax aristotelis) [A018] - Greylag Goose (Anser anser) [A043] - Lesser Black-backed Gull (Larus fuscus) [A183] ^ - Herring Gull (Larus argentatus) [A184] ^ - Kittiwake (Rissa tridactyla) [A188] - Guillemot (Uria aalge) [A199] - Razorbill (Alca torda) [A200] - Puffin (Fratercula arctica) [A204]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Lambay Island SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
000202	Howth Head SAC	9.2 km SE	Source: NPWS (2016). Conservation Objectives: Howth Head SAC 000202. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs. Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain or restore the favourable conservation condition of the Annex I habitats for which the SAC has been selected: - Vegetated sea cliffs of the Atlantic and Baltic coasts [1230]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Howth Head SAC.

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			- European dry heaths [4030]	Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004113	Howth Head Coast SPA	9.4 km SE	Source: NPWS (2022). Conservation objectives for Howth Head Coast SPA [004113]. First Order Site-specific Conservation Objectives Version 1.0. Department of Housing, Local Government and Heritage. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain or restore the favourable conservation condition of the bird species listed as Special Conservation Interests for this SPA: - Kittiwake (Rissa tridactyla) [A188]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Howth Head Coast SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004024	South Dublin Bay and River Tolka Estuary SPA	10.3 km S	Source: NPWS (2015). Conservation Objectives: South Dublin Bay and River Tolka Estuary SPA 004024. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the bird species listed as Qualifying Interests for this SPA: - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - Oystercatcher (Haematopus ostralegus) [A130] - Ringed Plover (Charadrius hiaticula) [A137] - Grey Plover (Pluvialis squatarola) [A141] - Knot (Calidris canutus) [A143] - Sanderling (Calidris alba) [A144] - Dunlin (Calidris alpina) [A149] - Bar-tailed Godwit (Limosa lapponica) [A157]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching South Dublin Bay and River Tolka Estuary SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			- Redshank (Tringa totanus) [A162] - Black-headed Gull (Chroicocephalus ridibundus) [A179] - Roseate Tern (Sterna dougallii) [A192] - Common Tern (Sterna hirundo) [A193] - Arctic Tern (Sterna paradisaea) [A194] - Wetland and Waterbirds [A999] To maintain the favourable conservation condition of wetland habitat in South Dublin and the River Tolka Estuary SPA as a resource for the regularly occurring migratory waterbirds that utilise it.	
000210	South Dublin Bay SAC	12.3 km S	Source: NPWS (2013). Conservation Objectives: South Dublin Bay SAC 000210. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18th October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain or restore the favourable conservation condition of the Annex I habitats for which the SAC has been selected: - Mudflats and sandflats not covered by seawater at low tide [1140] - Annual vegetation of drift lines [1210] - Salicornia and other annuals colonising mud and sand [1310] - Embryonic shifting dunes [2110]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching South Dublin Bay SAC. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004122	Skerries Islands SPA	13.6 km NE	Source: NPWS (2022) Conservation objectives for Skerries Islands SPA [004122]. First Order Site specific Conservation Objectives Version 1.0. Department of Housing, Local Government and Heritage. Accessed 18th October 2022 and checked on 13 th February 2023. To maintain the favourable conservation condition of the bird species listed as Special Conservation Interests for this SPA: - Cormorant (Phalacrocorax carbo) [A017]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Skerries Islands SPA.

Site Code	Site Name and Designation	Approximate distance from New Street	Qualifying Interest and Conservation Objectives	Discussion of Source-PathwayReceptor Link/Potential for Likely Significant Effects
			- Shag (Phalacrocorax aristotelis) [A018] - Light-bellied Brent Goose (Branta bernicla hrota) [A046] - Purple Sandpiper (Calidris maritima) [A148] - Turnstone (Arenaria interpres) [A169] - Herring Gull (Larus argentatus) [A184]	Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.
004014	Rockabill SPA	14.1 km NE	Source: NPWS (2013) Conservation Objectives: Rockabill SPA 004014. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht. Accessed 18 ${ }^{\text {th }}$ October 2022 and checked on 13 ${ }^{\text {th }}$ February 2023. To maintain the favourable conservation condition of the bird species listed as Special Conservation Interests for this SPA: - Purple Sandpiper (Calidris maritima) [A148] - Roseate Tern (Sterna dougallii) [A192] - Common Tern (Sterna hirundo) [A193] - Arctic Tern (Sterna paradisaea) [A194]	There is no direct or in-direct Source-Pathway-Receptor link between this site and the proposed development. Surface waters from New Street drain in a northerly direction to Malahide Estuary. Any surface waters entering Malahide Estuary and hence the Irish Sea would be diluted before reaching Rockabill SPA. Therefore there is no possibility of any likely significant effects and there is no reasonable scientific doubt in relation to this conclusion.

2.6 Identification of Potential Likely Significant Effects on European Sites

2.6.1 Overview of the Proposed Development

As set out in Section 2.1 above, Fingal County Council intends to undertake public realm improvements for a pedestrianised New Street, Malahide.

The nature and extent of the proposed development is as follows:
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c. 150 m in length) and insertion of control measures including all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for 23 no. cycle parking spaces.
vi. Removal and replacement of 11no. existing trees with 37no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting comprising 12no. fixtures.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs (including regulatory signs which give effect to a pedestrianisation of New Street) in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The construction of the proposed public realm improvements at New Street will involve typical construction activities associated with developments of this nature and scale. These include; site preparation, removal of the 11 no. trees on New Street, clearance of existing street surfaces, excavation of topsoil and
subsoil, ground works, construction of new street surfaces, landscaping and finishes. As this is an urban developed site, no demolition works will be required. An on-site construction compound will be provided for materials storage areas and facilities for site personnel, situated within the lands made available (LMA) to the contractor, which will be within the streetscape.

2.6.2 Potential Impacts from the Proposed Development on European Sites

The construction phase of the Public Realm improvements at New Street, will require the removal of existing surfaces and the excavation of soil to allow for the diversion of services. These works will result in typical environmental effects, including elevated levels of noise, emission of surface waters from the streetscape to the existing surface water infrastructure, emissions of dust, direct and indirect greenhouse gas emissions, localised impacts on public amenity, etc.

There will also be environmental risks associated with the presence of potential pollutants associated with the construction industry, plant and machinery (hydrocarbon, solvents, cementitious materials, etc.).

During the construction phase of the project standard best practice construction methods will be used to protect the general environment. The project has incorporated these methods as standard, irrespective of any effect on any European Sites. They are widely implemented on construction sites, have been shown to be effective and there is widespread practical experience of their use. There are no mitigation measures required to protect any of the identified European Sites during the construction phase of the project.

In relation to traffic, given (i) that construction related traffic will be minor relative to existing traffic, (ii) that there is no additional traffic generated by the proposed development (such that there is no increase in traffic-related emissions), (iii) that traffic will be redistributed to other junctions, and (iv) that that redistribution has not resulted in any significant impacts on the operational capacity of the surrounding network of roads and junctions (so there will be no increase in traffic congestion or associated emissions), there is essentially no alteration to the existing scenario vis a vis traffic related effects on any European site arising from the proposed development and therefore there will be no likely significant effects on any European Site arising from the proposed public realm improvements for a pedestrianised New Street.

During the operational phase, typical traffic related impacts on projects include emissions of CO2 and NO2, however the proposed development includes measures to encourage Active Travel through walking and cycling, which will likely cause a positive and long term impact on air and climate during the operational phase of the development.

During the operational phase the proposed development will not generate any increased traffic on the road network. On the contrary, the pedestrianisation and
proposed public realm improvements insofar as they discourage use of the private car in Malahide village, will promote modal shift towards public transport, walking and cycling.

During the operational phase, typical environmental effects associated with the presence and operation of the Public Realm improvements are also predicted, however these are limited to the emission of attenuated surface waters. There will be no additional surface waters discharging from the Public Realm improvements during the operational phase and therefore there is no possibility of any likely significant effects on any European Site arising from the proposed development and there is no reasonable scientific doubt in relation to this conclusion. In fact, water quality within the surface water run-off will be improved as a result of the provision of a new foul water line serving New Street, which will remove any existing private foul pipes that are currently discharging to the stormwater network. There will be no additional foul water loading arising from the Public Realm improvements. The provision of a new foul water line serving New Street will remove any existing private foul pipes that are currently discharging to the stormwater network given the absence of a dedicated foul line on New Street.

The predicted environmental effects will be typical of and commensurate of a development of this nature and small scale. No likely significant effects will occur at either stage.

The site of the proposed development (New Street) is an existing urban streetscape with no natural habitats of ecological value. It is not listed under any wildlife or conservation designation. No rare, threatened or legally protected plant species, as listed in the Ireland Red List No. 10: Vascular Plants (Wyse Jackson et al., 2016); the Flora (Protection) Order, 2022; or the Annexes of the Habitats Directive; are present within the site.

Within the outer estuary of the Malahide/Broadmeadow Estuary downslope of New Street (and connected to same via the source-pathway-receptor model) are areas of the Annex I habitat ' 1140 Mudflats and sandflats not covered by seawater at low tide', which support the marine communities of 'Fine sand with oligochaetes, amphipods, bivalves and polychaetes community complex'. Other Annex I habitats present (as listed in the qualifying interests of the Malahide Estuary SAC) are areas of 1310 Salicornia and other annuals colonising mud and sand, 1310 / 1330 Salicornia and other annuals colonising mud and sand / Atlantic salt meadows (Glauco-Puccinellietalia maritimae), 1330 / 1410 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) / Mediterranean salt meadows (Juncetalia maritimi), 1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) and 1410 Mediterranean salt meadows (Juncetalia maritimi). These habitats support the following marine communities - Estuarine sandy mud with Chironomidae and Hediste diversicolor community complex, Mytilus-dominated community complex, Sand to muddy sand dominated by Peringia ulvae, Tubificoides benedii and Cerastoderma edule community complex and Zostera
dominated community. At the seaward side of the estuary on Malahide Island, are areas of sand dune and saltmarsh communities including the Annex I habitats 2120 Shifting dunes along the shoreline with Ammophila arenaria ('white dunes'), 2130 *Fixed coastal dunes with herbaceous vegetation ('grey dunes') and 2110 Embryonic shifting dunes. The location and extent of these habitats and marine communities within the boundaries of the Malahide Estuary SAC/SPA are shown on Figures 2.8, 2.9, 2.10 and 2.11 below.

The potential impacts of the proposed public realm improvements for a pedestrianised New Street, Malahide on the European Sites identified in Table 2.5.1 above, including any potential impacts arising from the pedestrianisation of New Street, were assessed using the following factors:

- size and scale
- land-take
- distance from the European site or key features of the site
- resource requirements (water abstraction etc.)
- emissions (disposal to land, water or air)
- excavation requirements
- transportation requirements
- duration of construction, operation, decommissioning, etc.
- reduction of habitat area
- disturbance to key species
- habitat or species fragmentation
- reduction in species density
- changes in key indicators of conservation value (water quality etc.)
- climate change
- key relationships that define the structure of the sites
- key relationships that define the function of the site

These potential impacts on those European Sites are summarised below in Table 2.7.1.

Figure 2.8. Areas of Tidal Mudflats and Sandflats within the Malahide Estuary SAC. (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SAC 000205).

Figure 2.9. Areas of Marine Community Types within the Malahide Estuary SAC. (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SAC 000205).

Figure 2.10. Areas of Saltmarsh Habitats within the Malahide Estuary SAC. (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SAC 000205).

Figure 2.11. Areas of Sand Dune Habitats within the Malahide Estuary SAC. (Source: NPWS (2013) Conservation Objectives: Malahide Estuary SAC 000205).

Table 2.7.1. Likely direct, indirect or secondary impacts of the project (either alone or in combination with other plans or projects as detailed in Section 2.8) on nearby European Sites by virtue of:
$\left.\begin{array}{|l|l|}\hline \text { Size and scale } & \begin{array}{l}\text { None - none of the works are proposed within any Natura 2000 site and given the small size and } \\ \text { scale of the public realm improvements (a street 150m long and an area of 0.22ha) no direct, } \\ \text { indirect or secondary impacts are likely. }\end{array} \\ \hline \text { Land-take } & \begin{array}{l}\text { There will be no land take within any Natura 2000 site. The proposed public realm improvement } \\ \text { works are located within an existing public road, which is in the charge of Fingal County Council. }\end{array} \\ \hline \begin{array}{l}\text { Distance from } \\ \text { European Sites }\end{array} & \begin{array}{l}\text { There are nineteen European Sites within the zone of influence of the proposed public realm } \\ \text { improvements for a pedestrianised New Street as presented in Table 2.5.1 above. } \\ \text { Only one European Site, which is designated as both an SAC and SPA (Malahide Estuary } \\ \text { SAC/SPA) is located within 200m of New Street and has a direct Source-Pathway-Receptor Link } \\ \text { via surface waters from New Street. }\end{array} \\ \hline \begin{array}{l}\text { The remainder of the European Sites identified in Table 2.5.1 are located greater than 3km away } \\ \text { Rith no direct Source-Pathway-Receptor Link between them and New Street and any indirect } \\ \text { impacts on them arising from surface water runoff would be insignificant on account of the } \\ \text { dilution impacts of the Irish Sea. }\end{array} \\ \text { requirements } \\ \text { (water abstraction, } \\ \text { etc.) } & \begin{array}{l}\text { Water Supply } \\ \text { This determination relies on the information provided in the report and associated drawings } \\ \text { prepared by PUNCH Consulting Engineers Limited. } \\ \text { PUNCH Consulting Engineers report (Public Realm Improvements and Associated Works for } \\ \text { Pedestrianised New Street Engineering Services Report 222126-PUNCH-XX-XX-RP-C-000, dated }\end{array} \\ \text { February 2023) states that: } \\ \text { An existing 3" cast iron watermain (installed in 1925) running along New Street will be } \\ \text { replaced/renewed with a modern 150mm diameter ductile iron watermain. The renewal of this } \\ \text { watermain asset is provided as contingency to cater for possible increases in watermain loading } \\ \text { demands in the future and to avoid the need to replace/upgrade the watermain following the }\end{array}\right\}$

	establishment of the new public realm. There will be no increases in watermain loading demands arising from the public realm improvements'. There will be no extraction from natural surface or ground water sources required to supply the public realm improvements and therefore there will be no impacts on the water levels or the hydrology of any European Site.
Emissions (disposal to land, water or air)	Construction Phase: There are no mitigation measures required to protect any European Sites during the construction phase of the project. During the construction phase of the project standard best practice construction methods will be used to protect the general environment. The project has incorporated these methods as standard, irrespective of any effect on any European Sites. They are widely implemented on construction sites, have been shown to be effective and there is widespread practical experience of their use.
There are no likely significant effects on any European Site arising from emissions during the construction phase of the proposed public realm improvements. Operational Phase	
There are no mitigation measures required to protect any of the identified European Sites during the operational phase of the project as set out below.	
This determination relies on the information provided in the report and associated drawings prepared by PUNCH Consulting Engineers Limited which is summarised below. Stormwater The PUNCH Consulting Engineers report ((Public Realm Improvements and Associated Works for Pedestrianised New Street Engineering Services Report 222126-PUNCH-XX-XX-RP-C-000, dated February 2023) states that:	
"It is likely that private foul pipes are currently discharging to the stormwater network given the	

absence of a dedicated foul line on New Street. The project design seeks to rectify this through the provision of a dedicated foul line serving New Street".

The surface water runoff from New Street is currently likely to contain foul waste (as well as contaminants and pollutants such as vehicle fuel, oils and other hydro-carbons from vehicles, as well as other waste and litter from the streetscape) and to carry these to the outer estuary.

However, the proposed public realm improvements will not lead to any increase in the amount of surface water run-off from New Street or the amount of contaminants and pollutants it contains. Therefore, even without taking into account any SUDs measures, there is no possibility of any likely significant effects on the European Site arising from the proposed development and there is no reasonable scientific doubt in relation to this conclusion.

In fact, the permanent pedestrianisation of New Street, with limited vehicular access for deliveries to the street, is to be welcomed as some of these pollutants will be reduced from the streetscape, resulting in a positive effect. The design includes the provision of a dedicated foul line serving New Street which will remove any foul effluent from the surface water network with positive effects on the qualifying interests of the Malahide Estuary SAC.

Furthermore, the water quality of surface waters leaving the street will be improved by the public realm design as the surface waters will pass through the proposed bio-retention areas prior to discharge and the water quality within the surface water run-off will be significantly improved as a result.

Foulwater

The PUNCH Consulting Engineers report (Public Realm Improvements and Associated Works for Pedestrianised New Street Engineering Services Report 222126-PUNCH-XX-XX-RP-C-000, dated February 2023) states that a new dedicated 300 mm diameter foul sewer is proposed along New Street in parallel with the proposed stormwater drainage line. The introduction of this dedicated foul sewer will allow for foul connections directly from premises along New Street, thereby
$\left.\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { reducing the foul sewer effluent which exists in the pre-existing stormwater system with } \\ \text { subsequent improvements to water quality in any stormwater discharges. The foul sewer pipe is } \\ \text { purposely provided with excess capacity to create contingency for further foul loading in the } \\ \text { future and to avoid the need to replace/upgrade the sewer following the public realm } \\ \text { improvements. } \\ \text { No additional foul water loading requirements will arise from the public realm improvements. } \\ \text { The public realm improvements will not have any likely significant effects on any European Site } \\ \text { and there is no reasonable scientific doubt in relation to this conclusion. }\end{array} \\ \hline \begin{array}{l}\text { Excavation } \\ \text { requirements }\end{array} & \begin{array}{l}\text { There are no excavation requirements within any European site. There will be excavation within } \\ \text { the boundaries of the development site, but this will be localised and will not have any likely } \\ \text { significant effect on any European Site. }\end{array} \\ \hline \begin{array}{l}\text { Transportation } \\ \text { requirements }\end{array} & \begin{array}{l}\text { The Traffic \& Transport Assessment by Punch Consulting Engineers assesses the impact of the } \\ \text { proposed New Street pedestrianisation on the existing local transport network in comparison } \\ \text { with the pre-pedestrianised scenario. }\end{array} \\ \begin{array}{l}\text { During the construction phase of the development, the Traffic \& Transport Assessment by Punch } \\ \text { Consulting Engineers states that volumes of construction related traffic generated will be small in } \\ \text { comparison to existing traffic volumes in the area. This will not have any likely significant effect } \\ \text { on any European Site. }\end{array} \\ \begin{array}{l}\text { An assessment of operational impacts was undertaken with regard to the pre-pedestrianised } \\ \text { baseline position with two-way traffic on New Street (2019). The Traffic \& Transport Assessment } \\ \text { by Punch Consulting Engineers undertook capacity analysis for 12no. junctions in 2019, 2020 and } \\ \text { 2023 and confirms that there will be no additional traffic generated by the proposed development. }\end{array} \\ \text { As cars can no longer use New Street, vehicular traffic will be redistributed to other junctions in } \\ \text { the area and this redistribution of traffic was considered on a junction-by-junction basis. }\end{array}\right\} \begin{array}{l}\text { The analysis of the modelling results contained within the Traffic \& Transport Assessment by } \\ \text { Punch Consulting Engineers concludes that the pedestrianisation of New Street has had little }\end{array}\right\}$
impact on the operational capacity of the surrounding network of roads and junctions. When comparing the 2023 post-pedestrianisation with the 2019 pre-pedestrianisation scenarios, there are minimal effects on the capacity for surrounding road network and junctions.

Given that

1. there is no additional traffic generated by the proposed development (such that there is no increase in traffic-related emissions),
2. that traffic will be redistributed to other junctions, and that
3. that redistribution has not resulted in any significant impacts on the operational capacity of the surrounding network of roads and junctions (so there will be no increase in traffic congestion or associated emissions),

There is essentially no alteration to the existing scenario vis a vis traffic related effects on any European site arising from the proposed development and therefore there will be no likely significant effects on any European Site arising from the proposed public realm improvements for a pedestrianised New Street.

Further, in assessing the current situation in 2023, the Traffic \& Transport Assessment by Punch Consulting Engineers also confirms that the existing traffic arrangements do not give rise to any likely significant effects. These traffic arrangements will be the same when the pedestrianisation with public realm improvements is implemented and therefore will not give rise to any likely significant effects on any European Sites.

The likely significant effects of both the construction and operational phases of the public realm improvements have also been assessed throughout this AA Screening Report which concludes that there are no likely significant effects on any European Site arising from the public realm improvements for a pedestrianised New Street.

Duration of construction, operation, decommissioning, etc.	Construction is likely to last for 15 months and will not have any likely significant effect on any European Site. There are no disturbance impacts envisaged from the construction or operation of the proposed public realm improvements and pedestrianisation on completion (see Table 2.7.2 below).
Reduction of habitat area	There will be no reduction of habitat area within any European Site. All works are to take place within the development area of New Street and there will not be any likely significant effect on any European Site arising from same.

As set out in Table 2.7.2 there will be no changes to any European Sites arising as a result of disturbance, fragmentation, etc.
Table 2.7.2. Description of likely changes to the site arising as a result of:

| Disturbance to key |
| :--- | :--- | :--- |
| species |\quad| Disturbance to Birds: |
| :--- |
| The potential for activities associated with either the construction or operation of the proposed |
| public realm improvements, is ruled out for the following reasons: |
| -There is a sufficient separation distance from New Street to the adjoining estuary, to be
 satisfied that activities associated with both the construction and operation (use) of the
 proposed public realm improvements will not cause any visual disturbance to birds using
 the Malahide Estuary;
 - New Street was trafficable prior to 2020 and was an existing busy thoroughfare with
 people, traffic and human activity. These levels of activity will be permanently decreased
 as a result of the proposed public realm improvements and the pedestrianisation of New
 Street. There will be no new or increased levels of noise disturbance and human activity
 as a result of the proposed public realm improvements and there will not be any likely
 significant effects on birds using the Malahide Estuary; |
| - No works which could generate significant noise above already occurring background |
| levels will occur during the construction phase. |

Reduction in species density	There will be no reduction in species density arising from the proposed public realm improvements for a pedestrianised New Street. As noted above, no additional foul water loading requirements will arise from the public realm improvements and in fact the proposed provision of a new foul water main will ensure that any foul sewer effluent, which exists in the pre-existing stormwater system in New Street, will be eliminated and diverted to the Malahide WWTP for treatment with subsequent beneficial effects for the habitats and species in the identified European Sites.
During the construction phase, any emission of surface waters from the streetscape to the existing	
surface water infrastructure will be minor given the nature of the works and are not likely to have	
a significant effect on any European Site.	

	contaminants and pollutants such as vehicle fuel, oils and other hydro-carbons from vehicles, as well as other waste and litter. During the construction phase, any emission of surface waters from the streetscape to the existing surface water infrastructure will be minor given the nature of the works and are not likely to have a significant effect on any European Site.
During the operational phase, the proposed public realm improvements will not lead to any increase in the amount of surface water run-off from New Street or the amount of contaminants and pollutants it contains. Therefore, even without taking into account any SUDs measures, there is no possibility of any likely significant effects on the European Site arising from the proposed development (either during the construction or operational phase) and there is no reasonable scientific doubt in relation to this conclusion.	
In fact, the proposed provision of a new foul water main will ensure that any foul sewer effluent which exists in the pre-existing stormwater system in New Street, will be eliminated and diverted to the Malahide WWTP for treatment with subsequent beneficial effects for the identified European Sites.	
Furthermore, the surface waters from the public realm will be discharged through a series of bioretention areas, which will result in a reduction in loading of the downstream Surface Water network during low intensity rainfall events and an improvement in water quality. This will result in a net improvement/benefit to the downstream receiving environments.	

Climate change	The Traffic and Transport Assessment [Punch Consulting Engineers] has considered the volumes of traffic that will be generated during the construction phase and concludes that these will be small in comparison to existing traffic flows in the general area. In terms of climate impacts, construction traffic will generate emissions during the construction phase of the development. Vehicle engines and other equipment will cause emissions of CO2 and N2O. These emissions will be short term and therefore not likely to be significant in relation to climate. In relation to the operational phase of the development, the proposed development includes measures to encourage Active Travel through walking and cycling, thereby leading to a reduction in greenhouse gas emissions as required by the actions and targets contained within the Climate Action Plan 2023. These impacts will likely cause a positive and long term impact on air and climate during the operational phase of the development.
During the operational phase the proposed development will not generate any increased traffic on the road network. On the contrary, the pedestrianisation and proposed public realm improvements insofar as they discourage use of the private car in Malahide village, will promote modal shift towards public transport, walking and cycling. This approach is very much in line with local, regional and national land use planning and transportation policies. There will be a redistribution of traffic movements on the network and, as a result, the streets immediately east and west of New Street (i.e. Old Street, Townyard Lane and St James' Terrace) will experience increased volumes than they would in the absence of the New Street proposals. Bus routes are also rerouted.	
The proposed pedestrianisation of New Street will not result in increased traffic volumes on the	
road network and the Traffic and Transportation Assessment [Punch consulting Engineers]	
indicates that there are minimal effects on the capacity of the surrounding junctions arising from	
the proposed pedestrianisation of New Street. No significant increases in greenhouse gas	
emissions are therefore expected arising from same.	

Table 2.7.3 below describes any likely impacts on the key relationships that define the structure and functions of the identified European Sites.

Table 2.7.3. Description of any likely impacts on the European Site as a whole in terms of:
Key relationships that define the
structure of the sites structure of the sites

Key relationships that define the function of the site

There are no likely changes to any European Site(s) as a result of the proposed public realm improvements for a pedestrianised New Street with respect to the key relationships that define the structure of the European Site.
There are no likely changes to any European Site(s) as a result of the proposed public realm improvements for a pedestrianised New Street with respect to the key relationships that define the function of the European Site.

2.7 Mitigation Specific to European Sites

This screening assessment is consistent with the judgement of the European Court in Case C-332/17, People Over Wind \& Sweetman v Coillte (Judgement of the Court (Seventh Chamber) of 12 April 2018) and the recent case-law of the High Court, including Heather Hill Management CLG v An Bord Pleanála \{2019] IEHC 450 and Sweetman v An Bord Pleanála \{2020] IEHC 39.

It is also consistent with the judgement in the Eco Advocacy v An Bord Pleanála \{2021] IEHC 265. In that case, Humphreys J identified a core legal principal, being that regard should not be had to mitigation measures at AA screening stage. Humphreys J decided in that case that clarification was required from the CJEU on the matter (as it related to the consideration of SuDS and whether these represented mitigation measures) and the decision of the CJEU is currently awaited.

As noted in Section 2.6.2, an operational surface water management for the proposed development has been designed to comply with the 'Greater Dublin Strategic Drainage Study (GSDS) Regional Drainage Policies Technical Document - Volume 2, New Developments, 2005' and it is proposed to use a sustainable urban drainage system (SuDS) approach to stormwater at this site. However, as noted in this AA Screening Report, even if no SuDS measures were to be incorporated into the design and surface water arising at the site were to continue to discharge through the existing surface water network there would be no likely significant effects on any European Sites arising from this project.

The recent Eco Advocacy CLG - Opinion of Advocate General Kokott delivered on 19 January 2023 reviewed the consideration of SuDs measures at the appropriate assessment screening stage vis a vis whether SuDS measures amount to 'mitigation' or not and states that the SuDS measures under consideration in the case:
'are not taken to limit the effects on the protected site. On the contrary, these are measures which are taken in all such projects independently of whether a protected site is affected. They are not therefore an indication of the probability of a significant effect on the protected site'.

In relation to whether it was appropriate to take such measures into account at the screening stage vis a vis are they 'mitigation measures', it was the opinion of Advocate General Kokott that;
'at the stage of screening the need for an appropriate assessment under Article 6(3) of Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, as amended by Council Directive 2013/17/EL of 13 May 2013, features of the plan or project involving the removal of contaminants that may have the effect of mitigating a harmful effect on the protected site may be taken into account, where it is clear, on the basis of objective considerations, that those features were incorporated in to the design as standard features
irrespective of any effect on the protected site concerned, and all reasonable scientific doubt concerning their effectiveness can be ruled out'.

In that regard, both the SuDS measures included in the proposed public realm improvements, and the standard construction practices detailed in the Construction Management Plan and the Construction and Demolition Waste Management Plan, have been incorporated into the project as standard, irrespective of any effect on any European Sites.

Furthermore, the standard practices deployed on construction sites (as detailed in the Construction Management Plan and the Construction and Demolition Waste Management Plan) are widely implemented on construction sites, have been shown to be effective and there is widespread practical experience of their use.

As is clear from the foregoing, no mitigation measures are either necessary or proposed for the protection of European Sites or which was intended to avoid or reduce impacts on any European Sites.

2.8 In Combination Effects

This AA Screening Report has considered and assessed whether the proposed public realm improvements for a pedestrianised New Street are likely to have a significant effect on any European Site in combination with other plans and projects.

Plans

The following plans in preparing this assessment:
Fingal Development Plan 2017-2023 - There will be no likely significant incombination effects on any European Site between the Fingal Development Plan 2017-2023 and the proposed public realm improvements for a pedestrianised New Street as a result of implementation of the proposed mitigation within the Fingal Development Plan 2017-2023, namely that all plans, projects and activities requiring consent have an EIA and AA conducted as appropriate.

Draft Fingal Development Plan 2023-2029 - There will be no likely significant in-combination effects on any European Site between the Draft Fingal Development Plan 2023 - 2029 and the proposed public realm improvements for a pedestrianised New Street as a result of implementation of the proposed mitigation within the Draft Fingal Development Plan 2023 2029 namely that all plans, projects and activities requiring consent have an EIA and AA conducted as appropriate.

FCC Heritage Plan 2018-2023 - There will be no likely significant in combination effects on any European Site between the FCCHP and the proposed public realm improvements for a pedestrianised New Street, as the

FCCHP contains a considerable number of protective policies and objectives in respect of heritage of Fingal including the strategic requirement that any project will be subject to AA Screening at the least.

FCC Climate Change Action Plan 2019-2024 - There will be no likely significant in combination effects on any European Site between the FCC CCAP and the proposed public realm improvements for a pedestrianised New Street. T19, which is an objective of the plan sets out to encourage active travel and behavioural change through the re-organisation of allocation of space to pedestrians in the public realm. All projects and or actions arising from the FCC CCAP will be subject to AA Screening thus ensuring that there is no potential for in-combination effects.

Fingal Biodiversity Plan 2015-2020 - This plan is currently being updated by the Draft Fingal Biodiversity Plan - 2022-2030. The draft updated plan contains 100 actions for biodiversity. All projects and or actions arising from the FCC BAP will be subject to AA Screening and therefore there will be no likely significant in combination effects on any European Site between the Draft Fingal Biodiversity Plan - 2022-2030 and the proposed public realm improvements for a pedestrianised New Street.

National Biodiversity Action Plan 2017-2021 - The purpose of this action plan, which was Ireland's third iteration of the Biodiversity Action Plan (BAP), are to achieve Ireland's Vision for Biodiversity through addressing issues ranging from improving the management of protected areas to increasing awareness and appreciation of biodiversity and ecosystem services. As the BAP is aimed at environmental protection, there will be no likely significant in combination effects on any European Site between this plan and the proposed public realm improvements for a pedestrianised New Street.

Project Ireland 2040 - National Planning Framework (NPF) - There will be no likely significant in combination effects on any European Site between the NPF and the proposed public realm improvements for a pedestrianised New Street as a result of implementation of Objective 75 from the NPF, which is to ensure that all plans, projects and activities requiring consent arising from the National Planning Framework are subject to the relevant environmental assessment requirements including SEA, EIA and AA as appropriate.

Projects

A review of recent planning permissions (in the past 5 years) within and in the vicinity of the subject site was also undertaken as part of the preparation of this AA Screening Report.

There are currently no planning permissions for other developments within the application site red line at New Street.

New Street comprises a mix of residential dwellings, shops, restaurants and public houses. Planning permission has been granted for several developments within the buildings on New Street. These permissions generally relate to small developments (e.g. extensions, reconfiguration, change of use, signage) that typically occurs within an established and developed urban village and comprise works that are unlikely to give rise to significant in-combination effects with the proposed public realm improvements for a pedestrianised New Street.

A review of recent permissions within the wider 'TC - Town and District Centre' zoned area of Malahide Village was also completed. Landscape improvements to The Green, located directly to the north of the site, were granted in 2017 (Ref. Part XI/007/17) and completed in 2021 and included layout revisions, installation of paving, street furniture and recontouring of the open space, and do not give rise to any likely significant in combination effects with the proposed public realm improvements for a pedestrianised New Street.

Also of note is the permitted Broadmeadow Greenway, granted permission by An Bord Pleanála (Bord Ref. YA06F.304624) in May 2020 and comprising a greenway between Malahide Demesne and Newbridge Demesne. The route of the permitted greenway is located c.150m to the west of the New Street/ Strand Street junction. The permitted Broadmeadow Greenway, like the existing Baldoyle Portmarnock Greenway, is part of a wider network of greenways proposed for Fingal and includes the planned Sutton to Malahide Greenway, all of which will promote and facilitate Active Travel within Malahide and the wider county.

The in-combination effects (reduced car use and increased active travel walking and cycling) of the permitted Broadmeadow Greenway project have been considered and in-combination it is considered that the greenway proposals and the New Street improvements will have a positive impact on the environment in terms of promoting and facilitating Active Travel and do not give rise to any likely significant in-combination effects on any European Site.

Outside of the village area, it is possible that other projects, including proposed Strategic Housing Developments (SHDs) in the Malahide Road and Back Road areas of Malahide, will be under construction at the same time as the current project. These projects will be at a remove from the site at New Street and are a significant distance away from it. The primary incombination effects would likely relate to construction traffic, however
construction traffic relating to these other projects would not need to enter or travel through Malahide Village and so is unlikely to give rise to any likely significant in-combination effects with the proposed New Street public realm improvements.

Considering the nature and scale of the proposed development at New Street, the localised and insignificant nature of the environmental effects predicted to occur as a result of the proposed development, the overarching plans and policies of Fingal County Council, and the nature of existing, permitted and proposed development in its environs, it is considered that the proposed public realm improvements for a pedestrianised New Street are not likely to have a significant effect on any European Site in-combination with other plans or projects.

2.9 Screening Assessment Conclusion

Following an examination, analysis and evaluation of all relevant information, on the basis of objective information and in light of best scientific knowledge and applying the precautionary principle, it can be concluded that the proposed public realm improvements at New Street, Malahide, either individually or in combination with other plans and projects, and in the absence of mitigation, is not likely to have a significant effect on any European Site(s), in view of the sites conservation objectives, and that there is no reasonable scientific doubt in relation to this conclusion.

The main reasons for this conclusion are as follows:

- The proposed public realm improvements at New Street, Malahide are small (150 m long and 0.22 ha in size)
- None of the proposed public realm improvements will take place within any European Site.
- There will be no increased loading demands on the mains water supply and provision for same is being provided within the public realm improvements.
- There are no likely significant effects arising from the proposed public realm improvements for a pedestrianised New Street, regardless of the implementation of any SUDS measures.
- In fact, the water quality of surface waters leaving the street will be improved by the public realm design as the surface waters will pass through the proposed bio-retention areas prior to discharge and the water quality within the surface water run-off will be significantly improved as a result, with positive effects on the Natura 2000 sites identified.
- There will be no likely significant effects/changes to any European Site(s) arising from disturbance to key species, habitat or species fragmentation, a reduction in species density, or changes in key indicators of conservation value such as water quality.
- Considering the nature and scale of the proposed development at New Street, the localised and insignificant nature of the environmental effects predicted to occur as a result of the proposed development, the overarching plans and policies of Fingal County Council, and the nature of existing, permitted and proposed development in its environs, it is considered that the proposed public realm improvements for a pedestrianised New Street are not likely to have a significant effect on any European Site in-combination with other plans or projects.

The overall conclusion of this report is that on the basis of objective information and in view of best scientific knowledge and applying the precautionary principle, the proposed development, either individually or in combination with other plans or projects, and without relying on any mitigation measures, is not likely to have significant effect on any European Site(s), in view of the sites conservation objectives, and that there is no reasonable scientific doubt in relation to this conclusion. For the avoidance of doubt, SUDS measures have not been taken into account in reaching this conclusion.

In reaching this conclusion, the nature of the proposed public realm improvements and their relationship with all European Sites within the zone of influence, and their conservation objectives, have been fully considered.

Therefore it is the professional opinion of the author of this report that the proposed public realm improvements for a pedestrianised New Street, Malahide, Co. Dublin do not require a Stage 2 Appropriate Assessment.

This assessment was completed with reference to the additional reports and plans prepared for the development which are presented in the Appendices of this report.

3. REFERENCES

Anon. (1996). Interpretation Manual of European Union Habitats. Version EUR 15, European Commission, Brussels.

Archaeology Plan (2022). Archaeological assessment at New Street, Malahide, Co. Dublin. Unpublished report prepared for Fingal County Council.

Axis Consulting Engineers (2023). Mechanical and Electrical Services Installations for the Public Realm at New Street, Malahide for Fingal County Council. Unpublished report prepared for Fingal County Council.

BMA Planning (2023). Public Realm Improvements for a Pedestrianised New Street. Environmental Impact Assessment Screening Report. Unpublished report prepared for Fingal County Council.

Coady Architects (2022). New Street Public Realm Architectural Heritage Assessment. Unpublished report prepared for Fingal County Council.

Convention on the Conservation of European Wildlife and Natural Habitats (Bern Convention) 1982.

Convention on the Conservation of Migratory Species of Wild Animals (Bonn Convention) 1979.

Council of the European Communities (1992). Council Directive of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora (92/43/EEC). O.J. L 206/35, 22 July 1992.

Council of the European Communities (1979). Council Directive of 02 April 1979 on the conservation of wild birds (79/409/EEC). O.J.L. 103, 25 April 1979.

DFLA (2023). Design Rationale - Public Realm Improvements for a Pedestrianised New Street. Dermot Foley Landscape Architects. Unpublished report.

DOEHLG. (2010). Appropriate Assessment under Article 6 of the Habitats Directive: Guidance for Planning Authorities Circular NPW 1/10 \& PSSP 2/10. 11 March 2010.

DOEHLG. (2010). Appropriate Assessment of plans and projects in Ireland: Guidance for planning authorities. National Parks and Wildlife Service, Dept Environment, Heritage and Local Government.

European Commission (2001). Assessment of plans and projects significantly affecting Natura 200 sites- methodological guidance on the provisions of Article 6(3) and 6 (4) of the Habitats Directive 92/43/EEC.

European Commission (2002). Managing Natura 2000 sites - the provisions of Article 6 of the Habitats Directive 92/43/EEC.

European Commission (2007). Guidance Document on Article 6(4) of the Habitats Directive 92/43/EEC. Clarification of the Concepts of Alternative Solutions, Imperative Reasons of Over-riding Public Interest, Compensatory Measures, Overall Coherence. Opinion of the European Commission (European Commission, January 2007).

European Commission (2018). Managing Natura 2000 Sites: The Provisions of Article 6 of the Habitats Directive 92/43/EEC (Commission Notice C (2018) 7621 final, Brussels, 21.11.2018).

European Commission (2021). Assessment of plans and projects in relation to Natura 2000 sites - Methodological guidance on the provisions of Article 6(3) and (4) of the Habitats Directive 92/43/EEC 2021/C 437/01. (Commission notice C/2021/6913. Dated 28.10.2021).

Flora (Protection) Order (2022). Government of Ireland.
Fossitt, J. (2000). A Guide to Habitats in Ireland. Heritage Council, Kilkenny.
Gilbert G, Stanbury, A. and L.J. Lewis 2021. Birds of Conservation Concern in Ireland 2020-2026. Irish Birds 43, 1-22.

Hayden, T. \& R. Harrington (2000). Exploring Irish mammals. Dúchas. Town House, Dublin.

Inland Fisheries Ireland (2020). Planning For Watercourses in the Urban Environment. A Guide to the Protection of Watercourses through the use of Buffer Zones, Sustainable Drainage Systems, Instream Rehabilitation, Climate / Flood Risk and Recreational Planning *Including one-off developments. A Guideline Developed by Inland Fisheries Ireland.

King, J.L., Marnell, F., Kingston, N., Rosell, R., Boylan, P., Caffrey, J.M., FitzPatrick, Ú., Gargan, P.G., Kelly, F.L., O'Grady, M.F., Poole, R., Roche, W.K. \& Cassidy, D. (2011). Ireland Red List No. 5: Amphibians, Reptiles \mathcal{E} Freshwater Fish. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht, Dublin, Ireland.

Marnell, F., Looney, D. \& Lawton, C. (2019). Ireland Red List No. 12: Terrestrial Mammals. National Parks and Wildlife Service, Department of the Culture, Heritage and the Gaeltacht, Dublin, Ireland.

National Parks and Wildlife Service Online Database. Available online at www.npws.ie

Natura 2000 Sites - Site Synopsis. Available online at www.npws.ie
Office of the Planning Regulator (2021). OPR Practice Note PN01. Appropriate Assessment Screening for Development Management.

Parnell, J. and T.G. Curtis. (2012). Webb's An Irish Flora. Cork University Press.

PUNCH Consulting Engineers (2023). Public Realm Improvements for a Pedestrianised New Street. Engineering Services Report. 222126-PUNCH-XX-XX-RP-C-0001. February 2023.

PUNCH Consulting Engineers (2023). Public Realm Improvements for a Pedestrianised New Street. Construction Management Plan. 222126-PUNCH-XX-XX-RP-C-0002. February 2023.

PUNCH Consulting Engineers (2023). Public Realm Improvements for a Pedestrianised New Street. Construction \& Demolition Waste Management Plan. 222126-PUNCH-XX-XX-RP-C-0003. February 2023.

PUNCH Consulting Engineers (2023). Public Realm Improvements for a Pedestrianised New Street. Site Specific Flood Risk Assessment. 222126-PUNCH-XX-XX-RP-C-0004. February 2023.

PUNCH Consulting Engineers (2023). Public Realm Improvements for a Pedestrianised New Street. Traffic and Transportation Assessment. 222126-PUNCH-XX-XX-RP-C-0005. February 2023.

Ramao, C. (2003). Interpretation Manual of the European Union Habitats Version Eur 25. European Commission DG Environment Nature and Biodiversity. Brussels.

Regan, E.C., Nelson, B., Aldwell, B., Bertrand, C., Bond, K., Harding, J., Nash, D., Nixon, D., \& Wilson, C.J. (2010). Ireland Red List No. 4 Butterflies. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Ireland.

Scannell, M.J.P. and Synnott, D.M. (1987). Census Catalogue of the Flora of Ireland - Clár de Phlandaí na hÉireann. The Stationary Office, Dublin.
S.I. No. 477 of 2011. The European Communities (Birds and Natural Habitats) Regulations 2011. Irish Government, Government Publications Office, Molesworth Street, Dublin 2.
S.I. No. 293 of 2021. The European Communities (Birds and Natural Habitats) Regulations 2011-2021. Irish Government, Government Publications Office, Molesworth Street, Dublin 2.

The Tree File Ltd. (2023). Arboricultural Report. Proposed Public Realm Improvements for a Pedestrianised New Street Malahide Co Dublin. February 2023.

Wildlife Act, 1976 including all other amendments 1976-2010 Number 39 of 1976 and Number 38 of 2000. Dublin: Office of the Attorney General. Wildlife (Amendment) Act (2000). Government of Ireland.

Wyse Jackson, M., FitzPatrick, Ú., Cole, E., Jebb, M., McFerran, D., Sheehy Skeffington, M. \& Wright, M. (2016). Ireland Red List No. 10: Vascular Plants. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs, Dublin, Ireland.

APPENDIX E

Engineering Planning Report by Punch Consulting Engineers

$|\underset{\text { consulting engineers }}{\mathrm{P}}|$

Public Realm Improvements for a Pedestrianised New Street

Engineering Services Report 222126-PUNCH-XX-XX-RP-C-0001

February 2023

Public Realm Improvements for a Pedestrianised New Street

Document Control

Document Number: 222126-PUNCH-XX-XX-RP-C-0001

Status	Rev	Description	Date	Prepared	Checked	Approved
S3	P01	Pre-Planning Issue	$22 / 02 / 2023$	D Moreton	MC Daly	P Casey

Table of Contents

Document Control
Table of Contents ii
1 Introduction 1
1.1 Background 1
1.2 Existing Site 1
1.3 Proposed Development 2
2 Stormwater Drainage Design 4
2.1 Existing Stormwater Drainage 4
2.2 Proposed Stormwater Drainage 5
2.2.1 General 5
2.2.2 Site Stormwater Drainage Overview 5
2.2.3 Stormwater Drainage Model 5
2.2.4 Bioretention Areas 5
2.3 SUDs Proposals 7
2.3.1 Bio Retention Areas/Modified Planters 7
3 Foul Water Drainage Design 9
3.1 Existing Foul Water Drainage 9
3.2 Proposed Foul Water Drainage 10
4 Watermain Design 11
4.1 Existing Watermain 11
4.2 Proposed Watermain 12
Appendix A Existing Record Drawings A-I

1 Introduction

1.1 Background

This report is prepared to accompany a pre-planning consultation for the proposed public realm improvements to a pedestrianised New Street, located in Malahide, Co. Dublin. This report deals specifically with the Surface Water, Foul Water, and Watermain design associated with the site.

1.2 Existing Site

The site is approximately 0.22 hectares in area located on New Street in Malahide. The existing site consists of an established town street with retail, commercial and residential development throughout. The topography of the street falls from its highest point at the southern extents of the site (The Mall) towards the lowest point at the northern extents of the site (Strand Street).

The site is bounded by retail, commercial and residential developments to the west and east, a junction on Strand Street to the north, and a junction on The Mall (R106) to the south. The junctions on either end of New Street are both signalised. New Street is approximately 100 m southwest of the marina. The street is pedestrianised with restricted vehicular access to enable deliveries allowed between 7am and 11 am only, refuse collection and emergency vehicles. The northern end of New Street allows two-way traffic for access to Ross Cottages at all times. The site is accessed via The Mall (R106) to the south and via Strand Street to the north.

Please refer to Figure 1-1 below illustrating the site boundary.

Figure 1-1: Site Location Plan.

1.3 Proposed Development

The proposed public realm improvements will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c.150m in length, 0.22ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2 no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for $23 n$. cycle parking spaces.
vi. Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for existing and future utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed public realm improvements are outlined in a series of architectural drawings prepared by DFLA, and engineering drawings prepared by PUNCH Consulting Engineers supplied as part of the preplanning submission pack.

The proposed architectural site layout is shown in Figure 1-2 below. Please refer to Architectural Documents for full proposed site layout.

Public Realm Improvements for a
Pedestrianised New Street
Engineering Services Report

Figure 1-2: Proposed Site Layout (refer architectural documentation by Dermot Foley Landscape Architects).

2 Stormwater Drainage Design

2.1 Existing Stormwater Drainage

On the basis of available records provided by Irish Water / Fingal County Council, the following stormwater drainage networks are present within the development site:

1. 225 mm stormwater piped concrete sewer flowing south-north on New Street.

The following stormwater drainage exists adjacent to the development site:

1. 225 mm stormwater piped concrete sewer flowing west-east on Strand Street

As built records and Ground Penetrating Radar Survey information is available for the site, which has confirmed the existing drainage arrangements in detail.

Please refer to Appendix A for Existing Record Drawings illustrating the existing stormwater drainage arrangement. An extract is shown in Figure 2-1 below.

Figure 2-1: Existing stormwater drainage surrounding the site.

2.2 Proposed Stormwater Drainage

2.2.1 General

In order to facilitate the ease of maintenance of surface water infrastructure without the compromising of SuDS features, the existing surface water pipe running along New Street will be diverted clear of all bioretention areas. It is proposed to connect all new proposed road gullies and SuDS overflow gullies into the diverted surface water pipe on New Street.

All surface water generated from the development street areas is designed to be collected by a by gravity diverted surface water pipe network. The diverted surface water pipe will be designed with reference to the following documents:

- "Recommendations for Site Development Work for Housing Areas" - Department of the Environment and Local Government
- "Greater Dublin Strategic Drainage Study" (GDSDS)
- CIRIA Publications C644-"Building Greener"
- Fingal Development Plan 2017-2023

2.2.2 Site Stormwater Drainage Overview

Interception measures will be provided to reduce and treat surface water generated on site. Stormwater on site will be routed towards road gullies via channel drainage kerbs. Gullies will be connected to inspection chambers which provide an inlet into bioretention areas. The bioretention areas will store stormwater until it overflows into SuDS overflow gullies which then connect back into the diverted existing 225 mm localised stormwater piped concrete sewer running south to north on New Street. Please refer to Section 2.2.4 and Section 2.3.1 for details relating to the proposed bioretention areas.

The stormwater drainage proposals are illustrated in PUNCH Drawings 222126-PUNCH-XX-XX-DR-C-0100 and 222126-PUNCH-XX-XX-DR-C-0200.

Please note that the proposed new 225 mm diameter stormwater line is to be installed in parallel with the existing stormwater line running south to north along New Street. This arrangement will facilitate continued operation of the stormwater network while facilitating connection and activation of the diverted section of new stormwater pipe. This arrangement will also facilitate effective stormwater management by the appointed Contractor during the proposed public realm improvements as per the standard requirements of proper construction management.

2.2.3 Stormwater Drainage Model

The proposed diverted existing surface water pipe has been modelled using Causeway Flow software. The Software was used to ensure sufficient cover depths, and self-cleansing velocities were achieved.

2.2.4 Bioretention Areas

Stormwater collected from the site via the drainage network is proposed to cascade between a number of bioretention areas prior to being discharged. Guidance is taken from the UK SuDS manual with regard to the design of the bioretention areas.

Bioretention areas are proposed along the eastern side of New Street. Surface water from the street will be directed towards the bioretention areas, where it then ponds on the surface and then filters through the vegetation and underlying soils. The filtered runoff is then collected in an underdrain system before being directed back to the main surface water sewer. In the event where the volume of the bioretention system has been exceeded, a SuDS Overflow Gully will be used to direct flow downstream to the main surface water sewer.

Public Realm Improvements for a Pedestrianised New Street

Please refer to Figure 2-2 for an illustration of a bioretention system.

Figure 2-2: Bioretention System Diagram (Source:SuDS Manual Figure 18.1)

Please see PUNCH drawing 222126-PUNCH-XX-XX-DR-C-0100 for the proposed surface water drainage layout.

2.3 SUDs Proposals

The proposed development has been assessed in relation to Sustainable Urban Drainage Systems (SuDS). All SuDS measures are to be implemented with reference to the UK Suds Manual and Fingal County Council (FCC) drainage requirements.

It is noted that the proposed SuDS measures represent a baseline requirement and do not represent a mitigation measure in relation to avoiding or reducing harmful effects on a Natura 2000 site. The SuDS measures are integral to the proposed public realm improvements and simply follow a standard bestpractise approach to stormwater management.

Relatively small volumes of rainwater collected on the respective SuDS devices will enter the public sewer network during typical low intensity storms. This is because the proposed SuDS measures will retain rainwater until it is either used via evapotranspiration in the green areas or reused within the development via the rainwater harvesting system.

The SuDS processes decrease the impact of the hard landscaping of the streetscape by providing amenity and biodiversity in many cases. Regular maintenance of the SuDS proposals is required to ensure they are operating to their optimal level throughout their design life.

2.3.1 Bio Retention Areas/Modified Planters

The bio-retention areas/modified planters will incorporate drainage stone/subsoil and will provide a level of additional attenuation within the bio-retention areas/modified planters. Bioretention systems allow the stormwater to filter downwards through a filter medium removing finer contaminants along the way. Depending on the particle size of the filter media different qualities can be achieved from the bioretention system. The base and sides of the system will be lined and a high-level overflow to the drainage network within the build-up will accommodate removal of water.

CIRIA C753 (The SuDS Manual) Table 24.6 notes that regarding interception design of bio retention areas/modified planters, pavements drained by bio retention areas/modified planters can be considered to provide Interception, i.e. it can be assumed that there will be zero runoff from the first 5 mm rainfall for 80% of events during the summer and 50% in winter.

Please refer to Figure 2-3 for a typical bioretention area detail.

Figure 2-3: Typical Bioretention Area Detail (Source SuDS manual Figure 10.11)

3 Foul Water Drainage Design

3.1 Existing Foul Water Drainage

On the basis of available records provided by Irish Water / Fingal County Council there is foul sewer drainage present within the development site, including the following:

1. 225 mm dedicated foul sewer running west-east on the street connecting to Ross Cottages to the south of the site.

The following stormwater drainage exists adjacent to the development site:

1. 300 mm concrete dedicated foul sewer running east-west along Strand Street to the north.
2. 225 vitrified clay dedicated foul sewer flowing west-east along The Mall (R106) to the south of the site.

As built records and Ground Penetrating Radar Survey information is available for the site, which has confirmed the existing drainage arrangements in detail.

Please refer to Appendix A for Existing Record Drawings illustrating the existing foul water drainage arrangement. An extract is shown in Figure 3-1 below.

Figure 3-1: Existing foul water drainage surrounding the site.

3.2 Proposed Foul Water Drainage

The development is to be serviced by a gravity design network. A dedicated 300 mm diameter foul sewer is proposed along New Street in parallel with the proposed stormwater drainage line. This section of foul sewer will connect via an existing manhole to the 300 mm concrete dedicated foul sewer running eastwest along Strand Street. The introduction of this dedicated foul sewer will allow for foul connections directly from premises along New Street, thereby reducing the foul sewer effluent in the pre-existing stormwater system.

Foul sewer drainage capacity is provided in accordance with Section 3.6 of Code of Practice for Wastewater Infrastructure. The proportional velocity is designed to provide the minimum self-cleansing velocity.

The 300 mm diameter foul sewer pipe is designed to carry in excess of wastewater volume of between 4.5 and 6 times the dry weather flow relative to the number of dwellings serviced along New Street. The foul sewer pipe is purposely provided with excess capacity to cater for further foul loading in the future to avoid the need to replace/upgrade the sewer following the establishment of the new public realm.

Please see PUNCH drawing 222126-PUNCH-XX-XX-DR-C-0100 for the proposed foul water drainage layout.

4 Watermain Design

4.1 Existing Watermain

Irish Water record drawings indicates the following watermain infrastructure to exist within the site boundary:

1) 3" cast iron watermain located on New Street.
2) 200 mm ductile iron watermain located on New Street.

The following watermain infrastructure exists adjacent to the development site:

1) 3 " cast iron watermain located on Strand Street.
2) 3" cast iron watermain located on The Mall (R106).

As built records and Ground Penetrating Radar Survey information is available for the site, which has confirmed the existing watermain arrangements in detail.

Please refer to Appendix A for Existing Record Drawings illustrating the existing watermain infrastructure arrangement. An extract is shown in Figure 4-1 below.

Figure 4-1: Existing watermain infrastructure.

4.2 Proposed Watermain

The existing 3" cast iron watermain (installed in 1925) running along New Street will be replaced/renewed with a modern 150 mm diameter ductile iron watermain.

The renewal of this watermain asset is provided to cater for possible increases in watermain loading demands in the future and to avoid the need to replace/upgrade the sewer following the establishment of the new public realm.

The watermain layout has been designed in accordance with "Irish Water Code of Practice for Water Infrastructure". All watermains are to be constructed in accordance with Irish Water Code of Practice and the Local Authority's requirements.

Please see PUNCH drawing 222126-PUNCH-XX-XX-DR-C-0100 for the proposed watermain layout.

Appendix A Existing Record Drawings

SR165-2022 New Street Malahide Map 1

SR166-2022 New Street Malahide Map 2

APPENDIX F

Construction Management Plan by Punch Consulting Engineers

PUN

Public Realm Improvements for a Pedestrianised New Street

Construction Management Plan 222126-PUNCH-XX-XX-RP-C-0002
February 2023

Document Control

Document Number: 222126-PUNCH-XX-XX-RP-C-0002

Status	Rev	Description	Date	Prepared	Checked	Approved
S3	P01	Pre-Planning Issue	$22 / 02 / 2023$	D Moreton	MC Daly	P Casey

Table of Contents

Document Control
Table of Contents ii
1 Introduction 3
1.1 Site Location 3
2 Description of the Public Realm Improvements 4
3 Indicative Construction Programme 4
4 Site Set Up and Security5
5 Site Access5
6 Material Storage and Delivery5
7 Traffic Management Plan6
8 Works Adjacent to Railway Line 7
9 Potential Interface with Other Projects 8
10 General Construction Approach 8
10.1 Construction Working Space 8
10.2 Outline Phasing Strategy 8
10.3 Outline Works Description 9
10.3.1 Hoarding, Site Set up and Formation of Site Access/ Egress 9
10.3.2 Site Clearance and Demolition 9
10.3.3 Construction Sequence of Development 9
11 Waste Management Plan 10
12 Communications and Local Stakeholder Management 10
13 Construction Noise, Dust and Vibration 10
14 Working Hours 10
15 Lighting 11
16 Construction Employment 11

1 Introduction

The purpose of this document is to briefly outline the general activities required for the construction of the proposed public realm improvements for a pedestrianised New Street, located in Malahide, Co. Dublin.

A Main Contractor has not yet been appointed to carry out the proposed public realm improvements for a pedestrianised New Street. Once appointed, it will be the responsibility of the Main Contractor to prepare and submit a detailed construction management plan to submit to the local authority for approval. The construction management plan will be a live document that will be updated throughout the project lifecycle by the Main Contractor as required.

Regardless of the form of contract, the Contractor will be contractually bound by any conditions arising from the site constraints identified and specified, all Statutory Regulations governing the works, and any additional measures or modifications that may be imposed on the proposed development by the Local Authority or other statutory authorities.

1.1 Site Location

The site location is shown in Figure 1-1 below. The site is approximately 0.22 hectares in area located in Malahide Village on New Street. The site currently consists of an established town street with retail, commercial and residential development throughout. the topography of the street consists of the site falling from its highest point at the southern extents of the site (The Mall) and falling towards the lowest point at the northern extents of the site (Strand Street).

The site is bounded by retail, commercial and residential developments to the west and east, a junction on Strand Street to the north, and the Diamond junction on The Mall (R106) to the south. The junctions on either end of New Street are both signalised. New Street is approximately 100m southwest of the marina. The street is currently pedestrianised with restricted vehicular access to enable deliveries allowed between 7am and 11 am only, refuse collection and emergency vehicles. The site is accessed via the Mall to the south and via Strand Street to the north.

Figure 1-1:Site Location Plan.

2 Description of the Public Realm Improvements

The proposed public realm improvements will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c. 150 m in length, 0.22 ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for 23 no. cycle parking spaces.
vi. Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for existing and future utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs (including regulatory signs which give effect to a pedestrianisation of New Street) in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed public realm improvements for a pedestrianised New Street are outlined in a series of architectural drawings prepared by DFLA, and engineering drawings prepared by PUNCH Consulting Engineers supplied as part of the pre-planning consultation.

3 Indicative Construction Programme

It is estimated that the construction programme for the works associated with the proposed public realm improvements for a pedestrianised New Street will last 15 months. However, the duration may extend to 24 months to account for seasonal closures during Summer/Christmas periods or to satisfy other potential conditions arising from the planning process. This estimation is based on the typical construction programmes for other similar developments that are currently underway. It is envisaged that redevelopment of New Street will be carried out over a single phase. The Main Contractor will be required to prepare a detailed construction programme as part of their tender proposal.

4 Site Set Up and Security

The Main Contractor will be required to submit a site layout plan that will detail the proposed location of the site compound. The Contractor will ensure that the site compound will be serviced as required and will be secured with appropriate fencing/hoarding. The site compound will be used as the primary location for the storage of materials, plant and equipment, site offices and worker welfare facilities. As Project Supervisor Construction Stage (PSCS), the Contractor will be responsible for site security, and they are to ensure that the site and site compound are adequately secured at all times.

As with the other construction activities that are being carried out within Fingal County Council (FCC) administration, activities associated with the construction compounds will be subject to restrictions to the nature and timing of operations so that they do not cause undue disturbance to neighbouring areas and communities.

The site layout plan will also include the site perimeter and the proposed detail with regards the hoarding and gate system.

5 Site Access

It is proposed to access the proposed development via the existing Diamond junction on The Mall/Dublin Road (R106). The proposed public realm improvements will integrate the site into the surrounding footpath networks providing construction and operational vehicle access and convenient pedestrians/cyclist routes linking the site with the surrounding area.

Construction related traffic will enter the site via the junction on Dublin Road (R106). Construction traffic associated with the development can proceed along the Dublin Road, to Swords Road, to Malahide Road, to the Swords Bypass, to Lisenhall Road, to the M1 or other routes depending on destination. Refer to Section 7 and Figure 7-1 below for illustration.

Furthermore, to reduce the requirement for site parking for employees, public transport such as Dublin Bus should be utilised.

6 Material Storage and Delivery

The Contractor will ensure that the delivery of materials is coordinated to minimise impacts to adjacent properties. The Contractor will ensure that all materials are adequately stored and secured in their site compound.

For more details, please refer to the 'Construction \& Demolition Waste Management Plan’ prepared and included in the pre-planning assessment pack.

The Contractor will ensure the roads adjacent to the site are kept clean and free of debris.

Public Realm Improvements for a Pedestrianised New Street

7 Traffic Management Plan

The Contractor will be required to prepare and submit a detailed traffic management plan as part of their tender submission. Once appointed, the preferred Contractor will further develop the traffic management plan as required to submit to the local authority for approval in advance of works commencing onsite. The Contractor will ensure that advanced warning signs are erected on approaches to the site as required by the PSCS. The Contractor will use a competent sign provider and all signage that meets the requirements of the Safety, Health \& Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual. Any proposed temporary road markings must also confirm to the requirements of Chapter 8 of the Traffic Signs Manual.

Figure 7-1: Proposed Primary Route To/ From Site.

The Main Contractor will be responsible for all site access and works activity and must ensure the continued operation of the surrounding local road network as a result of its construction traffic.

The management of construction traffic on the public and private road networks in and around the proposed public realm improvements is a critical part of the overall project and must be actively managed by the Contractor.

The Contractor must submit a Construction Traffic Management Plan to the Local Authority for approval. Haulage vehicle movements should be fully coordinated to comply with the requirements of the agreed plan:

- Construction vehicles must not stop or park along the routes at any time;
- Haulage vehicles must not travel in convoys greater than two vehicles at any time;
- Site entrance to remain free of parked or stationary vehicles at all times;
- All loading of demolition material will occur within the site boundary;
- All off-loading of deliveries will take place within the site, remote from the public road and will access via the agreed construction access point.

The site is located in an established urban area where the road and junction space is shared with public road users and construction traffic associated with other nearby developments. Therefore, the flow of construction traffic will need to be marshalled and controlled to ensure that potential conflicts are avoided as much as possible.

There are no proposals to introduce temporary road closures to facilitate construction of the proposed public realm improvement for a pedestrianised New Street however, temporary traffic light signals will be required on New Street at junction locations and at the access to Ross Cottages.

For more details please refer to the 'Construction \& Demolition Waste Management Plan’ prepared and included in the pre- planning assessment pack.

8 Works Adjacent to Railway Line

The proposed public realm improvements is in close proximity to Malahide Train Station. The proposed public realm improvements will have no interference with any of the railway infrastructure. The proposed development's location in relation to the railway infrastructure is shown in Figure 8-1 below.

Figure 8-1: Railway Line adjacent to the Proposed Public Realm Improvements.

9 Potential Interface with Other Projects

The proposed public realm improvements will likely have an interface with other projects within the greater region. The appointed Contractor may need to coordinate with other Contractors in the locality to ensure a smooth interface between projects.

There may be a number of PSCS's operating in the urban locality at any one time on individual sites. It will be responsibility of the appointed Contractor as PSCS to ensure that delivery and haul routes, site access and egress points and potential crossing points associated with the site are fully coordinated and agreed with other Contractors in advance of the works commencing.

10 General Construction Approach

10.1 Construction Working Space

Construction working space will be set out in the detailed construction management plan at detail design stage.

Construction access routes, haul routes and delivery routes to the site are to be agreed with the Engineer/Employer's Representative in advance of works commencing onsite.

Any road closures required will be submitted and approved in advance with the local authority. It is the responsibility of the Main Contractor to prepare and submit the road closure application to the local authority in advance of works commencing onsite.

10.2 Outline Phasing Strategy

It is currently envisaged that the proposed public realm improvements will be completed in a single phase as outlined below. For further details relating to the works, please refer to the more detailed preplanning drawings (drainage, road, landscape, etc.). The strategy is outlined as follows:

1. Establish site access routes to the New Street site.
2. Installation of secure perimeter fencing and hoarding along the active site boundaries as required and establish site compound. The location and extent of these systems will change as dictated by the staging of the Works.
3. Construct trench for installation of new drainage system. This includes a large area for the series of bioretention areas being proposed.
4. Installation of drainage/SuDS elements throughout the site.
5. Connections to external stormwater networks.
6. Regrading of topsoil throughout site.
7. Delivery of landscaping and recreation elements throughout the above, as per the architectural requirements.

10.3 Outline Works Description

The construction works will involve an indicative sequence of works, as described in short below. The Contractor will outline works which impact public spaces within the Construction Management Plan that shall be subject to submission and agreement with FCC.

10.3.1 Hoarding, Site Set up and Formation of Site Access/ Egress

The active site area will be enclosed with hoarding details of which are to be agreed with Fingal County Council (FCC). Hoarding panels will be maintained and kept clean for the duration of the works. This will involve erecting hoarding around the proposed site perimeter in line with the proposed staging of the Works.

The available site footprint will enable the Contractor to set up the site compound within the site boundary.

The Contractor will be responsible for the security of the site. The Contractor will be required to:

- Operate a Site Induction Process for all site staff;
- Ensure all site staff shall have current 'Safe Pass' cards and appropriate PPE;
- Install adequate site hoarding to the site boundary;
- Maintain site security at all times;
- Install access security in the form of turn-styles and gates for staff;
- Separate public pedestrian access from construction vehicular traffic;

10.3.2 Site Clearance and Demolition

The site is comprised of an existing pedestrian street/ road. No demolition works are required. Site clearance will involve the removal of the hard standing footpath/ road that exists within the site boundary. These areas are in close proximity to retail, commercial, and residential, and will require consideration to occupants during the clearance and construction works.

10.3.3 Construction Sequence of Development

The construction sequence involves a number of steps including:

- Site clearance and Excavation
- Rationalisation of in-ground services
- Installation of Proposed Storm Drainage
- Installation of pavement sub-base through to top layer
- Hard landscaping
- Soft landscaping including bioretention areas

The construction methodology and programme of these activities will be dictated by the Contractor.
The Contractor must prepare a Construction and Demolition Waste Management Plan in accordance with the "Best Practice Guidelines on the Preparation of Waste Management Plans for Construction and Demolition Projects" (Department of Environment, Heritage and Local Government, 2006) and ensure that surplus material is disposed of at an appropriately licensed land fill site. The Contractor must also outline detailed proposals within the Construction Management Plan to accommodate construction traffic.

The above represents a high-level indicative construction sequence only. The actual sequence will be dictated by the Contractor. The Contractor will issue a detailed construction programme outlining the various stages prior to commencement of works.

11 Waste Management Plan

The Main Contractor will be required to prepare a detailed waste management plan for the proposed public realm improvements. This will be included in the overall construction management plan that will be submitted to the local authority.

For more details, please refer to the 'Construction \& Demolition Waste Management Plan' prepared and included in the pre-planning assessment pack.

12 Communications and Local Stakeholder Management

The Contractor will, as required, liaise with owners of the local properties in advance of works commencing onsite. The Contractor will use a competent sign provider and all signage used will meet the requirements of the Safety, Health \& Welfare at Work (General Applications) Regulations 2007 and Chapter 8 Traffic Signs Manual.

13 Construction Noise, Dust and Vibration

The Main Contractor will be required to monitor noise, dust and vibration as will be outlined in the construction contract. The Contractor will establish baselines for noise, dust and vibration in advance of works commencing onsite.

As part of their detailed construction management plan, the Contractor will be required to clearly indicate how they plan on monitoring noise, dust and vibration throughout the course of the proposed public realm improvements. The Contractor will also be required to clearly outline the mitigation measures they plan on putting in place to ensure that permissible construction noise, dust and vibration levels for a development of this scale are not exceeded.
For more details please refer to the 'Construction \& Demolition Waste Management Plan' by PUNCH Consulting Engineers prepared and included in the pre-planning assessment pack.

14 Working Hours

The proposed hours of work on site will be 07:00 hrs to 18:00 hrs Monday to Friday and 08:00 hrs to 16:00 hrs Saturday unless otherwise specified. Any working hours outside the normal construction working hours will be agreed with FCC. The planning of such works will take consideration of sensitive receptors, in particular any nearby businesses.

For more details, please refer to the 'Construction \& Demolition Waste Management Plan' prepared and included in the pre-planning assessment pack.

15 Lighting

Appropriate lighting will be provided as necessary at construction compounds. All lighting will be installed to minimise light spillage from the site.

16 Construction Employment

Construction employment numbers will vary depending on the construction stage of the proposed public realm improvements and the actual approach adopted by the Contractor. However, it is anticipated that at the peak of construction there may be a workforce of approximately 25 people employed.

APPENDIX G

Construction \& Demolition Waste Management Plan by Punch Consulting Engineers

Public Realm Improvements for a Pedestrianised New Street

Construction \& Demolition Waste Management Plan

222126-PUNCH-XX-XX-RP-C-0003

February 2023

Public Realm Improvements for a Pedestrianised New Street

Document Control

Document Number: 222126-PUNCH-XX-XX-RP-C-0003

Status	Rev	Description	Date	Prepared	Checked	Approved
S3	P01	Pre-Planning Issue	$22 / 02 / 2023$	D Moreton	MC Daly	P Casey

Public Realm Improvements for a Pedestrianised New Street Construction \& Demolition Waste Management Plan

Table of Contents

Document Control
Table of Contents ii
1 Introduction 1
2 Construction \& Demolition Waste Management 2
2.1 Background 2
2.2 Best Practice 2
2.3 Prevention of Waste 3
2.4 Reuse of Waste 3
2.5 Recycling of Waste3
2.6 Overall Management of Construction \& Demolition Waste 4
2.7 Construction Management Plan 4
2.7.1 Disposal of Water, Wastewater and Sewage 4
2.7.2 Water Disposal 4
2.7.3 Working Hours 4
2.7.4 Waste Management Control Policy 5
2.7.5 Control of Fuels and Lubricants 5
2.7.6 Site Compound Layout 5
2.7.7 Car Parking Arrangements 6
2.7.8 Traffic Management Procedures / Generation 6
2.7.9 Air Quality 7
2.8 Noise and Vibration 8
2.8.1 Noise 8
2.8.2 Vibration 8
2.8.3 Noise and Vibration Measures 8
2.9 Indicative On-Site Waste Construction \& Demolition Waste Management Plan 9
2.9.1 Proposals for Minimisation, Reuse and Recycling of C\&D Waste 10
2.9.2 Assignment of Responsibilities 11
2.9.3 Training 11
2.9.4 Waste Auditing 11
3 Waste Management Legislation and Obligations 13
3.1 Relevant Waste Management Legislation 13
3.1.1 Waste Management (Landfill Levy) Regulations 2015, S.I. No. 189/2015 13
3.1.2 Waste Management (Facility Permit and Registration) (Amendment) Regulations 2015, S.I. No. 198/2015 13
3.1.3 Waste Management (Licensing) (Amendment) Regulations 2010, S.I. No. 350/2010 13
3.1.4 Waste Management (Collection Permit) (Amendment) Regulations 2016, S.I. No. 24/2016 13
3.1.5 Waste Management (Movement of Hazardous Waste) Regulations 1998, S.I. No. 14/1998 . 13
3.1.6 Waste Management (Shipments of Waste) Regulations 2007, S.I. No. 419/2007 14
3.1.7 Waste Classification, List of Waste and Determining if Waste is Hazardous or Non-Hazardous, 2015 14
3.1.8 Carriage of Dangerous Goods by Road Regulations 2015, S.I. No. 288/2015 14
4 Construction Traffic Management 15
4.1 Construction Traffic Access to the Site 15
4.1.1 Location and access to the site 15
4.1.2 Definition of Construction Traffic 18
4.2 Management of Construction Traffic around Dublin Road (R106) 18
4.3 Proof of Compliance with Traffic Restrictions 19
4.4 Construction Traffic Access to site via Dublin Road (R106) 19
4.4.1 Traffic Management Procedures / Generation 19
4.4.2 Traffic management - Internal Site Extents 19
4.4.3 Traffic management coordination meetings 20
4.4.4 Construction Access Road required behaviours 20
4.4.5 Loading/Unloading locations 20
4.4.6 Emergency Access 21
4.4.7 Asset Protection 21

1 Introduction

A Main Contractor has not yet been appointed to carry out the proposed Public Realm Improvements to a Pedestrianised New Street. Once appointed, it will be the responsibility of the Main Contractor to prepare and submit a detailed construction management plan for submission to the local authority for approval. The Construction $\&$ Demolition Waste Management Plan will be a live document that will be updated throughout the public realm improvements by the Main Contractor as required.

The proposed public realm improvements will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c. 150 m in length, 0.22 ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7 am to 11 am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2 no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for 23no. cycle parking spaces.
vi. Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for existing and future utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed Public Realm Improvements to a Pedestrianised New Street are outlined in a series of architectural drawings prepared by DFLA, and engineering drawings prepared by PUNCH Consulting Engineers supplied as part of the pre-planning assessment pack. The proposed public realm improvements to a pedestrianised New Street location is show in Figure 1-1.

This report was prepared for Fingal County Council (FCC) in relation to the pre-planning submission for the proposed public realm improvements to a pedestrianised New Street and deals specifically with the "Construction \& Demolition Waste Management Plan".

Figure 1-1: Site Location

2 Construction \& Demolition Waste Management

2.1 Background

The purpose of the Construction and Demolition Waste Management Plan (C\&D WMP) is to provide the information necessary to ensure that the management of C\&D waste at the site is undertaken in accordance with current legal and industry standards including the Waste Management Act 1996 and associated Regulations, Litter Act 1997 and the Eastern-Midlands Region (EMR) Waste Management Plan 2015-2021.

This section was prepared in accordance with the 'Best Practice Guidelines on the Preparation of Waste Management Plans for Construction \& Demolition Projects' for the pre-planning submission of the proposed public realm improvements and represents an 'Construction \& Demolition Waste Management Plan' for the proposed construction works at the site.

2.2 Best Practice

The management of construction and demolition waste should reflect the waste management hierarchy, with waste prevention and minimisation being the first priority succeeded by reuse and recycling.

During site clearance and proposed public realm improvements, there are numerous opportunities for the beneficial reuse and recycling of the demolition materials. The subsequent use of recycled materials in proposed public realm improvements also reduces the quantities of waste which ultimately needs to be consigned to landfill sites.

2.3 Prevention of Waste

The primary effort therefore should be to engage in waste prevention and reduce the amount of waste generated in the first place i.e. minimise the resources needed to do the job.

Prevention is financially advantageous as it reduces the purchase of construction materials and avoids the need to remove wastes from site. It is important to emphasise the potential for certain purchasing procedures to contribute to a reduction in excessive material wastage on site.

Examples include:

- ensuring materials are ordered on an "as needed" basis to prevent over supply to site;
- purchasing construction materials in shape, dimensions and form that minimises the creation of excessive scrap waste on site;
- ensuring correct storage and handling of construction materials to minimise generation of damaged materials/waste, e.g. keeping deliveries packaged until they are ready to be used;
- ensuring correct sequencing of operations; and
- assigning individual responsibility (through appropriate contractual arrangements) to sub-contractors for the purchase of raw materials and for the management of wastes arising from their activities, thereby ensuring that available resources are not expended in an extravagant manner at the expense of the main contractor.

2.4 Reuse of Waste

Waste material that is generated should be reused on site or salvaged for subsequent reuse to the greatest extent possible and disposal should only be considered as a last resort. Initiatives should be put in place to maximise the efficient use/reuse of materials.

2.5 Recycling of Waste

There are a number of established markets available for the beneficial use of C\&D waste:

- waste timber can be:
- recycled as shuttering or hoarding, or
- sent for reprocessing as medium density fibreboard;
- waste concrete can be utilised as fill material for roads or in the manufacture of new concrete when arising at source; and
- in addition, the technology for the segregation and recovery of stone, for example, is well established, readily accessible and there is a large reuse market for aggregates as fill for future use.

2.6 Overall Management of Construction \& Demolition Waste

Waste minimisation, reuse and recycling can best be managed operationally by nominating a "Construction and Demolition Waste Manager" to take responsibility for all aspects of waste management at the different stages of the proposed public realm improvements.

This C\&D Waste Manager may well be a number of different individuals over the life-cycle of the proposed public realm improvements, but in general is intended to be a reliable person chosen from within the Contracting Team, who is technically competent and appropriately trained, who takes the responsibility to ensure that the objectives and measures within the Project Waste Management Plan are delivered and who is assigned the requisite authority to secure achievement of this purpose.

Specifically, the function of the C\&D Waste Manager will be to communicate effectively with colleagues in relation to the aims and objectives for waste management on the proposed public realm improvements. The primary responsibility for delivery of the objectives of the Waste Management Plan will fall upon the C\&D Waste Manager designated at the demolition/ construction stage. A key objective for the C\&D Waste Manager should be to maintain accurate records on the quantities of waste/ surpluses arising and the real cost (including purchase) associated with waste generation and management.

The preparation, application and documentation of a Project Waste Management Plan should enable all parties - including contractors, designers and competent authorities - to learn from the systematic implementation and assessment of best practice, particularly through the recording of summary information on performance outcomes.

2.7 Construction Management Plan

2.7.1 Disposal of Water, Wastewater and Sewage

All site facilities during construction will be located entirely within the site. The facilities will include canteen, toilet block and drying room for all staff/workers. These facilities will be connected to the Local Authority sewage system with local authority approval.

2.7.2 Water Disposal

Construction operations will adopt best working practices and the early establishment of the temporary construction drainage facilities during construction. A Construction Drainage Control System will be put in place so that all silt laden water will be diverted to temporary settlement storage tanks prior to discharge. This discharge, and the associated pollution control measures, will be subject to the approval of the Local Authority. The appointed contractor will also be required to further develop this Outline Construction Stage Surface Water Management Plan.

2.7.3 Working Hours

The proposed hours of work on site will be 08:00 hrs to 18:00 hrs Monday to Friday and 08:00 hrs to 14:00 hrs Saturday unless otherwise specified by Fingal County Council. Certain tasks may need to be undertaken outside of these hours. All outside of hours work will first be agreed in writing with the Local Authority.

Public Realm Improvements for a Pedestrianised New Street

2.7.4 Waste Management Control Policy

In general:

Regular shaped skips will be used for the duration of the demolition/ proposed public realm improvements. All skips will be situated in the waste segregation area on site.

Labelled skips will be available for each of the following waste types: wood, metal, brick/ rubble, canteen waste, plasterboard, paper and cardboard, other general waste and special bins for any hazardous wastes as required.

Throughout the demolition/ construction zone, covered labelled wheelie bins will be placed at designated waste depots. These bins will be taken and used by the operatives/ sub-contractors and returned to the depots after use.

The waste segregation area banksman will co-ordinate the movement of skips to and from the demolition/ construction zone. The banksman will also co-ordinate the scheduling of the approved waste collector to transport waste to the relevant permitted/ licensed waste facility.

2.7.5 Control of Fuels and Lubricants

In order to provide fuel to the relevant items of plant on site, a certified double skinned metal fuel tank with integrated pump, delivery hose, meter, filter and locking mechanism will be situated in a secure area on the construction site. It will be situated within a bund. This tank will be certified for lifting when full.

Sand piles and emergency clean up spill kits will be readily available in the event of a fuel spill. A hazardous bin will also be available to contain any spent sand or soak pads.

New metal gerry cans with proper pouring nozzles will be used to move fuel around the site for the purposes of refuelling items of small plant on site.

Drip trays will be used under items of small plant at all times. Any waste oils etc. contained in the drip trays or the bunded area will be emptied into a waste oil drum, which will be stored within the bund.

Metal gerry cans and any other items of fuel containers will be stored in certified metal bunded cabinets. Any gas bottles will be stored in a caged area at a secure location on the site. All will be properly secured at point of work.

2.7.6 Site Compound Layout

Given the nature of the proposed public realm improvements, various locations for the site compound will be established as the proposed public realm improvements progress. The exact locations of the site compound will be subject to the phasing of the proposed public realm improvements, which in turn will be subject to further community engagement and the outcome of any planning process. At this stage it is considered premature to identify specific site compound locations. However, the site compound locations and extents will consider the following requirements:

1) Phasing of the proposed public realm improvements
2) Maintaining vehicular access along New Street (e.g. resident access, deliveries, refuse collection and emergency vehicles)
3) Maintaining access for delivery of plant and materials
4) Maintaining pedestrian access along New Street and access to premises

Public Realm Improvements for a Pedestrianised New Street

Figure 2-1: Indicative Site Compound Layout
The sites will be enclosed by hoarding or secure herras fencing. A waterproof membrane will be fixed to the base of the hoarding and the ground. The compound area will be of existing hardstanding material.

2.7.7 Car Parking Arrangements

Due to the limited availability of space on the site, parking of construction workers vehicles will be limited within the site extents. Parking will be permitted at other legal locations. To minimise congestion, a parking and traffic management plan will need to be developed by the Contractor for submission to FCC to ensure that construction workers access the site using alternative means of transport (i.e. public transport) to negate/minimise any impacts on the local network.

2.7.8 Traffic Management Procedures / Generation

All deliveries will be booked into site at least one day before delivery. All drivers will contact the site gate man 15 minutes before arrival on site.

Construction traffic will arrive along Dublin Road (R106), prior to entering the proposed development site. Refer to defined construction/demolition traffic route in Section 4.1.1 of this report. All deliveries will be off-loaded without delay by the most appropriate method and escorted off site.

The site gate man will be responsible for ensuring that there is no conflict between pedestrians and vehicles entering/ exiting the site. In addition, temporary markings will be painted on the footpath either side of the site entrance to alert pedestrians.

It is predicted that there will be as many as 25 personnel on site during peak construction activity. It is envisaged that working hours on site will be 08:00 hrs to 18:00 hrs Monday to Friday and 08:00 hrs to 14:00 hrs Saturday, therefore the peak movements in and out of the site should occur outside of the AM/PM rush hour traffic.

The volume of HGV movements per day will vary according to the different stages of demolition but is likely to be low and infrequent. Peak HGV movements will be mainly associated with removal off-site of stone and clay and any demolished hardstanding materials, if they cannot be re-used elsewhere on-site. There will also be deliveries to the site of materials for construction.

For a rigid HGV hauling material to the site, it will typically take 15 mins from when the rigid arrives at the site entrance, travels to the unloading area, empties its load and leaves the site.

The worst-case scenario is demolition with an estimated average of 2 HGV's per hour predicted during peak site grading activity. It is envisaged that HGV movements will be undertaken outside of AM/ PM rush hour traffic.

2.7.9 Air Quality

There is the potential for a number of emissions to the atmosphere during the bulk construction stage of the project. In particular, activities may generate quantities of dust. Construction vehicles, generators etc., will also give rise to some exhaust emissions.

Vehicular movements to and from the site will make use of existing roads. It is estimated that peak construction HGV movements will be 2 HGV's per hour. Considering the existing traffic levels in the area, the likely air quality impact associated with construction traffic is not significant.

A dust minimisation plan will be formulated for the bulk demolition and construction phase of the proposed public realm improvement, as construction activities are likely to generate dust emissions. The potential for dust to be emitted depends on the type of activity being carried out in conjunction with environmental factors including levels of rainfall, wind speeds and wind direction. The potential for impact from dust depends on the distance to potentially sensitive locations and whether the wind can carry the dust to these locations. The majority of any dust produced will be deposited close to the potential source and any impacts from dust deposition will typically be within several hundred metres of the construction area.

In order to ensure that no dust nuisance occurs, a series of measures will be implemented.
Roads shall be regularly cleaned and maintained as appropriate. Hard surface roads shall be swept to remove mud and aggregate materials from their surface. Furthermore, any road that has the potential to give rise to fugitive dust must be regularly watered, as appropriate, during dry and/or windy conditions.

Vehicles delivering material with dust potential both on and off the site shall be enclosed or covered with tarpaulin at all times to ensure no potential for dust emissions.

Material handling systems and site stockpiling of materials shall be designed and laid out to minimise exposure to wind. Water misting or sprays shall be used as required if particularly dusty activities are necessary during dry or windy periods.

At all times, the procedures put in place will be strictly monitored and assessed. In the event of dust nuisance occurring outside the site boundary, satisfactory procedures will be implemented to rectify the problem.

The dust minimisation plan shall be reviewed at regular intervals during the construction phase to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practise and procedures.

2.8 Noise and Vibration

2.8.1 Noise

There is no published Irish guidance relating to the maximum permissible noise level that may be generated during the construction phase of a project. Local authorities normally control construction activities by imposing limits on the hours of operation and consider at their discretion noise limits.

In the absence of specific noise limits, appropriate criteria relating to permissible construction noise levels for a development of this scale will be agreed with Fingal County Council (FCC) and will indicate the maximum permissible noise levels at adjacent properties during construction and any related time constraints with regard hours of operation. The majority of the construction activity is expected to occur during normal working hours.

2.8.2 Vibration

There are two varieties of criteria for vibration: those dealing with human comfort and those dealing with cosmetic or structural damage to buildings. In both instances, it is appropriate to consider the magnitude of vibration in terms of Peak Particle Velocity (PPV).

It is acknowledged that humans are particularly sensitive to vibration stimuli and that any perception of vibration may lead to concern. In the case of road traffic, vibration is perceptible at around $0.5 \mathrm{~mm} / \mathrm{s}$ and may become disturbing or annoying at higher magnitudes. However, higher levels of vibration are typically tolerated for single events or events of short duration. For example, piling is typically tolerated at vibration levels up to $5 \mathrm{~mm} / \mathrm{s}$. This guidance is applicable to the daytime only; it is unreasonable to expect people to be tolerant of such activities during the night.

Guidance relevant to acceptable vibration within buildings is contained in the following documents:

- British Standard BS 7385-2:1993: Evaluation and measurement for vibration in buildings. Guide to damage levels from ground borne vibration, and;
- British Standard BS 5228-2:2009: Code of practice for noise and vibration control on construction and open sites

2.8.3 Noise and Vibration Measures

Due to the nature of the activities undertaken on a construction site, there is naturally potential for generation of significant levels of noise. A variety of items of plant may be in use, such as pneumatic breakers, excavators, lifting equipment, dumper trucks, compressors and generators. The flow of vehicular traffic to and from a construction site is also a potential source of relatively high noise levels.

The potential for vibration at neighbouring sensitive locations during construction is typically limited to demolition, excavation and lorry movements on uneven road surfaces.

With regard to construction activities, reference will be made to BS 5228-1:2009: Noise control on construction and open sites, which offers detailed guidance on the control of noise and vibration from demolition and construction activities. In particular, it is proposed that various practices be adopted during construction, including:

- limiting the hours during which site activities likely to create high levels of noise or vibration are permitted;
- establishing channels of communication between the contractor/developer, Local Authority and residents;
- appointing a site representative responsible for matters relating to noise and vibration;
- monitoring typical levels of noise and vibration during critical periods and at sensitive locations;
- all site access roads will be kept even, to mitigate the potential for vibration from lorries;
- Construction of 2.4 m high hoarding.

Furthermore, it is envisaged that a variety of practicable noise control measures will be employed. These may include:

- selection of plant with low inherent potential for generation of noise and/ or vibration;
- erection of barriers as necessary around noisy processes and items such as generators heavy mechanical plant or high duty compressors;
- placing of noisy / vibratory plant as far away from sensitive properties as permitted by site constraints and the use of vibration isolated support structures where necessary.

We would recommend that vibration from construction activities be limited to the values set out in Section 2.8.2. It should be noted that these limits are not absolute but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those are normally unlikely to cause cosmetic damage, but construction creating such magnitudes should proceed with caution. Where there is existing damage, these limits may need to be reduced by up to 50%.

During the construction phase of the proposed public realm improvements there will be some small impact on nearby properties due to noise emissions from site traffic and other activities. However, given that the construction phase of the proposed public realm improvements is temporary in nature, it is expected that the various noise sources will not be excessively intrusive. Furthermore, the application of binding noise limits and hours of operation, along with implementation of appropriate noise and vibration control measures, will ensure that noise and vibration impact is kept to a minimum.

It is highly recommended that appropriate dilapidation records for the site and surrounding area are documented prior to the commencement of construction/demolition activities.

2.9 Indicative On-Site Waste Construction \& Demolition Waste Management Plan

In the course of the proposed public realm improvements, it is estimated that the following quantities of construction and demolition wastes/material surpluses will arise:

$\begin{array}{c}\text { Construction Waste } \\ \text { Material }\end{array}$	Quantity	Actions		
Metal	2 t	Not envisaged at this stage of the public realm		
improvements*			$]$	Concrete
:---				
Paper \& Cardboard				
Plastic				
Wood				
Mixed Waste				
2t				

Public Realm Improvements for a Pedestrianised New Street

Mineral (bricks, gypsum)	5 t	100% of any waste masonry to be recycled
Soil/Stones	840 t	100% of any soil or stones to be recycled and reuse on site subject to suitability of material
Residues	10 t	Any other waste materials will be recycled where possible or disposed of appropriately
TOTAL Arisings	925 t	

Table SF1 Estimated C\&D Waste Arisings on Site from Appendix 3 of Best Practice Guidelines of Waste Management Plans for C\&D Projects (figures to be confirmed as design progresses)

These quantities are provisional only and subject to further determination during the proposed public realm improvements.

2.9.1 Proposals for Minimisation, Reuse and Recycling of C\&D Waste

Construction and demolition waste will arise on the proposed public realm improvements mainly from the site clearance, service trenches and foundation preparation.

The following are proposals for minimisation, reuse and recycling of C\&D waste:

- The Purchasing Manager shall ensure that materials are ordered so that the quantity delivered, the timing of the delivery and the storage is not conducive to the creation of unnecessary waste.
- Concrete waste will be source segregated.
- Masonry and wood will be source segregated.
- Packaging will be source segregated for recycling or return to suppliers.
- Hazardous wastes will be identified, removed and kept separate from other C\&D waste materials in order to avoid further contamination.
- Other C\&D waste materials will be collected in receptacles with mixed C\&D waste materials, for subsequent separation and disposal at a remote facility.

It is anticipated that waste materials will have to be moved off site. It is the intention to engage specialist waste service Contractors, who will possess the requisite authorisations, for the collection and movement of waste off-site, and to bring the material to a facility which currently holds a Waste Licence/ Waste Permit/ Certificate of Registration. Accordingly, it will be necessary to arrange the following waste authorisations specifically for the proposed public realm improvements:

Authorisation Type	Specific Need for the proposed public realm improvements (Yes/No?)	
Waste Licence	Yes \square	No \square
Waste Permit	Yes \square	No \square
Waste Collection Permit	Yes \square	No \square
Trans frontier Shipment Notification	Yes \square	No \square
Movement of Hazardous Waste Form	Yes \square	No \square

Table SF2 Waste Authorisations Necessary for the Scheme from Appendix 3 of Best Practice Guidelines of Waste Management Plans for C\&D Projects

A list of waste collection permit holders to be employed on this proposed public realm improvements will be submitted to the local authority by the contractor in their Formal Construction and Demolition Waste Management Plan for the Construction Stage.

A list of waste collection permit sites that the waste may be recovered or disposed to on this proposed public realm improvements will be submitted to the local authority by the contractor in their Formal Construction and Demolition Waste Management Plan for the Construction Stage.

2.9.2 Assignment of Responsibilities

A foreman shall be designated as the Responsible Person and have overall responsibility for the implementation of the on-site Waste Management Plan.

The Responsible Person will be assigned the authority to instruct all site personnel to comply with the specific provisions of the Plan.

At the operational level, a Ganger from the main contractor and appropriate personnel from each subcontractor on the site shall be assigned the direct responsibility to ensure that the discrete operations stated in the Waste Management Plan are performed on an on-going basis.

2.9.3 Training

Copies of the Waste Management Plan will be made available to all personnel on site. All site personnel and sub-contractors will be instructed about the objectives of the Waste Management Plan and informed of the responsibilities which fall upon them as a consequence of its provisions.

Where source segregation, selective demolition and material reuse techniques apply, each member of staff will be given instructions on how to comply with the Waste Management Plan.

Posters will be designed to reinforce the key messages within the Waste Management Plan and will be displayed prominently for the benefit of site staff.

2.9.4 Waste Auditing

The C\&D Waste Manager shall arrange for full details of all arisings, movements and treatment of construction and demolition waste discards to be recorded during the construction stage of the proposed public realm improvements.

Each consignment of C\&D waste taken from the site will be subject to documentation, which will conform to Table SF3 and ensure full traceability of the material to its final destination.

Detail	
Name of Project of Origin	e.g. New Harbour Motorway
Material being Transported	e.g. Soil, Demolition Concrete, Crushed Asphalt etc.
Quantity of Material	e.g. 20.50 tonnes
Date of Material Movement	e.g. $01 / 07 / 2020$
Name of Carrier	e.g. Authorised Carriers Ltd.
Destination of Material	e.g. New Street Development
Proposed Use	e.g. Use as Hardcore in Dwelling Floors

Table SF3 Details to be Included within Transportation Dockets from Appendix 3 of Best Practice Guidelines of Waste Management Plans for C\&D Projects

Details of the inputs of materials to the Construction site and the outputs of wastage arising from the proposed public realm improvements will be investigated and recorded in a Waste Audit, which will identify the amount, nature and composition of the waste generated on the site. The Waste Audit will examine the manner in which the waste is produced and will provide a commentary highlighting how management policies and practices may inherently contribute to the production of construction and demolition waste. The measured waste quantities will be used to quantify the costs of management and disposal in a Waste Audit Report, which will also record lessons learned from these experiences which can be applied in the future.

The total cost of C\&D Waste management will be measured and will take account of the purchase cost of materials (including imported soil), handling costs, storage costs, transportation costs, revenue from sales, disposal costs etc. Costs will be calculated for the management of a range of C\&D Waste materials, using the format shown in Table SF4.

The Table SF4 below will be completed and submitted to the Council in full following the appointment of a contractor for the proposed public realm improvements.

Material	Estimated Quantities \& Costs (tonnes \& Euro)
SOIL	XXX tonnes for $€$
Quantity of Waste Soil(tonnes)	
Purchase Cost i.e. Import Costs ($£$)	
Materials Handling Costs ($£$)	
Material Storage Costs ($£$)	
Material Transportation Costs ($€$)	
Revenue from Material Sales ($£$)	
Material Disposal Costs ($¢$)	
Material Treatment Costs ($¢$)	
Total Waste Soil Management Costs ($¢$)	
Unit Waste Soil Management Costs ($¢$)	

Table SF4 Standard Record Form for Costs of C\& D Waste Management from Appendix 3 of Best Practice Guidelines of Waste Management Plans for C\&D Projects

Details of the quantities and types of C\&D Waste arising from the proposed public realm improvements will be forwarded to Environmental Protection Agency, local competent authority, NCDWC etc.

3 Waste Management Legislation and Obligations

3.1 Relevant Waste Management Legislation

This section provides details of waste related legislation relevant to the proposed public realm improvements. In accordance with cradle to grave responsibilities, the Contractor will be responsible for all waste arisings from the time the waste is generated until it reaches its final destination point. This includes its method of treatment/disposal. The Waste Management Acts 1996-201, give effect to the polluter pays principle effectively stating that the waste producer may be liable for any pollution incidents arising from the management of their waste. There is therefore an onus on the Contractor to ensure that all contractors managing waste on their behalf are legally compliant and technically competent and the waste itself is contained, handled, treated and disposed of in accordance with all relevant regulatory requirements.

A brief description of the main waste related regulatory controls relevant to the proposed public realm improvements is provided hereunder; however, the list is not exhaustive and should be reviewed and amended at regular intervals in accordance with changing legislation:
3.1.1 Waste Management (Landfill Levy) Regulations 2015, S.I. No. 189/2015

The existing levy of $€ 75$ per tonne of waste disposed is unchanged under these new Regulations.

3.1.2 Waste Management (Facility Permit and Registration) (Amendment) Regulations 2015, S.I. No. 198/2015

These regulations describe the process for obtaining a Waster Permit or Certificate of Registration, by a private operator from a local authority, or a Certificate of Registration from the Environmental Protection Agency (EPA) in respect of a local authority run waste activity which requires registration.

3.1.3 Waste Management (Licensing) (Amendment) Regulations 2010, S.I. No. 350/2010

These regulations relate to the process for obtaining a waste licence from the EPA for the operation of certain waste recovery or disposal facilities under Part V of the Waste Management Act.

3.1.4 Waste Management (Collection Permit) (Amendment) Regulations 2016, S.I. No. 24/2016

These regulations relate to the requirement to obtain a waste collection permit from the relevant local authority for the collection of waste on a commercial basis.

3.1.5 Waste Management (Movement of Hazardous Waste) Regulations 1998, S.I. No. 14/1998

These regulations control the movement of hazardous waste within Ireland requiring authorisation in the form of C 1 consignment forms. The C 1 form is completed by the Consignor, the Carrier and the Consignee. A three part document provides a tracking mechanism for the hazardous waste from its point of origin to its final destination.

3.1.6 Waste Management (Shipments of Waste) Regulations 2007, S.I. No. 419/2007

These regulations control the movement of waste across member states. Shipments are controlled under a TFS (Transfrontier Shipment) form, which designates the waste under the categories of Green, Amber and Red List. Fingal County Council is the designated competent authority under the regulations.

3.1.7 Waste Classification, List of Waste and Determining if Waste is Hazardous or Non-Hazardous, 2015

This document allows the generators of waste to classify the waste as hazardous or non-hazardous and in the process assigning the correct List of Waste entry. The waste classification system applies across the EU and is the basis for all national and international waste reporting obligations. Correct classification is the foundation for ensuring that collection, transportation, storage, treatment of waste is carried out in a manner that provides protection for the environment and human health and in compliance with legal requirements.

3.1.8 Carriage of Dangerous Goods by Road Regulations 2015, S.I. No. 288/2015

These regulations require drivers transporting dangerous goods to be ADR trained. In addition, a Dangerous Goods Safety Advisor (DGSA) must be appointed where activities include the carriage, or related packing, loading, filling or unloading of dangerous goods by road.

4 Construction Traffic Management

This section, relating to the Construction Traffic Management Plan (CTMP), sets out the traffic management requirements that will apply to Contractors who are engaged in the demolition and construction activities associated with the proposed public realm improvements at New Street, Malahide, Co. Dublin. The Contractor must adopt the requirements of this preliminary Construction Traffic Management Plan into his own Construction Traffic Management Plan and must agree same with Fingal County Council prior to commencement on site.

4.1 Construction Traffic Access to the Site

4.1.1 Location and access to the site

The site will be accessed via an existing junction on The Mall (R106). Road is also labelled as Dublin Road (R106). See Figure 4-1, Figure 4-2, and Figure 4-3 below.

Construction related traffic will enter the site via the junction on Dublin Road (R106). Construction traffic associated with the development can proceed along the Dublin Road, to Swords Road, to Malahide Road, to the Swords Bypass, to Lisenhall Road, to the M1 or other routes depending on destination. Refer to Figure 4-4 below for illustration.

The management of construction traffic on the public road network around the development will be a critical part of the overall proposed public realm improvements and must be actively managed by the Contractor.

Figure 4-1: Dublin Road (R106) Heading eastward towards junction with New Street. © Google Maps

Figure 4-2: Dublin Road (R106) junction with New Street. © Google Maps

Figure 4-3: Proposed site access looking northwards on New Street. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

Figure 4-4: Proposed Primary Route To/From Site.

4.1.2 Definition of Construction Traffic

Construction traffic means the following vehicles:

- HGVs \& haul trucks - i.e. vehicle with 6 tyres or more as set out in the RSA publication 'Guidelines on Maximum Weights and Dimensions of Mechanically Propelled Vehicles and Trailers, Including Manoeuvrability Criteria'
- Site machinery such as excavators, tippers, bulldozers, etc.
- Concrete trucks.

Smaller vehicles used by construction workers to access the site, such as cars and vans, are not deemed to be construction traffic.

4.2 Management of Construction Traffic around Dublin Road (R106)

The Contractor is required to control the construction traffic in and around the proposed development location, with access to the site via Dublin Road (R106). The Contractor must adhere to the following:

- Communicate clearly to all construction staff and subcontractors that they are bound by these restrictions.
- Schedule site traffic in advance to ensure that these restrictions are adhered to.
- Monitor construction traffic at key points remote from the site to check compliance.
- Details of the Contractor's management plan must be submitted to Fingal County Council (FCC) in advance of construction and included as part of the Construction Management Plan.
- Vehicle movements associated with ancillary, maintenance and other non-essential activities will be minimised during the peak traffic hours on the public road in the vicinity of the site. These are the hours of 8:00-9:00 in the morning and 17:00-18:00 in the evening.
- A special permit for moving oversized and hazardous loads will be obtained from FCC/ An Garda Síochána prior to any such movements.
- Daily construction programmes will be planned to minimise the number of disruptions to surrounding roads by staggering HGV movements to avoid site queues.
- It is envisaged that there will be provision for on-site parking, sufficient only to serve those directly involved with the proposed public realm improvements.
- Construction vehicles will follow the road hierarchy as much as practicable - i.e. construction vehicles will be directed away from local or minor streets and roads and will be required to use designated primary national and regional routes for accessing the site.
- The Contractor will appoint a Traffic Management Coordinator who will be responsible for the coordination of all traffic safety and traffic management matters. The Traffic Management Coordinator will ensure that all traffic management requirements set-out in the CTMP are met.
- In the event that multiple contractors will be working on site, overall traffic management coordination will be required. This will include a review of the individual CTMPs prepared by different Contractors and provision of guidance to ensure consistency between them. An overall CTMP for the entire site should be prepared and agreed with FCC in advance of commencement of proposed public realm improvements.

4.3 Proof of Compliance with Traffic Restrictions

The Contractor will track the transit of construction traffic in the area for the duration of the proposed public realm improvements.

The Contractor will control traffic movements using the following procedure;

- Develop a restrictions and rule adherence form that all lorry drivers and site operatives will sign.
- All traffic movements to and from site to be managed by the Contractor's transport manager in accordance with these restrictions
- Appointed person located at the site entrance to issue dockets and record all traffic entering and leaving site.
- Records to be reviewed periodically by the site manager.
- Prior to any new contractors starting, all persons must sign up to restrictions and prequalification forms.
- A certified Flagman must be present to coordinate the traffic entering and leaving the site.

4.4 Construction Traffic Access to site via Dublin Road (R106)

4.4.1 Traffic Management Procedures / Generation

All deliveries will be booked into site at least one day before delivery. All drivers will contact the site gate man 15 minutes before arrival on site.
All construction traffic will arrive along the main access roads with entry to the site via its northern site boundary. All deliveries will be off-loaded without delay by the most appropriate method and escorted off site.

The site gate man will be responsible for ensuring that there is no conflict between pedestrians and vehicles / entering / exiting the site.

It is predicted that there will be an average of 25 personnel on site during peak construction activity. It is envisaged that working hours on site will be 08:00 hrs to 19:00 hrs Monday to Friday and 08:00 hrs to 16:30 hrs Saturday, therefore the peak movements in and out of the site should occur outside of the AM/PM rush hour traffic.
There is one stage that the proposed public realm improvements will generate HGV movements; bulk excavation.

For a rigid HGV hauling material to the site, it will typically take 15 mins from when the rigid arrives at the site entrance, travels to the unloading area, empties its load and leaves the site.
The worst-case scenario is demolition with an estimated average of 2 HGV 's per hour predicted during peak site grading activity. It is envisaged that HGV movements will be undertaken outside of AM/ PM rush hour traffic.

4.4.2 Traffic management - Internal Site Extents

Contractor / subcontractor / supplier parking is not permitted on any local access routes. Vehicles must be parked within approved designated areas within the site extents. To minimise congestion, a traffic management plan will need to be developed by the Contractor to ensure that construction workers access
the site using alternative means of transport (i.e. public transport) to negate impacts on the local network.

No unloading or blockages of access routes, including emergency vehicle access routes. Such vehicles will be immediately requested to move to avoid impeding the proposed public realm improvements.

In accordance with the CTMP, the Contractor must appoint a Traffic Management Coordinator responsible for the management of traffic management related activities on site.

The Contractor must carry out an auto-track analysis to ensure that adequate turning space is available. The auto-track must demonstrate how construction vehicles will go in and out of the site. Contractors must eliminate where possible the necessity for reversing of any construction or supply chain vehicle onsite.

Contractor is to note requirement for traffic management.

4.4.3 Traffic management coordination meetings

Monthly logistics coordination will be undertaken where the traffic management strategy, traffic management coordination (and implementation of any required temporary traffic management schemes) will be discussed and agreed.

4.4.4 Construction Access Road required behaviours

The Contractor must adhere to established traffic management measures specified in the Construction Traffic Management Plan including:

- Queuing procedures outside the site for vehicles seeking to enter the site to prevent back-up onto the local road network;
- Sign-in requirements;
- Visual PPE checks;
- Arrangements for infrequent visitors, e.g. integrated design team, client visitors;
- Compliance to sign-in requirements, use of turnstiles and/or swipe cards; and
- Collaborate with any required security searches of vehicles entering or exiting.

All Contractors will be deemed to have inspected and examined the site and its surroundings at tender stage and to have satisfied itself as to the nature and means of access to the site.

In the event of a Contractor not being satisfied with the permitted access routes to and from the site, the Contractor is obliged to provide for all expenses and charges for temporary wayleaves and temporary truck/vehicle holding areas in connection with different access arrangements to the site. Any amendments must be to the satisfaction of FCC.

4.4.5 Loading/Unloading locations

Vehicles must be loaded and unloaded within the site area (i.e. access routes, site compound set-up and loading areas to be developed and agreed with the Contractor). Contractors are not permitted to carry out loading or unloading on the public roadway. This approach reduces the risk to the public, reduces congestion, and minimises disruption and risk to any passing vehicles on the highway. All deliveries and collections should be overseen and managed for the Contractor by a nominated competent person.

Contractors must consider and explain how to manage the impacts on cyclists, pedestrians, other road users, and any affected roadway infrastructure.

4.4.6 Emergency Access

Access for emergency vehicles via the primary haul roads must be maintained at all times.

4.4.7 Asset Protection

The Contractor must take care to avoid damage to roads, footpaths, grass margins, and other surfaces and all walls including protected walls, structures including protected structures and the associated curtilage, trees, lighting fixtures and all other street furniture within or outside of the overall site. They shall be liable for the cost of repairing / replacing all such damage caused by its operations to the satisfaction of FCC.

Contractors must take precautions to ensure against spillage of diesel fuel, contaminated water or solvents. Any damage so caused shall be made good by the offending Contractor at its own expense.

Contractors must prohibit the use of tracked plant on road surfaces outside of the site unless suitably approved protective measures are taken to safeguard the integrity of surfaces.

The Contractors Construction Management Plan must include specifications regarding the quality of temporary reinstatements and the timelines for permanent reinstatements of roads and pavements affected by the proposed public realm improvements.

APPENDIX H

Site Specific Flood Risk Assessment by Punch Consulting Engineers

PUN ${ }_{\text {consulting engineers }} \mid$

Public Realm Improvements for a Pedestrianised New Street

Site Specific Flood Risk Assessment
222126-PUNCH-XX-XX-RP-C-0004
February 2023

Public Realm Improvements for a
Pedestrianised New Street

Document Control

Document Number: 222126-PUNCH-XX-XX-RP-C-0004

Status	Rev	Description	Date	Prepared	Checked	Approved
S3	P01	Pre-Planning Issue	$22 / 02 / 2023$	D Moreton	C Shannon	P Casey

Table of Contents

Document Control i
Table of Contents ii
1 Introduction 1
1.1 Background 1
1.2 Existing Site 1
1.3 Nature of the Proposed Development 2
2 Relevant Guidance 3
2.1 "The Planning System and Flood Risk Management" Guidelines 3
2.2 Fingal Development Plan 2017-20234
2.3 Fingal Draft Development Plan 2023-2029 4
2.4 Land Zoning5
3 Flood Risk Identification 6
3.1 Existing Hydrogeological Environment 6
3.2 Topographical Survey 6
3.3 Site Walkover 7
3.4 Site Geology 7
3.5 Groundwater Flooding 8
3.6 Pluvial Flooding 8
3.7 Review of Existing Surface Water Infrastructure 9
3.8 Review of Historic Mapping 10
3.9 History of Flooding 11
3.10 Catchment Flood Risk Assessment and Management Study (CFRAMS) Mapping 12
3.11 Draft Fingal Development Plan 2023-2029 - SFRA. 12
3.12 Estimate of Flood Zone 13
3.13 Vulnerability Classification 13
3.14 Flood Impact Assessment of the Proposed Public Realm Improvements 13
4 Flood Risk Assessment Conclusions 14
Appendix A Site Visit Images A-I
Appendix B OPW Historic Flood Events Record B-I
Appendix C SFRA Mapping C-I

1 Introduction

1.1 Background

PUNCH Consulting Engineers were appointed by Fingal County Council to carry out a Site-Specific Flood Risk Assessment for the proposed public realm improvements at a pedestrianised New Street, located in Malahide, Co. Dublin.

The assessment has been prepared as part of a pre-planning assessment submission package and is carried out in full compliance with the requirements of "The Planning System \& Flood Risk Management Guidelines" published by the Department of the Environment, Heritage and Local Government in November 2009.

The proposed site layout is detailed in a series of drawings provided by DFLA in the pre-planning assessment submission documentation.

1.2 Existing Site

The site is approximately 0.22 hectares in area located in Malahide Village on New Street. The site currently consists of an established town street with retail, commercial and residential development throughout. The topography of the street consists of the site falling from its highest point at the southern extents of the site (The Mall) and falling towards the lowest point at the northern extents of the site (Strand Street).

The site is bounded by retail, commercial and residential developments to the west and east, a junction on Strand Street to the north, and a junction on The Mall (R106) to the south. The junctions on either end of New Street are both signalised. New Street is approximately 100 m southwest of the marina. The street is pedestrianised with restricted vehicular access to enable deliveries allowed between 7am and 11 am only, refuse collection and emergency vehicles. The site is accessed via The Mall (R106) to the south and via Strand Street to the north. Please refer to Figure 1-1Error! Reference source not found. below illustrating the site boundary.

Figure 1-1: Site Location Plan.

1.3 Nature of the Proposed Development

The proposed public realm improvements will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c. 150 m in length, 0.22 ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for 23 no. cycle parking spaces.
vi. Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.

Public Realm Improvements for a
Pedestrianised New Street
xi. Provision of ducting for existing and future utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed public realm improvements are outlined in a series of architectural drawings prepared by DFLA, and engineering drawings prepared by PUNCH Consulting Engineers supplied as part of the preplanning assessment pack.

Please refer to Architectural Documents for full proposed site layout.

2 Relevant Guidance

2.1 "The Planning System and Flood Risk Management" Guidelines

In September 2008, "The Planning System and Flood Risk Management" Guidelines were published by the Department of the Environment, Heritage and Local Government in Draft Format. In November 2009, the adopted version of the document was published. This assessment has been prepared as part of a preplanning assessment submission package.

The Flood Risk Management Guidelines give guidance on flood risk and development. The guidelines recommend a precautionary approach when considering flood risk management. The core principle of the guidelines is to adopt a flood risk sequential approach to managing flood risk and to avoid development in areas that are at risk. The sequential approach is based on the identification of flood zones for river and coastal flooding. The guidelines include definitions of Flood Zones A, B and C, as noted in Table 2-1 below. It should be noted that these do not take into account the presence of flood defences, as there remain risks of overtopping and breach of the defences.

Table 2-1: Flood Zone Designation

Flood Zone	Type of Flooding	Annual Exceedance Probability (AEP)
Flood Zone A	Coastal	Less than a 1:200 (0.5\% AEP) year event
	Fluvial	Less than a 1:100 (1\% AEP) year event
Flood Zone B	Coastal	Greater than a 1:200 (0.5\% AEP) and less than a $1: 1000(0.1 \%$ AEP) year event
Fluvial	Greater than a 1:100 (1\% AEP) and less than a Flood Zone C	Coastal
Fluvial	Greater than a 1:1000 (0.1\% AEP) year event	

Once a flood zone has been identified, the guidelines set out the different types of development appropriate to each zone. Exceptions to the restriction of development due to potential flood risks are provided for through the use of the Justification Test, where the planning need and the sustainable management of flood risk to an acceptable level must be demonstrated. This recognises that there will be a need for future development in existing towns and urban centres that lie within flood risk zones, and that the avoidance of all future development in these areas would be unsustainable.
A three staged approach to undertaking an FRA is recommended:
Stage 1: Flood Risk Identification - Identification of any issues relating to the site that will require further investigation through a Flood Risk Assessment;
Stage 2: Initial Flood Risk Assessment - Involves establishment of the sources of flooding, the extent of the flood risk, potential impacts of the development and possible mitigation measures;
Stage 3: Detailed Flood Risk Assessment - Assess flood risk issues in sufficient detail to provide quantitative appraisal of potential flood risk of the development, impacts of the flooding elsewhere and the effectiveness of any proposed mitigation measures.
This report addresses the requirements for Stage 2.

2.2 Fingal Development Plan 2017-2023

Chapter 7 of the Fingal Development Plan 2017-2023 includes policies on surface water and flooding. The policy relevant to this document is as follows:

SW07 Implement the Planning System and Flood Risk Management-Guidelines for Planning Authorities (DoEHLG/OPW 2009) or any updated version of these guidelines. A sitespecific Flood Risk Assessment to an appropriate level of detail, addressing all potential sources of flood risk, is required for lands identified in the SFRA, located in the following areas: Courtlough; Ballymadun; Rowlestown; Ballyboghil; Coolatrath; Milverton, Skerries; Channell Road, Rush; Blakescross; Lanestown/Turvey; Lissenhall, Swords; Balheary, Swords; Village/Marina Area, Malahide; Streamstown, Malahide; Balgriffin; Damastown, Macetown and Clonee, Blanchardstown; Mulhuddart, Blanchardstown; Portrane; Sutton; and Howth, demonstrating compliance with the aforementioned Guidelines or any updated version of these guidelines, paying particular attention to residual flood risks and any proposed site specific flood management measures

A Strategic Flood Risk Assessment (SFRA) was completed for Fingal County Council (FCC) in February of 2016 to supplement the Fingal Development Plan 2017-2023. FCC's Policy SW07 above is replicated as part of this pre-planning assessment submission.

2.3 Fingal Draft Development Plan 2023-2029

Chapter 11.5.2.3 (Strategic Flood Risk Assessment) of the Fingal Draft Development Plan 2023-2029 provides a list of Council Objectives with regards to flood risk. The objectives relevant to this report are as follows:

It is an objective of the Council to:
IUP12 Ensure the continued incorporation of Flood Risk Management into the spatial planning of the County of Fingal, to meet the requirements of the EU Floods Directive and the EU Water Framework Directive and to promote a climate resilient County.

IUP14 Continue to support and assist the OPW in implementing and delivering the relevant CatchmentBased Flood Risk Assessment and Management Programmes for rivers, coastlines and estuaries within Fingal.

IUP16 Have regard to the OPW Flood Risk Management Guidelines (2009), as revised by Circular PL 2/2014, when assessing planning applications and in the preparation of statutory and non-statutory plans and to require site specific flood risk assessments are to be considered for all new developments within the County. All development must prepare a Stage 1 Flood Risk Analysis and if the flooding risk is not screened out, they must prepare a Site Specific Flood Risk Assessment (SFRA) for the development, where appropriate.

A Draft Strategic Flood Risk Assessment (SFRA) was completed by Fingal County Council in February 2022 to supplement the Fingal Draft Development Plan 2023-2029.

Public Realm Improvements for a Pedestrianised New Street

2.4 Land Zoning

The land on which the development is proposed is currently a street and therefore not defined by a land zoning. It is noted that the lands adjacent to either side of New Street are zoned as "TC: Town and District Centre" on Sheet No. 9 from the Fingal Development Plan 2017-2023. An extract is shown in Figure 2-1.

Figure 2-1: Land Use Zoning (Extract from Sheet No. 9 from Fingal Development Plan 2017-2023).

3 Flood Risk Identification

3.1 Existing Hydrogeological Environment

The existing hydrological environment is characterised primarily by the presence of the water associated with the Broadmeadow River, and Malahide Bay. The dominant hydrological features in the vicinity contributing to the Broadmeadow Water/ Malahide Bay are the Ballymadrough River, Broadmeadow River, and the Gaybrook Stream. The watercourse locations are shown in Figure 3-1.

Figure 3-1: Hydrological Environment around the site.

3.2 Topographical Survey

A topographical survey of the site and its environments was completed by Apex Surveys in July 2022. The topography of the site falls steeply in a south-north direction, with levels ranging from 9.24 m at the southern end of the site, and 2.84 m at the northern end of the site.

3.3 Site Walkover

PUNCH Consulting Engineers visited the site on $2^{\text {nd }}$ of February 2022 to assess conditions and key features of the site, to establish any potential sources of flooding and to identify the likely routes of flood waters. Appendix A contains a selection of key images taken during the site visits.

The following was established from the site visit:
a) The site was accessed via Strand Street.
b) Ground was dry at the time of the visit. The entirety of the sites consists of hardstanding areas (existing street and footpaths).
c) The site is bounded by retail, commercial and residential developments to the west and east.
d) Levels in the site were steep with a noticeable fall from the southern part of the site towards the norther end.

3.4 Site Geology

The geology of the site was reviewed using data from the Geological Survey of Ireland (available at www.gsi.ie). The soil type at the location of the proposed development is identified as 'Gravels derived from Limestones' towards the northern end of the site and "Till derived from Limestones" towards the southern end of the site as seen in. The surrounding areas comprise mainly of 'Bedrock outcrop or sub crop' and "Till derived from Limestones".

Figure 3-2: Geology of the surrounding area (source: Geological Survey of Ireland (http://www.gsi.ie))

3.5 Groundwater Flooding

GSI data show that the site is primarily within an area of extreme groundwater vulnerability as shown in the figure below.

Figure 3-3: Groundwater Vulnerability (source: Geological Survey of Ireland (http://www.gsi.ie)).

3.6 Pluvial Flooding

Pluvial Flooding is the result of rainfall generated overland flows which arise before run-off can enter any watercourse or sewer. It is usually associated with high-intensity rainfall. The proposed site will include a surface water drainage system to ensure pluvial flooding does not occur. The development will also include SuDS measures such as bioretention areas which will reduce the overall pluvial flood risk.

3.7 Review of Existing Surface Water Infrastructure

Fingal County Council was contacted with regards existing surface water infrastructure in the vicinity of the site. the following stormwater drainage networks are present within the development site:

1. 225 mm stormwater piped concrete sewer flowing south-north on New Street.

The following stormwater drainage exists adjacent to the development site:

1. 225 mm stormwater piped concrete sewer flowing west-east on Strand Street

Please refer to Figure 3-4 illustrating the existing stormwater drainage arrangement.

Figure 3-4: Existing stormwater drainage surrounding the site.

3.8 Review of Historic Mapping

A review of the OSI Historical maps ${ }^{1}$ was carried out. Figure 3-5 shows an extract from the 25 -inch historic map for the site. The site is not indicated as "liable to flood" in the available historic OSI maps.

Figure 3-5: Extract from OSI historical 25-inch map.

Public Realm Improvements for a
Pedestrianised New Street

3.9 History of Flooding

The Office of Public Works (OPW) Flood Hazard Mapping website holds a record of historic flood events. A review of the database indicated that have been no instances of flooding on the proposed site as shown in Figure 3-6, see Appendix B for full report.

Figure 3-6: Extract from OPW Flood maps Database Report (see Appendix B for full report)
Please note that this is not a guaranteed record of all flood events.

3.10 Catchment Flood Risk Assessment and Management Study (CFRAMS) Mapping

The CFRAMS is an OPW led national programme which seeks to identify and map potential existing and future flood hazard in areas at significant risk from flooding. It also aims to identify flood relief measures and prepare Flood Risk Management Plans for these areas.

As part of the CFRAMS programme, mapping is available online for public viewing, and the local area has been assessed as part of the Eastern CFRAMS. The OPW has published detailed flood hazard mapping for the area based on results from the CFRAMS. This includes flood extent and flood depth mapping for a number of return periods for fluvial and coastal flood events. The CFRAMS mapping for the Malahide area is currently "Under Review" on the OPW website and is therefore unavailable for use in this study.

3.11 Draft Fingal Development Plan 2023-2029 - SFRA

The Strategic Flood Risk Assessment (SFRA) prepared to accompany the DRAFT Fingal Development Plan 2023-2029 provides flood risk maps for the area

Figure 3-7 below is an extract from the relevant SFRA Fluvial Flood Map. Full SFRA Mapping for the area are included in Appendix C of this report.

Figure 3-7: Extract from the SFRA Flood Map for the area (site indicated in orange), sourced from the Strategic Flood Risk Assessment (SFRA) for the DRAFT Fingal Development Plan 2023-2029

The flood map above demonstrates that the majority of the site is not at risk of flooding. However, a small section of New Street towards the northern boarder of the site at the junction with Strand Street is within Flood Zone A.

3.12 Estimate of Flood Zone

PUNCH Consulting Engineers have reviewed the available information as outlined in the above sections. We have concluded that the northern extent of the site is located in Flood Zone A and is therefore at risk of flooding.

3.13 Vulnerability Classification

As part of this pre-planning assessment submission, table 3.1 of "The Planning System and Flood Risk Management" Guidelines was consulted. This table provides a broad classification of land use and vulnerability class. The proposed street can be classified "Amenity Open Space" and as such is considered a Water Compatible Development.

As part of this pre-planning assessment submission, Table 3.2 of "The Planning System and Flood Risk Management" Guidelines was consulted. This table provides a matrix of vulnerability versus flood zone and is reproduced here as Table 3-1. With reference to this table, it is concluded that the proposed street is considered appropriate within Flood Zone A.

Table 3-1: Matrix of Vulnerability versus Flood Zone to indicate Justification Requirement.

	Flood Zone A	Flood Zone B	Flood Zone C
Highly vulnerable development	Justification Test	Justification Test	Appropriate
Less vulnerable development	Justification Test	Appropriate	Appropriate
Water-compatible development	Appropriate	Appropriate	Appropriate

3.14 Flood Impact Assessment of the Proposed Public Realm Improvements

There are a number of potential aspects to consider when assessing if the proposed development will increase the flood risk elsewhere.
i. Loss of flood storage - Not applicable
ii. Diversion of flood waters - Not Applicable
iii. Increased runoff from the proposed development - Not applicable

Flood storage and flow paths in the area will be unaffected due to the proposed New Street Ground levels will be maintained at the existing ground levels as much as possible. Flow paths in extreme flood events will have the same flow pattern as existing.

The majority of the current site has impermeable surfaces, and SUDs measures will be introduced as part of the proposed development. The result of this is that the runoff rate from the development will be reduced in the proposed scenario when compared to the existing scenario.

4 Flood Risk Assessment Conclusions

This report was prepared to accompany a pre-planning assessment submission to Fingal County Council (FCC) for the proposed public realm improvements at New Street, located in Malahide, Co. Dublin.

As part of this pre-planning assessment submissions, the proposed redevelopment of New Street has been assessed in accordance with "The Planning System and Flood Risk Management" Guidelines and FCC's Development Plan 2017-2023, and FCC's DRAFT Development Plan 2023-2029. It was determined that the proposed public realm improvement to a pedestrianised New Street is currently located within Flood Zone A for fluvial flooding. The proposed public realm improvement to a pedestrianised New Street is classified as a Water Compatible Development under "The Planning Scheme and Flood Risk Management" Guidelines and as such is considered appropriate in this location. The proposed public realm improvement to a pedestrianised New Street will not increase the flood risk elsewhere.
consulting engineers

Appendix A Site Visit Images

Public Realm Improvements for a
Pedestrianised New Street

Image 1: Existing site access from junction between Strand Street and New Street.

Image 2: View of New Street (looking southwards along the street).

Public Realm Improvements for a
Pedestrianised New Street

Image 3: Existing site access from junction between The Mall (R106) and New Street.

Image 4: View of New Street (looking northwards along the street).

Image 5: Existing gullies present along New Street.

Appendix B OPW Historic Flood Events Record

Past Flood Event Local Area Summary Report

Report Produced: 17/10/2022 8:47
This Past Flood Event Summary Report summarises all past flood events within 2.5 kilometres of the map centre.
This report has been downloaded from www.floodinfo.ie (the "Website"). The users should take account of the restrictions and limitations relating to the content and use of the Website that are explained in the Terms and Conditions. It is a condition of use of the Website that you agree to be bound by the disclaimer and other terms and conditions set out on the Website and to the privacy policy on the Website.

Map Legend
§ Single Flood Event
A Recurring Flood Event
Past Flood Event Extents
\square Drainage Districts Benefited Lands*
Land Commission Benefited Lands*
Arterial Drainage Schemes Benefited Lands*

* Important: These maps do not indicate flood hazard or flood extent. Their purpose and scope is explained on Floodinfo.ie

6 Results

Name (Flood_ID)	Start Date	Event Location
1. 1 Mill View Lawn Malahide Feb 2002 (ID-1738)	01/02/2002	Exact Point
Additional Information: Reports (1). Press Archive (0).		
2. 1 Strand Road Malahide Feb 2002 (ID-1742)	01/02/2002	Approximate Point
Additional Information: Reports (1) Press Archive (0).		
3. 1 Biscayne Coast Road Malahide Oct 2002 (ID-2165)	19/10/2002	Exact Point

Additional Information: Reports (1). Press Archive (0).
4. 4 Flooding at Malahide on 03/O1/2014 (ID-13023)

03/01/2014 Approximate Point
Additional Information: Reports (O). Press Archive (O).
5. Seabank (Estate) Court Malahide Recurring (ID-1617) n/a Exact Point

Additional Information: Reports (5). Press Archive (ㅇ).
6. Bisset Strand and Estuary Road Malahide Recurring (ID-1618) n/a Exact Point
consulting engineers

Appendix C SFRA Mapping

APPENDIX I

Traffic \& Transport Assessment by Punch Consulting Engineers

Public Realm Improvements for a Pedestrianised New Street

Traffic and Transportation Assessment 222126-PUNCH-XX-XX-RP-C-0005

February 2023

Document Control

Document Number: 222126-PUNCH-XX-XX-RP-C-0005

Status	Revision	Description	Date	Prepared	Checked	Approved
S3	P01	Pre-Planning	$22 / 02 / 2023$	R Lee JP Murray	J J	P Casey

Table of Contents

Document Control i
Table of Contents ii
1 Non-Technical Summary 1
2 Introduction 2
3 Existing Conditions 3
3.1 Site Location 3
3.2 Existing Road Network4
3.2.1 New Street 1
3.2.2 Main Street/The Mall (R106)3
3.2.3 Strand Street/The Green 4
3.2.4 Townyard Lane 5
3.2.5 Old Street 6
3.2.6 St. James’ Terrace 7
3.2.7 Church Road (R124) 8
3.2.8 Grove Road 9
3.2.9 The Rise 11
3.3 Existing Traffic Flows 12
3.3.1 Junction 1 - New Street and the Strand (signalised junction) 15
3.3.2 Junction 2 - Old Street and the Strand 15
3.3.3 Junction 3 - Townyard Lane and the Strand 16
3.3.4 Junction 4 - The Diamond - New Street and the R106 (signalised junction) 16
3.3.5 Junction 5 - Townyard Lane and The Mall (R106) 17
3.3.6 Junction 6 - Old Street and the R106 17
3.3.7 Junction 7 - James' Terrace and the R106 18
3.3.8 Junction 8 - The Rise and the R106 18
3.3.9 Junction 9 - Grove Road and the R106 19
3.3.10 Junction 10 - Grove Road and the Rise 19
3.3.11 Junction 11 - Grove Road and Church Road 20
3.4 Future Transport Proposals 21
4 Proposed Public Realm Improvements 22
4.1 Description of Proposals 22
5 Traffic Forecasting 24
6 Trip Assignment and Distribution 25
7 Assessment and Road Impact 26

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment7.1 Junction Analysis26
7.1.1 Junction 1 - New Street and the Strand (signalised junction) 27
7.1.2 Junction 2 - Old Street and the Strand 28
7.1.3 Junction 3 - Townyard Lane and the Strand 29
7.1.4 Junction 4 - The Diamond - New Street and the R106 (signalised junction) 29
7.1.5 Junction 5 - Townyard Lane and the R106 30
7.1.6 Junction 6 - Old Street and the R106 31
7.1.7 Junction 7 - James Terrace and the R106 32
7.1.8 Junction 8 - The Rise and the R106 33
7.1.9 Junction 9 - Grove Road and the R106 33
7.1.10 Junction 10 - Grove Road and Church Road 34
7.1.11 Junction 11 - Grove Road and Church Road 35
7.1.12 Analysis Summary 36
8 Road Safety 37
9 Internal Layout 38
9.1 DMURS 40
9.2 Visibility Splays 40
9.3 Vehicle Manoeuvring 41
10 Parking 42
10.1 Car Parking 42
10.2 Cycle Parking 42
10.3 Service and Delivery Trips 42
11 Construction Stage Traffic 43
11.1 Construction Phase 43
11.2 Construction Traffic Management Plan 43
12 Public Transport, Pedestrians/ Cyclists. 44
12.1 Public Transport 44
12.1.1 Train Services 44
12.1.2 Bus Services 46
12.1.3 Taxi Services 47
12.2 Pedestrians 48
12.3 Cycling 49
13 Access for People with Disabilities 50
14 Summary and Conclusion 51
Appendix A Existing Survey Data (2019, 2020, 2023) A-I
Appendix B Junction 1 - New Street and the Strand - Linsig Analysis B-I
Appendix C Junction 2 - Old Street and the Strand Junctions 9 Analysis C-I
Appendix D Junction 3 - Townyard Lane and the Strand Junctions 9 Analysis D-I
Appendix E Junction 4 - New Street and the R106 - Linsig Analysis E-I
Appendix F Junction 5 - Townyard Lane and the R106 Junctions 9 Analysis F-I
Appendix G Junction 6 - Old Street and the R106 Junctions 9 Analysis G-I
Appendix H Junction 7 - James' Terrace and the R106 Junctions 9 Analysis H-I
Appendix I Junction 8 - The Rise and the R106 Junctions 9 Analysis I-I
Appendix J Junction 9-Grove Road and the R106 Junctions 9 Analysis J-I
Appendix K Junction 10-Grove Road and The Rise Junctions 9 Analysis K-I
Appendix L Junction 11 - Grove Road and Church Road Junctions 9 Analysis L-I
Appendix M Network Flow Diagrams M-I

1 Non-Technical Summary

1. The development consists of public realm improvements for a pedestrianised New Street in Malahide, Co. Dublin.
2. A number of traffic surveys were compared in order to assess any change in traffic flows due to the proposed public realm improvements for a pedestrianised New Street.
3. It is proposed to access the development as follows:
a. A one-way restricted vehicular traffic system (northbound).
b. Deliveries permitted from 7am-11am each day, with vehicle bollards at the Diamond as control measure
c. Unrestricted vehicular access to Ross Cottages (from the north).
4. Capacity analysis was carried out on 11 no. junctions:
5. Junction of New Street, Strand Street, The Green, Marina Village (signalised junction)
6. Junction of Old Street and Strand Street
7. Junction of Townyard Lane and Strand Street
8. The Diamond - Junction of New Street and R106 (signalised junction)
9. Junction of Townyard Lane and The Mall (R106)
10. Junction of Old Street and Dublin Road (R106)
11. Junction of James' Terrace and The Mall (R106)
12. Junction of the Rise and The Mall (R106)
13. Junction of Grove Road and The Mall (R106)
14. Junction of Grove Road and the Rise
15. Junction of Grove Road and Church Road

The analysis shows that, when comparing the 2023 post-pedestrianisation with the 2019 prepedestrianisation scenarios, there are minimal effects on the capacity for the surrounding junctions.
5. Parking spaces for the proposed development are restricted to a single accessible parking facility at the HSE building location.
6. Secure cycle parking facilities have been provided within the proposed public realm improvements to meet the requirements set out in Objective MT16 of the Fingal Development Plan 2017-2023 and in Objective CM09 of the Draft Fingal Development Plan 2023-2029.

2 Introduction

PUNCH Consulting Engineers as part of a multidisciplinary design team led by DFLA were commissioned by Fingal County Council (FCC) to carry out a Traffic and Transportation Assessment (TTA) for proposed public realm improvements for a pedestrianised New Street in Malahide, Co. Dublin.

The assessment has been carried out in accordance with TII's Traffic and Transport Assessment Guidelines PE-PDV-02045 (May 2014) and makes reference to the Design Manual for Urban Roads \& Streets (DMURS). Sections from the Fingal Development Plan (2017-2023) have been used to help describe the development location and its local context.

The purpose of the TTA report is to assess the impact of the proposed public realm improvements on a pedestrianised New Street on the existing local transport network in comparison with the prepedestrianised scenario. An assessment of the accessibility of the site for cyclists, pedestrians and public transport users has also been made.

Public Realm Improvements for a Pedestrianised New Street

3 Existing Conditions

3.1 Site Location

The site is approximately 0.22 hectares in area located at New Street, Malahide Village. The site currently consists of an established town street with retail, commercial and residential development throughout. The topography of the street falls from south at The Diamond, The Mall, Main Street, and Church Road junction to the north at the Strand Street junction. The site is located within the Fingal Development Plan 2017-2023.

Refer to Figure 3-1 below.
The access points to the proposed development are as follows:
i. From the south at the junction with Mall Street (one-way time restricted vehicular traffic system).
ii. From the north at the junction with Strand Street (unrestricted vehicular access to Ross Cottages).

The site is located a short distance from Malahide Beach and Marina, Malahide Castle Public Park, and Malahide DART station. It is located approximately 20 km from Dublin City Centre (Connolly Station).

Figure 3-1: Site Location Plan (Ref Google Maps)

3.2 Existing Road Network

The site location in relation to the wider road network is detailed in Figure 3-2, Figure 3-3 and Figure 3-4.

Figure 3-2: Overview - Site location and surrounding road network (Ref openstreetmap.org)

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

Figure 3-3: Detail A - Site location and surrounding road network (Ref openstreetmap.org)

Figure 3-4: Detail B - Site location and surrounding road network (Ref openstreetmap.org)

A brief description of the local road network and the major road junctions is provided below:

3.2.1 New Street

New Street links Main Street/The Mall with Strand Street/The Green. Refer to Figure 3-5 and Figure 3-6. New Street is approximately 150 m in length, with signal-controlled junctions at either end:

- T155 Malahide, the "Diamond" junction (South end)
- T372 Malahide Marina / Strand Street junction (North end)

The street has an average width of approximately 14 m , with 1.7 m wide separated footpaths to the west, and 1.2 m separated footpaths to the east. The street is orientated north/south, with 37 No. premises facing onto it, with a combination of residential, commercial, boutique shops, retail, cafe, restaurants, pubs, health services, garden centre, banking outlets and a Mall, with a variety of uses.

New Street consists of a one-way restricted vehicular traffic system (northbound). Deliveries are permitted from 7am-11am each day, with bollards at the Diamond installed at 11am and removed at 7am each day. Additionally, the street currently provides unrestricted vehicular access to Ross Cottages (from the north) which has 3 residential cottages, a residential apartment; and parking for each of these residents as well as for 3 no. Residents on New Street.

New Street was first pedestrianised by Fingal County Council (FCC) in September 2019. The pedestrianisation was successfully carried out as part of FCC's Car Free Day. The pedestrianisation was introduced in June 2020 and continued until December 2020, following the mandate issued by Government for the prioritisation of urban spaces to pedestrians and cyclists during the Covid-19 pandemic.

This arrangement was modified again from December 2020 until June 2021 to a one-way system (northbound from the Diamond to Strand St.) for vehicular traffic with a contra flow cycle lane.

Prior to June 2020), New Street was a single way two-way carriageway with footpaths on either side of the carriageway and no designated cycle lanes. Refer to Figure 3-7 for a view of the original layout prior to pedestrianisation.

Figure 3-5: New Street (Looking North from the Diamond). Image taken 2022. © PUNCH

Public Realm Improvements for a Pedestrianised New Street

Figure 3-6: New Street (Looking South from The Green). © PUNCH, 2022

Figure 3-7: New Street: Pre-pedestrianisation (Looking South). Image from 2019. © Google Maps

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

3.2.2 Main Street/The Mall (R106)

The Mall (R106) is a regional road in the North Dublin area. It runs from Sutton towards Swords, passing through Malahide. The Mall (R106) connects with the southern tip of New Street at The Diamond, a signalcontrolled crossroads. Refer to Figure 3-8 and Figure 3-9.

The Mall (R106) is a single lane two-way carriageway with wide footpaths on either side of the carriageway and no designated cycle lanes. There is a bridge crossing over the railway line approximately 200m west of the site, refer to Figure 3-10.

Figure 3-8: The Mall - R106 (Looking West) at The Diamond [Junction 4]. © Google Maps

Figure 3-9: The Mall - R106 (Looking East) at the junction with Townyard Lane [Junction 5]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

Figure 3-10: Bridge Crossing on The Mall (R106). Ref Google Maps

3.2.3 Strand Street/The Green

Strand Street/The Green is the link between James's Terrace to the east and Bissett's Strand to the West. Strand Street connects with the northern tip of New Street at a signal-controlled crossroads. Refer to Figure 3-11. Strand Street is a single lane two-way carriageway with footpaths on either side of the carriageway and no designated cycle lanes.

Figure 3-11: Strand Street (Looking East) [Junction 1]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

3.2.4 Townyard Lane

Townyard Lane is the link between The Mall (R106) to the south and The Green to the north. Refer to Figure 3-12 and Figure 3-13. Townyard Lane is a single lane one-way (northbound) vehicle traffic system with footpaths on either side of the carriageway and no designated cycle lanes.

Figure 3-12: Townyard Lane (Looking North) © Google Maps

Figure 3-13: Townyard Lane (Looking North) [Junction 3]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

3.2.5 Old Street

Old Street is another link between the Dublin Road/The Mall (R106) and Strand Street, with existing residential/ retail developments on either side of the street. Old Street is a single lane one-way (northbound) vehicle traffic system with parking on either side, wide footpaths on either side of the carriageway and no existing designated cycle lanes. Refer to Figure 3-14 and Figure 3-15.

Figure 3-14: Old Street (Looking North) at junction with Strand Street [Junction 2]. © Google Maps

Figure 3-15: Old Street (Looking North) from Main Street [Junction 6]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

3.2.6 St. James' Terrace

St. James's Terrace is the link between Strand Street/The Green and The Mall (R106). St. James's Terrace is a single lane one-way vehicle traffic system (southbound), with designated car/cycle parking, and footpaths either side of the carriageway. Refer to Figure 3-16 and Figure 3-17. St. James’s Terrace has no designated cycle lanes.

Figure 3-16: St. James's Terrace (Looking South). © Google Maps

Figure 3-17: St. James's Terrace (Looking South) at junction with R106 [Junction 7]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

3.2.7 Church Road (R124)

Church Road is the regional road R124 extending to Donaghmede from Malahide. It is a link between Grove Road to the south and The Diamond to the north. Refer to Figure 3-18. Church Road is a single lane two-way carriageway with wide footpaths on both sides of the carriageway and no existing designated cycle lanes. It has a bus stop and pay and display parking.

Figure 3-18: Church Road Lane (Looking North) at St Andrews NS located on the right. © Google Maps

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

3.2.8 Grove Road

Grove Road is the link between the R106 (Coast Road) to the north and the R124 (Church Road) to the south west. Refer to Figure 3-19, Figure 3-20, Figure 3-21 and Figure 3-22. Grove Road is a single lane two-way carriageway with wide footpaths on both sides of the carriageway and no existing designated cycle lanes.

Figure 3-19: Grove Road (Looking West) at the junction with the R124 [Junction 11]. © Google Maps

Figure 3-20: Grove Road (Looking East) at the junction with The Rise [Junction 10]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street

Figure 3-21: Grove Road (Looking North) at the junction with The Grand Hotel. © Google Maps

Figure 3-22: Grove Road (Looking West) at the junction with The Mall (R106) [Junction 9]. © Google Maps

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

3.2.9 The Rise

The Rise is the link between Grove Road to the south and The Mall (R106) to the north. Refer to Figure 3-23 and Figure 3-24. The Rise is a single lane two-way carriageway with wide footpaths on both sides of the carriageway and no existing designated cycle lanes.

Figure 3-23: The Rise (Looking North). © Google Maps

Figure 3-24: The Rise (Looking North) at the junction with The Mall [Junction 8]. © Google Maps

3.3 Existing Traffic Flows

Classified turning count traffic surveys of the existing junctions were completed by Idaso on Tuesday $10^{\text {th }}$ January 2023 on behalf of the client at various sites. Furthermore, a number of traffic surveys were also completed by ITS across a number of the same sites on Wednesday 9th October 2019 (AM only), Tuesday $12^{\text {th }}$ December 2019, as well as on Wednesday $15^{\text {th }}$ July 2020. Refer to Table 3-1 for a summary.

The locations of the surveyed junctions/sites are shown in Figure 3-25, Figure 3-26 and Figure 3-27. The traffic survey locations and full traffic survey results are included in Appendix A.

Figure 3-25: Overview - Junction/site locations (Ref openstreetmap.org)

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

Figure 3-26: Detail A - Junction/site locations (Ref openstreetmap.org)

Figure 3-27: Detail B - Site location and surrounding road network (Ref openstreetmap.org)

Junction reference	Site	Survey year(s)		
1	Junction of New Street and the Strand (signalised junction)		2020	2023
2	Junction of Old Street and the Strand		2020	2023
3	Junction of Townyard Lane and the Strand			2023
4	Junction of New Street and the R106 (signalised junction)	2019	2020	2023
5	Junction of Townyard Lane and the R106		2020	2023
6	Junction of Old Street and the R106		2020	2023
7	Junction of James' Terrace and the R106		2020	2023
8	Junction of The Rise and the R106	2019		2023
9	Junction of Grove Road and the R106	2019		2023
10	Junction of Grove Road and The Rise	2019		2023
11	Junction of Grove Road and Church Road	2019		2023

Table 3-1: Summary of traffic survey site locations and years completed

Public Realm Improvements for a Pedestrianised New Street

3.3.1 Junction 1 - New Street and the Strand (signalised junction)

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 1 generally occurred between 08:15 and 09:15 (AM). The evening peak hour flow was found to be between 16:45 and 17:45 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-28.

Figure 3-28:January 2023 Peak Hour Traffic Survey Results Junction 1 (PCUs)

3.3.2 Junction 2 - Old Street and the Strand

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 2 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 17:00 and 18:00 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-29.

Figure 3-29: January 2023 Peak Hour Traffic Survey Results Junction 2 (PCUs)

Public Realm Improvements for a Pedestrianised New Street

3.3.3 Junction 3 - Townyard Lane and the Strand

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 3 generally occurred between 10:30 and 11:30 (AM). The evening peak hour flow was found to be between 16:45 and 17:45 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-30.

J3 - Existing Survey Data 2023

Date: Tuesday 10th January 2023

$$
\begin{array}{ll}
\text { AM } & 10: 30-11: 30 \\
\text { PM } & 16: 45-17: 45
\end{array}
$$

Figure 3-30: January 2023 Peak Hour Traffic Survey Results Junction 3 (PCUs)

3.3.4 Junction 4 - The Diamond - New Street and the R106 (signalised junction)

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 4 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 15:45 and 16:45 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-31.

J4 - Existing Survey Data 2023

Date: Tuesday 10th January 2023

Figure 3-31: January 2023 Peak Hour Traffic Survey Results Junction 4 (PCUs)

3.3.5 Junction 5 - Townyard Lane and The Mall (R106)

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 5 generally occurred between 08:45 and 09:45 (AM). The evening peak hour flow was found to be between 13:00 and 14:00 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-32.

J5 - Existing Survey Data 2023

Date: Tuesday 10th January 2023

Figure 3-32: January 2023 Peak Hour Traffic Survey Results Junction 5 (PCUs)

3.3.6 Junction 6 - Old Street and the R106

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 6 generally occurred between 08:15 and 09:15 (AM). The evening peak hour flow was found to be between 15:45 and 16:45 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-33.

Figure 3-33: January 2023 Peak Hour Traffic Survey Results Junction 6 (PCUs)

3.3.7 Junction 7 - James' Terrace and the R106

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 7 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 16:30 and 17:30 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-34.

J7 - Existing Survey Data 2023

Date: Tuesday 10th January 2023

Figure 3-34: January 2023 Peak Hour Traffic Survey Results Junction 7 (PCUs)

3.3.8 Junction 8 - The Rise and the R106

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 8 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 16:30 and 17:30 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-35.

Figure 3-35: January 2023 Peak Hour Traffic Survey Results Junction 8 (PCUs)

Public Realm Improvements for a Pedestrianised New Street

3.3.9 Junction 9 - Grove Road and the R106

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 9 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 16:30 and 17:30 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-36.

Figure 3-36: January 2023 Peak Hour Traffic Survey Results Junction 9 (PCUs)

3.3.10 Junction 10 - Grove Road and the Rise

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 10 generally occurred between 08:15 and 09:15 (AM). The evening peak hour flow was found to be between 16:30 and 17:30 (PM). The 2023surveyed peak hour turning PCUs are presented in Figure 3-37.

J10 - Existing Survey Data 2023

Date: Tuesday 10th January 2023

Figure 3-37: January 2023 Peak Hour Traffic Survey Results Junction 10 (PCUs)

3.3.11 Junction 11 - Grove Road and Church Road

The traffic surveys undertaken found that the mean morning peak hour traffic flow at Junction 11 generally occurred between 08:30 and 09:30 (AM). The evening peak hour flow was found to be between 15:45 and 16:45 (PM). The 2023 surveyed peak hour turning PCUs are presented in Figure 3-38.

Figure 3-38: January 2023 Peak Hour Traffic Survey Results Junction 11 (PCUs)

3.4 Future Transport Proposals

The site is located in the Fingal Development Plan 2017-2023. There are no proposed road upgrades in the vicinity of the site, however the Development Plan outlines indicative cycle/pedestrian routes on The Mall (R106) at the southern border of New Street, as shown in Figure 3-39 below. The Greater Dublin Area (GDA) Cycle Network is also proposed on The Mall (R106).

Figure 3-39: Extract from Sheet No. 9 from Fingal Development Plan 2017-2023.
General proposals and objectives as noted in the Development Plan are to reduce car dependency and promote walking and cycling as sustainable modes of transport. The inclusion of indicative cycle/ pedestrian routes and the GDA Cycle Network proposed on The Mall (R106) at the southern end of New Street will improve connectivity to the site.

The land on which the development is proposed is currently a public street and therefore not defined by a land zoning. It is noted that the lands adjacent to either side of New Street are zoned as "TC: Town and District Centre" on Sheet No. 9 from the Fingal Development Plan 2017-2023 and similarly on sheet No. 9 of the Draft Development Plan 2023-2029. Refer to Figure 3-39.

4 Proposed Public Realm Improvements

4.1 Description of Proposals

The proposed public realm improvements will comprise: -
i. Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
ii. Realignment and narrowing of the trafficable section of New Street (c.150m in length, 0.22ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
iii. Upgrade of all street surfaces.
iv. Provision of 2no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
v. Installation of cycle stands at 6 no. locations on New Street with capacity for 23 no. cycle parking spaces.
vi. Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
vii. Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
viii. Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
ix. New public lighting.
x. Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
xi. Provision of ducting for existing and future utilities and piped infrastructure.
xii. All associated site and development works.

Fingal County Council will be providing regulatory traffic signs in accordance with Section 95 of the Road Traffic Act 1961 (as amended).

The proposed layout for the public realm improvements is detailed in the series of drawings by DFLA Landscape Architects accompanying this report and an extract is included in Figure 4-1.

Figure 4-1: Proposed Site Layout (© DFLA)

5 Traffic Forecasting

As discussed in section 4, the proposed public realm improvements for a pedestrianised of New Street has already taken place. Survey data taken in 2019 for a number of junctions was consulted as listed in Table 3-1. In the absences of survey data for all junctions, a growth factor was required in order to estimate 2019 flows based on actual 2023 data.

In the absence of any specific local traffic growth information, it was assumed that baseline traffic grew from 2019 to 2023 at the levels recommended by the TII in the Project Appraisal Guidelines (PAG) - Unit 5.3 - Travel Demand Projections publication by the TII (Oct 2021). The Project Appraisal Guidelines describe three levels of transport model functionality. The static model, which reflects traffic volumes on the basis of link flows, is best suited to the proposed development. Such models do not attempt any route assignment, and hence are applicable for networks where no change in traffic flows will result from a proposed scheme. We have used figures from Table 6.2 'Link-Based Growth Rates' for the Dublin County area.

The 2019 survey year for which the growth was applied would give a 4 -year period of growth. This was applied in reverse order i.e. from 2023 back to 2019.

The central growth factors from the Project Appraisal Guidelines - Unit 5.3 publication are appropriate and are detailed below:

- TII Link Based Growth Rates: Annual Growth Factor for 2016-2030 = 1.018 (LVs) and 1.0317 (HVs);

With regards to the volume of traffic using the road, generally the passenger car is adopted as the standard unit and other vehicles are assessed in terms of PCU's. Cars and Light Goods Vehicles are grouped together as Light Vehicles (LV). All other Goods Vehicles, Buses and Coaches are defined as Heavy Vehicles (HV).

6 Trip Assignment and Distribution

There will be no increase in traffic generated by the proposed public realm improvements. However, as cars can no longer use New Street, vehicular traffic will be redistributed to other junctions in the area.

The redistribution of traffic was considered on a junction-by-junction basis. Refer to section 7 of this report for the methodology used at each junction. An overall network flow diagram closest to New Street has been included in Appendix M. (Note: The 2023 diagrams are the actual flows. The 2019 diagrams contain both actual survey data where available and assumed flows calculated using TII growth rates and diverted traffic due to the Pedestrianisation of New Street.)

7 Assessment and Road Impact

The impact on the local external road network has been assessed in this TTA. The scenarios being assessed are as follows: the 2019 'pre-pedestrianisation' of New Street forms the baseline and the analysis seeks to compare this to the 2023 'post-pedestrianisation' traffic arrangements. The 2020 'postpedestrianisation' scenario is also included for reference but is relied on to a lesser degree due to the impacts of the Covid-19 pandemic on the traffic counts.

This involved examining the traffic flows of the local road network both before and after the proposed development took place.

The morning peak period and the evening peak period have been examined in order to assess the busiest case in terms of local traffic on the road network and traffic generated by the proposed development.

7.1 Junction Analysis

Capacity analysis was carried out for the junctions listed below:

1. Junction of New Street, Strand Street, The Green, Marina Village (signalised junction)
2. Junction of Old Street and Strand Street
3. Junction of Townyard Lane and Strand Street
4. The Diamond - Junction of New Street and the R106 (signalised junction)
5. Junction of Townyard Lane and The Mall (R106)
6. Junction of Old Street and Dublin Road (R106)
7. Junction of James' Terrace and The Mall (R106)
8. Junction of the Rise and The Mall (R106)
9. Junction of Grove Road and The Mall (R106)
10. Junction of Grove Road and the Rise
11. Junction of Grove Road and Church Road

The following scenarios were analysed for all junctions:

1. Survey year: 2023
2. Survey year: 2020 (Where data was available)
3. Survey year: 2019 (Where data was available)
4. Estimated Pre-Pedestrianisation: 2019 (Where no 2019 data was available)

Linsig software was used for the analysis of the signalised junctions. The Junctions 9 software was used for priority junction analysis.

Junctions 9 Analysis Note:

The ratio of flow to capacity (RFC) is an indicator of the likely performance of a junction under design year loading. Due to site-to-site variation, there may be a standard error of prediction of the entry capacity by the formulae of + or -15% for any site. Thus, queuing should not occur in the various turning movements in the chosen design year peak hour in 5 out of 6 peak hour periods or sites if a maximum RFC of about 85% is used. Once the RFC is at 1.0 the Junctions 9 modelling software produces results regarding queues and delays that is unrepresentative of the actual or likely effects.

LinSig Analysis Note:

The degree of saturation (DOS) is defined as the ratio of demand flow to the maximum flow which can be passed through the junction from a particular approach. If an approach is found to have a DOS greater
than 100%, then it is "over saturated" and long queues will result. The practical capacity is the level of capacity above which the junction is assumed to work inefficiently (usually taken to be 90%). Junction capacities shown below are only one theoretical interpretation of the phase/stage setup for the existing junction. The results should be viewed more for a comparative assessment of with and without proposed development for the various scenarios.

No survey information was available for the pre-pedestrianisation scenario for 6 of the junctions surrounding New Street. In order to compare how the junctions were operating before and after the pedestrianisation of New Street, 2019 flows had to be estimated. This was done using TII growth rates and applying them to the 2023 data. Additionally, assumptions on how the traffic had diverted to other streets post-pedestrianisation had to be made. These were based on proportioning the flows at junctions using existing data and making assumptions on human behaviour, e.g. choosing to avoid the busy town by turning at a certain junction. Refer to Appendix M for Network Flow Diagrams of the assumed diverted traffic movements. (Note: The 2023 diagrams are the actual flows. The 2019 diagrams contain both actual survey data where available and assumed flows calculated using TII growth rates and diverted traffic due to the Pedestrianisation of New Street.)

7.1.1 Junction 1 - New Street and the Strand (signalised junction)

The Linsig output is summarised below and the full detailed output is included in greater detail in Appendix C.

Table 7-1: Summary for Linsig Analysis Results for Junction 1

Peak Hour Flow	Max Degree of Saturation $(\%)$
AM 2023 Existing Survey	45.9
AM 2020 Existing Survey	34.0
AM 2019 Estimated pre-pedestrianisation	69.3
PM 2023 Existing Survey	53.1
PM 2020 Existing Survey	49.0
PM 2019 Estimated pre-pedestrianisation	77.5

The above analysis compares the current performance of the junction using 2023 and 2020 survey data with the estimated performance for 2019. The 2019 figures were estimated using the following methodology and assumptions;

- Using TII growth factors 2019 figures were reverse calculated from 2023. The resulting scenario assumes pedestrianisation of New Street.
- Using the 2019 surveyed data for Junction 4 the total number of PCUs travelling south along New Street was calculated as follows:
- 33% of traffic that travels south on New Street is assumed to originate from Marina Village.
- 33% of traffic that travels south on New Street is assumed to originate from The Green.
- 33% of traffic that travels south on New Street is assumed to originate from Strand Street.

The junction is performing well in all years during the AM and PM peak hours, with an improvement in the 2020, and 2023 scenarios post-pedestrianisation. The above results are based on a 90 second cycle time and calling pedestrians every cycle during peak times.

The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.2 Junction 2-Old Street and the Strand

The Junction 2 output is summarised below and the full detailed output is included in greater detail in Appendix D.

Table 7-2: Summary of Junctions 9 Analysis Results for Junction 2

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.56
AM 2020 Existing Survey	0.29
AM 2019 Estimated Pre-Pedestrianisation	-
PM 2023 Existing Survey	0.37
PM 2020 Existing Survey	0.47
PM 2019 Estimated Pre-Pedestrianisation	-

The above analysis compares the current performance of the junction using 2023 survey data with the available 2020 survey data. It should be noted that the 2020 survey results would have been affected by Covid-19 restrictions. No survey was completed for the junction in 2019. However, the junction is operating well within the design threshold in both 2023 and 2020. It is expected that flows would have been less in 2019 as 2023 values would be subject to normal growth as per the TII growth factors, therefore it was not deemed necessary to complete any further analysis.

Based on the survey information, the junction is operating under the design threshold in all years. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

7.1.3 Junction 3 - Townyard Lane and the Strand

The Junction 3 output is summarised below and the full detailed output is included in greater detail in Appendix E.

Table 7-3: Summary of Junctions 9 Analysis Results for Junction 3

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.40
AM 2020 Existing Survey	-
AM 2019 Estimated Pre-Pedestrianisation	-
PM 2023 Existing Survey	0.47
PM 2020 Existing Survey	-
PM 2019 Estimated Pre-Pedestrianisation	-

The above analysis shows the current performance of the junction using 2023 survey. No survey was completed for the junction in 2019 or 2020 . However, the junction is operating well within the design threshold in both 2023 Am and PM scenarios. It is expected that flows would have been less in 2019 as 2023 values would be subject to normal growth as per the TII growth factors and the pedestrianisation in place on New Street, therefore it was not deemed necessary to complete any further analysis.

The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.4 Junction 4 - The Diamond - New Street and the R106 (signalised junction)

The linsig output is summarised below and the full detailed output is included in greater detail in Appendix F.

Table 7-4: Summary of Linsig Analysis Results for Junction 4

Peak Hour Flow	Max Degree of Saturation (\%)
AM 2023 Existing Survey	79.6
AM 2020 Existing Survey	115.3
AM 2019 Existing Survey	170.7
PM 2023 Existing Survey	69.4
PM 2020 Existing Survey	136.4
PM 2019 Existing Survey	144.6

The above analysis compares the current performance of the junction using 2023, 2020 and 2019 survey data.

The junction is performing well in 2023 during the AM and PM peak hours, but it is over capacity for 2019 and 2020 scenarios during the AM and PM peak hours. The above results are based on a 90 second cycle time and calling pedestrians every cycle during peak times.

The results indicate maximum queuing of 13.4 PCUs in the peak hour. This is a decrease on the surveyed queuing experienced in 2019, showing that the pedestrianisation of New Street has improved the performance of this junction.

7.1.5 Junction 5 - Townyard Lane and the R106

The Junction 5 output is summarised below and the full detailed output is included in greater detail in Appendix G.

Table 7-5: Summary of Junctions 9 Analysis Results for Junction 5

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.32
AM 2020 Existing Survey	0.26
AM 2019 Estimated pre-pedestrianisation	0.23
PM 2023 Existing Survey	0.30
PM 2020 Existing Survey	0.36
PM 2019 Estimated pre-pedestrianisation	0.07

The above analysis compares the current performance of the junction using 2023 survey data with the available 2020 survey data and the estimated pre-pedestrianisation values. It should be noted that the 2020 survey results would have been affected by Covid-19 restrictions. In the absence of actual 2019 data an estimated value has been calculated using both TII Growth Factors and accounting for displaced traffic assumed to have previously used New Street. The 2019 figures were estimated using the following methodology and assumptions;

- Using TII growth factors 2019 figures were reverse calculated from 2023. The resulting scenario assumes pedestrianisation of New Street.
- The 2019 survey data indicates that 15 PCUs travelling from the east turn right onto New Street in the AM. Therefore, 15 PCUs were subtracted from the assumed 2019 right turning traffic at Junction 5. This was then repeated for the PM scenario.
- Additionally, a percentage of traffic from Church Road that would have been travelling north on New Street will now turn right onto the R106 and then left onto Townyard lane. Proportions of right turning traffic were calculated based on the 2019 survey at junction 4 and the resulting PCUs were subtracted from the left turning traffic at junction 5.

Based on the 2023 survey information, it is estimated that 1 car will travel along Townyard Lane every 20 seconds compared to 1 car every 40 seconds in 2019. Despite this increase in traffic volumes, the junction is operating under the design threshold in all years. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.6 Junction 6 - Old Street and the R106

The Junction 6 output is summarised below and the full detailed output is included in greater detail in Appendix H.

Table 7-6:Summary of Junctions 9 Analysis Results for Junction 6

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.21
AM 2020 Existing Survey	0.21
AM 2019 Estimated pre-pedestrianisation	0.14
PM 2023 Existing Survey	0.26
PM 2020 Existing Survey	0.20
PM 2019 Estimated pre-pedestrianisation	0.13

The above analysis compares the current performance of the junction using 2023 survey data with the available 2020 survey data and the estimated pre-pedestrianisation values. It should be noted that the 2020 survey results would have been affected by Covid-19 restrictions. In the absence of actual 2019 data an estimated value has been calculated using both TII Growth Factors and accounting for displaced traffic assumed to have previously used New Street. The 2019 figures were estimated using the following methodology and assumptions;

- Using TII growth factors 2019 figures were reverse calculated from 2023. The resulting scenario assumes pedestrianisation of New Street.
- It was assumed that traffic travelling west to east in 2019 and turning left at Junction 4 will now turn left at Old Street rather than travelling through the town. These numbers have been subtracted from the assumed 2019 values for Junction 6.
- Additionally, a percentage of traffic from Church Road that would have been travelling north on New Street will now turn left onto the R106 and then right onto Old Street. Proportions of left turning traffic were calculated based on the 2019 survey at junction 4 and the resulting PCUs were subtracted from the right turning traffic at Junction 6.

The junction is operating under the design threshold in all years. The results indicate low volumes of traffic resulting in negligible queuing at this junction. It is noted that bus services have been diverted to Old Street to permit the pedestrianisation of New Street. This has not resulted in queuing at Old Street.

7.1.7 Junction 7 - James Terrace and the R106

The Junction 7 output is summarised below and the full detailed output is included in greater detail in Appendix I.

Table 7-7: Summary of Junctions 9 Analysis Results for Junction 7

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.80
AM 2020 Existing Survey	0.63
AM 2019 Estimated pre-pedestrianisation	0.41
PM 2023 Existing Survey	0.84
PM 2020 Existing Survey	0.84
PM 2019 Estimated pre-pedestrianisation	0.53

The above analysis compares the current performance of the junction using 2023 survey data with the available 2020 survey data and the estimated pre-pedestrianisation values. It should be noted that the 2020 survey results would have been affected by Covid-19 restrictions. In the absence of actual 2019 data an estimated value has been calculated using both TII Growth Factors and accounting for displaced traffic assumed to have previously used New Street. The 2019 figures were estimated using the following methodology and assumptions;

- Using TII growth factors 2019 figures were reverse calculated from 2023. The resulting scenario assumes pedestrianisation of New Street.
- It was assumed that traffic that would have travelled south along New Street prepedestrianisation now travels south along James Terrace. 50\% of the surveyed 2019 traffic travelling south on New Street at Junction 4 was subtracted from the reverse calculated 2019 figures.

The junction is operating around the design threshold in 2023 with maximum queuing of 4.7 PCUs experienced at the peak hour. This is an increase of 3.6 PCUs from the 2019 survey results however it is within the norms of an urban environment accounting for the rerouted traffic as a result of the pedestrianisation of New Street.

7.1.8 Junction 8 - The Rise and the R106

The Junction 8 output is summarised below and the full detailed output is included in greater detail in Appendix J.

Table 7-8: Summary of Junctions 9 Analysis Results for Junction 8

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.47
AM 2020 Existing Survey	-
AM 2019 Existing Survey	0.43
PM 2023 Existing Survey	0.15
PM 2020 Existing Survey	-
PM 2019 Existing Survey	0.18

The above analysis compares the current performance of the junction using 2023 survey data with the available 2019 survey data. No survey was completed for the junction in 2020 . The junction is operating well within the design threshold in both 2023 and 2020. There is little difference between the 2019 and 2023 results. The junction is also located at a significant distance from the site and thus would not be overly impacted by the pedestrianisation of New Street. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.9 Junction 9 - Grove Road and the R106

The Junction 9 output is summarised below and the full detailed output is included in greater detail in Appendix K.

Table 7-9: Summary of Junctions 9 Analysis Results for Junction 9

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.20
AM 2020 Existing Survey	-
AM 2019 Existing Survey	0.26
PM 2023 Existing Survey	0.23
PM 2020 Existing Survey	-
PM 2019 Existing Survey	0.34

The above analysis compares the current performance of the junction using 2023 survey data with the available 2019 survey data. No survey was completed for the junction in 2020. The junction is operating well within the design threshold in both 2023 and 2020. There is little difference between the 2019 and 2023 results. The junction is also located at a significant distance from the site and thus would not be
overly impacted by the pedestrianisation of New Street. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.10 Junction 10 - Grove Road and Church Road

The Junction 10 output is summarised below and the full detailed output is included in greater detail in Appendix L.

Table 7-10: Summary of Junctions 9 Analysis Results for Junction 10

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.24
AM 2020 Existing Survey	-
AM 2019 Existing Survey	0.32
PM 2023 Existing Survey	0.26
PM 2020 Existing Survey	-
PM 2019 Existing Survey	0.12

The above analysis compares the current performance of the junction using 2023 survey data with the available 2019 survey data. No survey was completed for the junction in 2020 . The junction is operating well within the design threshold in both 2023 and 2020. There is little difference between the 2019 and 2023 results. The junction is also located at a significant distance from the site and thus would not be overly impacted by the pedestrianisation of New Street. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

7.1.11 Junction 11 - Grove Road and Church Road

The Junction 11 output is summarised below and the full detailed output is included in greater detail in Appendix M.

Table 7-11: Summary of Junctions 9 Analysis Results for Junction 11

Peak Hour Flow	Maximum RFC
AM 2023 Existing Survey	0.11
AM 2020 Existing Survey	-
AM 2019 Existing Survey	0.10
PM 2023 Existing Survey	0.49
PM 2020 Existing Survey	-
AM 2019 Existing Survey	0.51

The above analysis compares the current performance of the junction using 2023 survey data with the available 2019 survey data. No survey was completed for the junction in 2020 . The junction is operating well within the design threshold in both 2023 and 2020. There is little difference between the 2019 and 2023 results. The junction is also located at a significant distance from the site and thus would not be overly impacted by the pedestrianisation of New Street. The results indicate low volumes of traffic resulting in negligible queuing at this junction.

Public Realm Improvements for a Pedestrianised New Street Traffic and Transportation Assessment

7.1.12 Analysis Summary

The junction capacity analysis has been carried out to include for the existing 2023 traffic, the surveyed 2020 traffic and the estimated/surveyed 2019 traffic, summary results are shown in the table below.

Table 7-12: Summary Maximum Results for all Surrounding Junctions

Junction	2023 Surveyed RFC/DOS	2020 Surveyed RFC/DOS	2019 Surveyed RFC/DOS	2019 Estimated RFC/DOS
Junction 1 - New Street and the Strand (signalised junction)	53.1	49.0	-	77.5
Junction 2 - Old Street and the Strand	0.56	0.47	-	*see note below
Junction 3 - Townyard Lane and the Strand	0.47	-	-	*see note below
Junction 4 - New Street and the R106 (signalised junction)	79.6	136.4	170.7	-
Junction 5 - Townyard Lane and the R106	0.32	0.36	-	0.23
Junction 6 - Old Street and the R106	0.26	0.21	-	0.14
Junction 7 - James' Terrace and the R106	0.84	0.84	-	0.53
Junction 8 - The Rise and the R106	0.47	-	0.43	-
Junction 9 - Grove Road and the R106	0.23	-	0.34	-
Junction 10 - Grove Road and The Rise	0.26	-	0.32	-
Junction 11 - Grove Road and Church Road	0.49	-	0.51	-

*Note: Junction operating within design threshold for the 2023 survey year. It is expected that flows would have been less in 2019 as 2023 values would be subject to normal growth as per the TII growth factors, therefore it was not deemed necessary to complete any further analysis.

It is considered that in urban areas a certain level of congestion is to be expected during peak times. From the above modelling results, it is concluded that the pedestrianisation of New St has had little impact on the operational capacity of the surrounding network of roads and junctions and has resulted in improvements in efficiencies at the Diamond.

8 Road Safety

A Road Safety Audit for the proposed public realm improvements for a pedestrianised New Street has been undertaken by Bruton Consulting Engineers and supplied as a separate report. The recommendations of the report have been addressed where appropriate within the proposed layout design.

9 Internal Layout

The layout of the proposed public realm improvements is detailed in the landscape architect's drawings submitted as part of this pre-planning assessment pack.

The development consists of public realm improvements for a pedestrianised New Street in Malahide, Co. Dublin.

1. The southern portion of the proposed public realm improvements facilitates one-way restricted traffic movements from the southern end of New Street during designated hours to accommodate deliveries, refuse collection and emergency vehicles. Loading bays and accessible parking coincident with the HSE Building are also provided.
2. The northern portion of the proposed public realm improvements provides two-way access from the northern end of New Street to allow for local residential and emergency vehicle access to Ross Cottages dwellings and environs.

Figure 9-1: Proposed Site Layout (© DFLA)

9.1 DMURS

The roads layout together with pedestrian and cycle facilities for the site have been developed considering the design principles set out in the Design Manual for Roads and Streets (2019). The design speed for the site is 10 kph , and appropriate speed restriction signs will be set out at the entrances to New Street.

The car has a significant impact on how street networks and streets are designed and how people interact with them. The relationship between cars and people can be illustrated via four distinct models:
a. The first model is where traffic and people are segregated, and the car is dominant.
b. The second model is where the car and people are segregated from each other.
c. The third model is where traffic and people mix, although on a more equitable basis.
d. The fourth model is where the car is excluded altogether.

The proposed public realm improvements for a pedestrianised New Street actively migrates from the pre-existing car dominant streetscape and promotion of private motor vehicle use to a pedestrian/cyclist dominated streetscape.

Figure 9-2: DMURS Figure Extracts

A sense of place is established in the public realm design proposals through satisfying the core design principles of:

- Connectivity: The creation of vibrant and active places requires pedestrian activity. This in turn requires walkable street networks that can be easily navigated and are well connected.
- Enclosure: A sense of enclosure spatially defines streets and creates a more intimate and supervised environment. A sense of enclosure is achieved by orientating buildings toward the street and placing them along its edge as in the case of New Street. The use of street trees and soft and hard landscaping features will also enhance the feeling of enclosure.
- Active Edge: An active frontage enlivens the edge of the street creating a more interesting and engaging environment. An active frontage is achieved with frequent entrances and openings that ensure the street is overlooked and generate pedestrian activity as people come and go from buildings, as is naturally the case with New Street and the rejuvenation of activity through the proposed pedestrianisation.
- Pedestrian Activity/Facilities: The sense of intimacy, interest and overlooking that is created by a street that is enclosed and lined with active frontages enhances a pedestrian's feeling of security and well-being. Good pedestrian facilities (such as wide footpaths and well-designed crossings) also make walking a more convenient and pleasurable experience that will further encourage pedestrian activity.

9.2 Visibility Splays

The site layout has been developed to provide adequate turning provision for refuse vehicles and fire tender access. Forward visibility and visibility splays have been provided on the basis of the requirements of Sections 4.4 .4 and 4.4.5 of the DMURS manual. Compliance with the requirements is set out on the relevant PUNCH drawings.

9.3 Vehicle Manoeuvring

Autotrack analysis has been undertaken to ensure there are no issues with swept paths and manoeuvrability of fire appliances, refuse vehicles and other design vehicles including but not limited to the following:

- Access to the Marina for oversized vehicles carrying boats to/from the Marina, with access required via New Street.
- Fire tender access (to include Turn Table ladder Fire Unit) to New St. \& Ross Cottages.
- HGV Access for deliveries
- Accessible parking at HSE Building
- Refuse collection on New Street and Ross Cottages

Please refer to the Vehicle Swept Path drawings prepared by PUNCH for illustration of the various vehicle movements throughout the site extents.

10 Parking

10.1 Car Parking

Due to the nature of the proposed public realm improvements, parking facilities are intentionally limited. Specifically, parking facilities are restricted to a single accessible parking facility at the HSE building location.

It is noted that access to private residential parking is accommodated to existing residential dwellings located on New Street and Ross Cottages.

The 'standard' parking spaces will be demarcated with white lines. All car parking spaces will be 2.4 m by 4.8 m , with disabled spaces providing an additional width and length of 1.2 m .

10.2 Cycle Parking

Cycling is to be significantly encouraged as part of the proposed public realm improvements. Cycle parking serving the public realm improvements is provided as follows:

Table 10-1: Proposed Cycle Parking Quantum for the New Street Public Realm Development

	Standard Bicycle Stands	E-Bike Stands	Cargo Bike Spaces
Total	15	5	3

10.3 Service and Delivery Trips

Vehicular set-down access is provided within the site. Delivery and service access will be facilitated through the loadings bays and designated loading areas distributed throughout the street.

All deliveries will be restricted to designated hours to minimize any potential conflict with non-motorised users. Any non-standard vehicle access, e.g. oversized vehicles carrying boats to/from the Marina, will be scheduled and notified in advance.

11 Construction Stage Traffic

11.1 Construction Phase

The volumes of traffic that will be generated during the construction phase of the proposed public realm improvements will be small in comparison to the existing traffic volumes in the general area.

The construction stage therefore does not require quantitative traffic analysis.

11.2 Construction Traffic Management Plan

The successful contractor will be required to carry out a traffic management plan for the duration of the works. This will involve consultation with the local authority and/or the Gardaí, and once agreed will be adhered to for all aspects of construction that involves movement of vehicles in and out of the site.

12 Public Transport, Pedestrians/ Cyclists

To ensure future transport sustainability and to endeavour to make new developments as accessible as possible to travel by other modes of transport, an assessment has been made of the existing pedestrian, cyclist, and public transport facilities.

12.1 Public Transport

12.1.1 Train Services

Malahide Train Station is served by the following larnród Éireann and DART \& Dublin Commuter services:

- Dublin - Dundalk/ Newry (larnród Éireann)
- Gorey/ Bray - Dublin - Howth/ Newry (DART \& Dublin Commuter)
- Newry/ Howth - Dublin - Bray/ Gorey (DART \& Dublin Commuter)

As shown in Figure 12-1, the site is connected to the Dublin Area Train and Tram services via the Northwest Commuter Line and to the DART Line. Connection to the Irish Rail network is shown in Figure 12-2. The station is approximately 150 m (2 -minute walk) from the top entrance of New Street. Please refer to Figure 3-10 for the location of Malahide Train Station with respect to the site boundary.

Train routes are daily.

Figure 12-1: Site Location Relative to Dublin Public Transport Network (Ref: https://www.transportforireland.ie)

Figure 12-2: Site Location Relative to National Rail Network (Ref: https://www.irishrail.ie)

12.1.2 Bus Services

The site is in a good location to avail of the majority of bus services available nearby. Figure 12-2 below shows the location of nearby public transport infrastructure in the vicinity of the proposed public realm improvements, and Table 12-1 shows the routes serving the various bus stops.

Bus routes are daily.

Figure 12-3: Existing Bus Stops/ Train Stations in the vicinity of the proposed public realm improvements.

Public Realm Improvements for a Pedestrianised New Street

Table 12-1: Bus routes adjacent to the proposed public realm improvements.

Route No.	Route Name	$\begin{gathered} \text { Operated } \\ \text { By } \end{gathered}$	Bus Stop ID:				
			3585	3634	4387	3624	3586
32X	Swords Road (Lawson Spinney) University College Dublin	Dublin Bus	\checkmark	\checkmark	\checkmark		
42	Talbot Street (opp. Bank of Ireland) Coast Road	Dublin Bus	\checkmark	\checkmark			
42d	The Helix - Strand Road (St. Anne's Estate)	Dublin Bus	\checkmark	\checkmark			
42 n	Dublin City South, D'Olier Str Portmarnock, Strand Road	Nitelink/ Dublin Bus	\checkmark				\checkmark
102	Dublin Airport - Sutton Station	Go-Ahead	\checkmark	\checkmark	\checkmark		\checkmark
102a	Sutton - Swords	Go-Ahead		\checkmark	\checkmark		
102c	Clarehall - Sutton	Go-Ahead	\checkmark	\checkmark	\checkmark		\checkmark
102p	River Valley - Portmarnock	Go-Ahead	\checkmark	\checkmark	\checkmark		\checkmark
102t	Swords - Sutton	Go-Ahead	\checkmark	\checkmark	\checkmark		\checkmark
142	Wendell Avenue - University College of Dublin UCD	Dublin Bus	\checkmark	\checkmark			
H2	National Lottery Head Quarters Malahide Garda Station	Dublin Bus			\checkmark	\checkmark	\checkmark

It is noted that the H 2 bus, terminating on James's Terrace, has been diverted down Old Street to accommodate the pedestrianisation of New Street. The frequency of this service is limited and therefore this diversion has had minimal impact on Old Street. No change has been made to the service near the estuary.

12.1.3 Taxi Services

Taxis are available on request.
As per Fingal Development Plan (2017-2023), the objective of the plan is to facilitate and promote the development of accessible taxi services. It is also the objective of the plan to facilitate the provision of taxi ranks at appropriate locations on streets. The accessibility of these taxi services is an important element in the public transport mix, in providing a demand responsive 24 -hour door to door service.

The taxi rank was moved from New Street to James's Terrace to accommodate the pedestrianisation of New Street. This is currently under review by FCC.

12.2 Pedestrians

The proposed public realm improvements will increase the number of pedestrian trips to and from New Street. It is therefore important that the public realm improvements is properly integrated into the existing footpath network. The integration of the footpath to connect to existing pedestrian routes on The Mall (R106) and Strand Street will provide direct pedestrian routes from New Street to/ from surrounding areas. The pedestrian network also provides routes to/ from the surrounding public transport network, including nearby bus routes on The Mall and Dublin Road (R106), as well as Malahide Train Station.

Pedestrian surveys taken in December 2019 on New Street pre-pedestrianisation indicate a total of 2988 pedestrians travelling along New Street over a 13 -hour period between 7 am and 8 pm . The peak hour occurred between $1-2 \mathrm{pm}$ with a total of 385 pedestrians travelling along New Street in the hour.

Figure 12-4: Pedestrian Count on New Street (December 2019).
Pedestrian numbers taken in January 2023 show a 23% increase in the number of pedestrians travelling along New Street post pedestrianisation with a total of 3679 pedestrians recorded over the same time period. The peak hour remained $1-2 p m$ with a total of 461 pedestrians travelling along New Street in the hour.

Figure 12-5: Pedestrian Count on New Street (January 2023).

Both surveys were taken during a weekday in winter months, December and January respectively, allowing for a direct comparison to be made. It is expected that the number of pedestrians would increase in the warmer/drier periods of the year.

12.3 Cycling

Cycling is to be significantly encourages as part of the proposed public realm improvements. Bike stand parking is provided at various locations along the street. Cycling enhances both the environment and quality of life of the surrounding area. Cycling has an important transport role, in reducing car usage. The consequential reduction in emissions improves air quality, aids the ecological system and results in less noise pollution.

Providing cycle and pedestrian links that are free of motorised traffic will encourage the use of cycling.
The primary access points to the proposed public realm improvements are via The Diamond, The Mall/Main Street/Dublin Road (R106) to the south and to the north via Strand Street. While there are no existing cycle lanes on either The Mall (R106) or Strand Street, the Fingal Development Plan (2017-2023) outlines proposals for an indicative cycle/pedestrian route on The Mall/Main Street/Dublin Road (R106) at the southern border of New Street. The Greater Dublin Area (GDA) Cycle Network is also proposed on The Mall/Main Street/Dublin Road (R106) which will provide a cycle route from Malahide to Swords. Please refer to Figure 3-39.

The proposed public realm improvements for a pedestrianised New Street will make New Street a focal point with Fingal's Greenway network. New Street would provide connection to numerous alternative Greenway/ cycle way projects that are being proposed or at various planning stages including, the Fingal Coastal Way, Sutton to Malahide Greenway, and Broadmeadow Way. These proposed greenways (shared footpath and cycleways) will provide excellent connection points to and from the proposed public realm improvements at New Street to/ from surrounding areas including: Newbridge Demesne in Donabate to Fingal county boundary, north of Balbriggan (Fingal Coastal Way), Sutton Cross to Baldoyle and Portmarnock to Malahide (Sutton to Malahide Greenway), and Malahide Demesne to Newbridge Demesne via the railway causeway across the Malahide Estuary (Broadmeadow Way).

General proposals and objectives as noted in the Development Plan are to reduce car dependency and promote walking and cycling as sustainable modes of transport. The inclusion of indicative cycle/ pedestrian routes and the GDA Cycle Network proposed on The Mall/Main Street/Dublin Road (R106) at the southern end of New Street as well as proposed Greenways will improve connectivity to the site.

Public Realm Improvements for a Pedestrianised New Street

13 Access for People with Disabilities

Parking facilities for disabled users are provided within the proposed public realm improvements at the HSE facility. It is noted that FCC have also provided disabled and age-friendly parking spaces on The Mall and The Green, thus improving facilities in the immediate vicinity of New Street.

14 Summary and Conclusion

1. The development consists of public realm improvements for a pedestrianised New Street in Malahide, Co. Dublin.
2. A number of traffic surveys were compared in order to assess any change in traffic flows due to the proposed public realm improvements for a pedestrianised New Street.
3. It is proposed to access the development as follows:
a. A one-way restricted vehicular traffic system (northbound).
b. Deliveries permitted from 7am-11am each day, with vehicle bollards at the Diamond and at the junction with Ross Cottages as control measure.
c. Unrestricted vehicular access to Ross Cottages (from the north).
4. Capacity analysis was carried out on 11 no. junctions:
5. Junction of New Street, Strand Street, The Green, Marina Village (signalised junction)
6. Junction of Old Street and Strand Street
7. Junction of Townyard Lane and Strand Street
8. The Diamond - Junction of New Street and the R106 (signalised junction)
9. Junction of Townyard Lane and The Mall (R106)
10. Junction of Old Street and Dublin Road (R106)
11. Junction of James' Terrace and The Mall (R106)
12. Junction of the Rise and The Mall (R106)
13. Junction of Grove Road and The Mall (R106)
14. Junction of Grove Road and the Rise
15. Junction of Grove Road and Church Road

The analysis shows that, when comparing the 2023 post-pedestrianisation with the 2019 prepedestrianisation scenarios, there are minimal effects on the capacity for the surrounding junctions and there are significant improvements at The Diamond, the main junction in the village.
5. Parking spaces for the proposed development are restricted to a single accessible parking facility at the HSE building location.
6. Secure cycle parking facilities have been provided within the proposed public realm improvements to meet the requirements set out in the Fingal Development Plan.

Public Realm Improvements for a Pedestrianised New Street

Appendix A Existing Survey Data (2019, 2020, 2023)

003 (23) 22718 MALAHIDE TRAFFIC SURVEY V2

with compliments

Survey Name:
Date:

003 (23) 22718 MALAHIDE TRAFFIC SURVEY V2 Tue 10 Jan 2023

Survey Name:
Date:

003 (23) 22718 MALAHIDE TRAFFIC SURVEY V2
Tue 10 Jan 2023

CAR	- Saloon - Estate - People Carrier - Taxi - Three-wheel Cars - Car towing Trailer
$\begin{gathered} \text { LGV } \\ \text { (Light Goods Vehicles) } \end{gathered}$	- Van - Pick-up - Car Delivery Vans - Minibus - Commercial Vehicles < 3.5 Tonnes - single rear tyres
OGV1 (Other Goods Vehicles)	- 2-Axles Rigid Truck - 3-Axles Rigid Truck - Commercial Vehicles > 3.5 Tonnes - single rear tyres
OGV2 (Other Goods Vehicles)	- 4 or more Axles Rigid Truck - 3 Axle or more Articulated Truck - Vehicles in Category OGV1 towing trailer
PSV (Passenger Service Vehicles)	- Single Deck Bus or Coach - Double Deck Bus or Coach
M/C (Motorcycle)	- Motorcycles - Motor Scooters - Mopeds - Three-wheel motorcycles
$\begin{gathered} \text { P/C } \\ \text { (Pedal Cycle) } \end{gathered}$	- Two-wheel pushbike - Three-wheel pushbike

P/C	M/C	B => C			OGv2	PSV	тот	PCU	B => D							тот	PCU	P/C	M/C	CAR	$\mathrm{C}=>\mathrm{A}$		OGv2	PSv	тот	PCU	P/C
		CAR	Lgv	OGV1					P/C	M/C	CAR	LGv	OGV1	OGV2	PSV						Lgv	OGv1					
0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	1	0	0	0	1	1	0
0	0	0	0	0	0	0	0	0	1	0	5	0	0	0	0	6	5.2	0	0	2	0	1	0	0	3	3.5	0
0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	4	0	0	0	0	4	4	0
0	0	1	0	0	0	0	1	1	1	0	8	0	0	0	0	9	8.2	0	0	7	1	1	0	0	9	9.5	0
0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0	3	0	1	0	0	4	4.5	0
0	0	0	0	0	0	0	0	0	1	0	11	0	0	0	0	12	11.2	0	0	2	2	0	0	0	4	4	0
0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9	0	0	3	0	0	0	0	3	3	0
0	0	0	0	0	0	0	0	0	0	0	12	1	0	0	0	13	13	1	0	4	0	0	0	0	5	4.2	0
0	0	0	0	0	0	0	0	0	1	0	37	2	0	0	0	40	39.2	1	0	12	2	1	0	0	16	15.7	0
0	0	1	0	0	0	0	1	1	3	0	11	1	1	0	0	16	14.1	0	0	5	0	0	0	0	5	5	0
0	0	1	0	0	0	0	1	1	0	0	5	0	0	0	0	5	5	0	0	2	0	0	0	0	2	2	0
0	0	0	0	0	0	0	0	0	0	0	7	1	0	0	0	8	8	0	0	0	0	1	0	0	1	1.5	0
0	0	0	0	0	0	0	0	0	0	0	8	2	0	0	0	10	10	0	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	3	0	31	4	1	0	0	39	37.1	0	0	7	0	1	0	0	8	8.5	0
0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	9	9	0	0	3	1	0	0	0	4	4	0
0	0	0	0	0	0	0	0	0	0	0	15	1	0	0	0	16	16	0	0	2	0	0	0	0	2	2	0
0	0	0	0	0	0	0	0	0	3	0	13	1	0	0	0	17	14.6	0	0	1	2	0	0	0	3	3	0
1	0	0	0	0	0	0	1	0.2	1	0	9	0	0	0	0	10	9.2	0	0	1	0	0	0	0	1	1	0
1	0	0	0	0	0	0	1	0.2	4	0	45	3	0	0	0	52	48.8	0	0	7	3	0	0	0	10	10	0
0	0	0	0	0	0	0	0	0	0	0	12	1	0	0	0	13	13	0	0	1	0	1	0	0	2	2.5	0
0	0	0	0	0	0	0	0	0	0	0	11	3	0	0	0	14	14	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	9	0	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	15	0	0	0	0	15	15	1	0	0	0	0	0	0	1	0.2	0
0	0	2	0	0	0	0	2	2	0	0	47	4	0	0	0	51	51	1	0	1	0	1	0	0	3	2.7	0
0	0	1	0	0	0	0	1	1	1	0	10	2	0	0	0	13	12.2	1	0	0	0	0	0	0	1	0.2	0
0	0	1	0	0	0	0	1	1	0	0	8	4	0	0	0	12	12	0	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	2	2	0	0	16	2	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	1	0	18	0	0	0	0	19	18.2	0	0	0	0	0	0	0	0	0	0
0	0	4	1	0	0	0	5	5	2	0	52	8	0	0	0	62	60.4	1	0	0	0	0	0	0	1	0.2	0
0	0	0	0	0	0	0	0	0	0	0	14	5	0	0	0	19	19	1	0	0	0	0	0	0	1	0.2	0
0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	0	21	2	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	20	20	1	0	1	0	0	0	0	2	1.2	0
0	0	0	1	0	0	0	1	1	0	0	68	7	0	0	0	75	75	2	0	1	0	0	0	0	3	1.4	0
0	0	1	0	0	0	0	1	1	0	0	20	2	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	2	0	7	2	0	0	0	11	9.4	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	8	2	0	0	0	11	10.2	1	0	0	0	0	0	0	1	0.2	0
0	0	0	0	0	0	0	0	0	0	0	11	1	1	0	0	13	13.5	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	3	0	46	7	1	0	0	57	55.1	1	0	0	0	0	0	0	1	0.2	1
0	0	0	0	0	0	0	0	0	0	0	10	3	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	16	2	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	11	1	0	0	0	12	12	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	20	1	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	57	7	0	0	0	64	64	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	14	2	0	0	0	17	16.2	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	0	0	9	4	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1	1	1	0	59	6	0	0	0	66	65.2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	20	1	0	0	0	22	21.2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	17	2	0	0	0	19	19	0	0	1	1	0	0	0	2	2	0
0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	9	2	0	0	0	11	11	0	0	0	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	65	5	0	0	0	71	70.2	0	0	1	1	0	0	0	2	2	1
0	0	2	1	0	0	0	3	3	1	0	20	0	0	0	0	21	20.2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	11	1	0	0	0	13	12.2	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	10	1	0	0	0	12	11.2	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	12	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0	0
0	0	3	1	0	0	0	4	4	3	0	53	2	0	0	0	58	55.6	0	0	0	0	0	0	0	0	0	0
1	0	14	4	0	0	0	19	18.2	19	0	568	55	2	0	0	644	629.8	6	0	36	7	4	0	0	53	50.2	2

M/C	C => B					тот	PCU	$\mathrm{C}=>\mathrm{C}$							тот	PCU	$\mathrm{C}=>\mathrm{D}$							тот	PCU	P/C	M/C
	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV				
0	1	0	1	0	0	2	2.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	1	1.5	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2	1.2	0	0
0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	1	0	2	0	0	3	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	3	1	4	0	0	8	10	0	0	0	0	0	0	0	0	0	1	0	2	1	0	0	0	4	3.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	1	1	2	0	0	4	5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	3	0	1	0	0	4	4.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	5	2	3	0	0	10	11.5	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0
0	2	2	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	2	0	0
0	5	3	0	0	0	8	8	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	1
0	0	1	1	0	0	2	2.5	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	3	2.7	0	0
0	10	6	1	0	0	17	17.5	0	0	0	0	0	0	0	0	0	1	0	4	2	1	0	0	8	7.7	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	3	0	1	0	0	4	4.5	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3	0	0
0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2	1.2	0	0
0	10	1	1	0	0	12	12.5	0	0	0	0	0	0	0	0	0	1	0	6	2	0	0	0	9	8.2	0	0
0	1	2	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	2	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	2	5	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	4	0	0
0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	4	1	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	2	2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	2	2	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	2	4	0	0	0	6	6	0	0
0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	1	0	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	3	1	0	0	0	5	4.2	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	2	1.2	0	0
0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	3	2	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0
0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0
0	1	0	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	2	0	0	0	0	3	2.2	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	0	0	0	0	3	2.2	1	0
0	42	21	9	0	0	74	76.9	0	0	0	0	0	0	0	0	0	5	0	35	11	1	0	0	52	48.5	1	1

D => A					тот	PCU	D => B							тот	PCU	D => C							тот	PCU	P/C	M/C	CAR
CAR	LGV	OGv1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGv1	OGV2	PSV					
4	0	0	0	0	4	4	0	0	6	1	1	0	0	8	8.5	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	3	3	0	0	45	2	2	0	2	51	54	0	0	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	7	7	0	0	13	0	1	0	0	14	14.5	0	0	0	0	0	0	0	0	0	0	0	0
15	1	0	0	0	16	16	0	0	15	1	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	0
29	1	0	0	0	30	30	0	0	79	4	4	0	2	89	93	0	0	0	0	0	0	0	0	0	0	0	0
19	2	0	0	0	21	21	1	0	34	3	0	0	1	39	39.2	0	0	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	11	11	0	0	56	4	0	1	0	61	62.3	0	0	0	1	0	0	0	1	1	0	0	0
20	1	1	0	0	22	22.5	1	0	63	4	3	0	1	72	73.7	0	0	1	0	0	0	0	1	1	0	0	0
21	0	0	0	0	21	21	3	0	38	3	1	0	0	45	43.1	0	0	1	0	0	0	0	1	1	0	0	0
71	3	1	0	0	75	75.5	5	0	191	14	4	1	2	217	218.3	0	0	2	1	0	0	0	3	3	0	0	0
22	1	0	0	0	23	23	1	1	37	5	0	0	0	44	42.6	0	0	1	0	0	0	0	1	1	0	0	0
21	0	0	0	0	22	21.4	2	0	30	1	1	0	0	34	32.9	0	0	0	0	0	0	0	0	0	0	0	0
13	1	0	0	0	14	14	0	0	17	2	0	0	1	20	21	0	0	0	0	0	0	0	0	0	0	0	0
22	1	1	0	0	24	24.5	0	0	34	2	1	0	0	37	37.5	0	0	0	0	0	0	0	0	0	0	0	0
78	3	1	0	0	83	82.9	3	1	118	10	2	0	1	135	134	0	0	1	0	0	0	0	1	1	0	0	0
14	0	0	0	0	14	14	1	0	44	5	0	0	1	51	51.2	0	0	0	0	0	0	0	0	0	0	0	0
15	3	0	0	0	18	18	1	0	45	0	1	0	1	48	48.7	0	0	0	0	0	0	0	0	0	0	0	0
22	1	1	0	0	24	24.5	0	0	42	2	1	0	0	45	45.5	0	0	0	0	0	0	0	0	0	0	0	0
15	2	0	0	0	17	17	0	0	29	3	1	0	0	33	33.5	0	0	0	0	0	0	0	0	0	0	0	0
66	6	1	0	0	73	73.5	2	0	160	10	3	0	2	177	178.9	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	17	17	0	1	28	4	1	0	1	35	35.9	0	0	1	1	0	0	0	2	2	0	0	0
8	1	0	0	0	9	9	1	0	25	4	0	0	0	30	29.2	0	0	1	0	0	0	0	1	1	0	0	0
16	1	0	0	0	17	17	0	0	32	0	0	0	0	32	32	0	0	1	0	0	0	0	1	1	0	0	0
16	1	0	0	0	17	17	0	0	24	1	0	0	1	26	27	0	0	1	1	0	0	0	2	2	0	0	0
57	3	0	0	0	60	60	1	1	109	9	1	0	2	123	124.1	0	0	4	2	0	0	0	6	6	0	0	0
13	2	0	0	0	15	15	0	0	30	3	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0	0	0
10	1	1	0	0	12	12.5	0	0	36	2	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	13	13	0	1	28	1	0	0	1	31	31.4	0	1	0	1	0	0	0	2	1.4	0	0	0
12	5	0	0	0	17	17	0	0	33	5	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0	0	0
48	8	1	0	0	57	57.5	0	1	127	11	0	0	1	140	140.4	0	1	0	1	0	0	0	2	1.4	0	0	0
16	0	0	0	0	16	16	2	0	30	2	0	0	1	35	34.4	0	0	1	0	0	0	0	1	1	0	0	0
12	1	0	0	0	13	13	0	0	37	1	0	0	0	38	38	0	0	1	1	0	0	0	2	2	0	0	0
12	3	0	0	0	15	15	0	0	27	2	0	0	1	30	31	0	0	0	0	0	0	0	0	0	0	0	0
13	1	0	0	0	14	14	0	0	32	3	0	0	0	35	35	0	0	1	0	0	0	0	1	1	0	0	0
53	5	0	0	0	58	58	2	0	126	8	0	0	2	138	138.4	0	0	3	1	0	0	0	4	4	0	0	0
13	2	0	0	0	15	15	0	0	26	1	2	0	1	30	32	1	0	1	0	0	0	0	2	1.2	0	0	0
14	0	0	0	0	14	14	0	0	47	0	0	0	0	47	47	0	0	2	0	0	0	0	2	2	0	0	0
16	0	0	0	0	16	16	1	0	35	1	2	0	1	40	41.2	0	0	1	0	0	0	0	1	1	0	0	0
25	2	0	0	0	27	27	0	0	35	5	1	0	0	41	41.5	0	0	0	0	0	0	0	0	0	0	0	0
68	4	0	0	0	72	72	1	0	143	7	5	0	2	158	161.7	1	0	4	0	0	0	0	5	4.2	0	0	0
13	0	0	0	0	13	13	0	0	42	1	0	0	0	43	43	0	0	1	0	0	0	0	1	1	0	0	0
11	0	0	0	0	11	11	1	0	32	1	2	0	1	37	38.2	0	0	0	1	0	0	0	1	1	0	0	1
11	1	0	0	0	12	12	0	0	32	4	0	0	1	37	38	0	0	0	0	0	0	0	0	0	0	0	0
15	0	0	0	0	15	15	0	0	47	0	0	0	0	47	47	0	0	1	1	0	0	0	2	2	0	0	0
50	1	0	0	0	51	51	1	0	153	6	2	0	2	164	166.2	0	0	2	2	0	0	0	4	4	0	0	1
16	0	0	0	0	16	16	0	0	30	2	0	0	0	32	32	0	0	1	0	0	0	0	1	1	0	0	0
20	0	0	0	0	20	20	0	0	33	0	0	0	1	34	35	0	0	0	0	0	0	0	0	0	0	0	0
24	2	0	0	0	26	26	0	0	55	1	0	0	1	57	58	0	0	1	0	0	0	0	1	1	0	0	0
26	4	0	0	0	30	30	0	0	40	1	1	0	1	43	44.5	0	0	0	0	0	0	0	0	0	0	0	0
86	6	0	0	0	92	92	0	0	158	4	1	0	3	166	169.5	0	0	2	0	0	0	0	2	2	0	0	0
29	0	0	0	0	29	29	0	1	40	1	0	0	0	42	41.4	0	0	1	0	0	0	0	1	1	0	0	0
27	1	0	0	0	28	28	0	0	28	3	0	0	1	32	33	0	0	0	1	0	0	0	1	1	0	0	0
32	0	0	0	0	32	32	0	0	40	1	0	0	1	42	43	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	13	13	0	0	52	2	0	0	0	54	54	0	0	0	0	0	0	0	0	0	0	0	0
101	1	0	0	0	102	102	0	1	160	7	0	0	2	170	171.4	0	0	1	1	0	0	0	2	2	0	0	0
19	0	0	0	0	19	19	1	0	60	1	0	0	1	63	63.2	0	0	0	0	0	0	0	0	0	0	0	0
27	2	0	0	0	29	29	0	0	36	1	0	0	0	37	37	0	0	0	0	0	0	0	0	0	0	0	0
13	0	0	0	0	14	13.2	0	0	25	1	0	0	1	27	28	0	0	0	0	0	0	0	0	0	0	0	0
14	1	0	0	0	15	15	0	0	45	2	0	0	0	47	47	0	0	1	0	0	0	0	1	1	0	0	0
73	3	0	0	0	77	76.2	1	0	166	5	0	0	2	174	175.2	0	0	1	0	0	0	0	1	1	0	0	0
780	44	4	0	0	830	830.6	16	4	1690	95	22	1	23	1851	1871.1	1	1	20	8	0	0	0	30	28.6	0	0	1

D => D					
Lev	OGv1	OGv2	PSv	тот	PCU
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1

PCU	A => D							тот	PCU	B => A							тот	PCU	P/C	M/C	CAR	B => B		OGv2	PSv	тот	PCU
	P/C	M/C	CAR	LGV	OGv1	ogv2	PSV			P/C	M/C	CAR	LGV	ogvi	OGV2	PSV						LGV	OGv1				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1.5
0	0	0	3	0	0	0	0	3	3	0	0	1	0	0	0	0	1	1	0	0	0	0	1	0	0	1	1.5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0
0	0	0	15	1	0	0	0	16	16	1	0	7	0	0	0	0	8	7.2	0	0	8	0	1	0	0	9	9.5

M/C	C => B					тот	PCU	$\mathrm{C}=>\mathrm{C}$							тот	PCU	$\mathrm{C}=>\mathrm{D}$							тот	PCU	P/C	M/C
	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV				
0	5	1	1	0	0	7	7.5	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8	0	0
0	42	1	2	0	2	47	50	0	0	0	0	0	0	0	0	0	0	0	32	0	0	0	0	32	32	0	0
0	10	0	1	0	0	11	11.5	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	16	16	0	0
0	11	0	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	0	16	16	0	0
0	68	2	4	0	2	76	80	0	0	0	0	0	0	0	0	0	0	0	72	0	0	0	0	72	72	0	0
0	21	1	0	0	1	23	24	0	0	0	0	0	0	0	0	0	0	0	22	0	0	1	0	23	24.3	0	0
0	15	0	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	9	0	1	0	0	10	10.5	0	0
0	10	1	1	0	1	13	14.5	0	0	0	0	0	0	0	0	0	0	0	16	0	1	0	0	17	17.5	0	0
0	10	0	1	0	0	11	11.5	0	0	0	0	0	0	0	0	0	0	0	11	1	0	0	0	12	12	0	0
0	56	2	2	0	2	62	65	0	0	0	0	0	0	0	0	0	0	0	58	1	2	1	0	62	64.3	0	0
0	23	1	0	0	0	25	24.2	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	14	14	0	0
1	20	0	0	0	0	21	20.4	0	0	0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0
0	9	1	0	0	1	11	12	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9	0	0
0	27	1	1	0	0	29	29.5	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0
1	79	3	1	0	1	86	86.1	0	0	0	0	0	0	0	0	0	0	0	34	1	0	0	0	35	35	0	0
0	32	4	0	0	1	38	38.2	0	0	0	0	0	0	0	0	0	0	0	9	0	1	0	0	10	10.5	0	0
0	42	3	0	0	1	46	47	0	0	0	0	0	0	0	0	0	1	0	7	0	0	0	0	8	7.2	0	0
0	36	3	2	0	0	41	42	0	0	0	0	0	0	0	0	0	0	0	6	1	0	0	0	7	7	0	0
0	31	1	0	0	0	32	32	0	0	0	0	0	0	0	0	0	0	0	7	2	1	0	0	10	10.5	0	0
0	141	11	2	0	2	157	159.2	0	0	0	0	0	0	0	0	0	1	0	29	3	2	0	0	35	35.2	0	0
0	30	3	1	0	1	35	36.5	0	0	0	0	0	0	0	0	0	0	0	6	1	0	0	0	7	7	0	0
0	16	0	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9	0	0
0	28	2	0	0	0	30	30	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9	0	0
0	21	2	0	0	1	24	25	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0
0	95	7	1	0	2	105	107.5	0	0	0	0	0	0	0	0	0	0	0	30	1	0	0	0	31	31	0	0
0	22	3	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	11	11	0	0
0	21	2	1	0	0	24	24.5	0	0	0	0	0	0	0	0	0	2	0	8	0	0	0	0	10	8.4	0	0
1	23	0	0	0	1	25	25.4	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0
0	22	5	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	12	12	0	0
1	88	10	1	0	1	101	101.9	0	0	0	0	0	0	0	0	0	2	0	37	0	0	0	0	39	37.4	0	0
0	21	1	0	0	1	23	24	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0
0	20	1	1	0	0	22	22.5	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	11	11	0	0
0	13	3	0	0	1	17	18	0	0	0	0	0	0	0	0	0	0	0	10	1	0	0	0	11	11	0	0
0	16	2	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0
0	70	7	1	0	2	80	82.5	0	0	0	0	0	0	0	0	0	0	0	30	1	0	0	0	31	31	0	0
0	19	1	0	0	1	21	22	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0
0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	11	11	0	0
0	21	0	1	0	1	23	24.5	0	0	0	0	0	0	0	0	0	0	0	10	1	0	0	0	11	11	0	0
0	32	2	0	0	0	34	34	0	0	0	0	0	0	0	0	0	0	0	10	1	0	0	0	11	11	0	0
0	85	3	1	0	2	91	93.5	0	0	0	0	0	0	0	0	0	0	0	41	2	0	0	0	43	43	0	0
0	21	0	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0
0	20	3	2	0	1	26	28	0	0	0	0	0	0	0	0	0	1	0	6	1	1	0	0	9	8.7	0	0
0	18	1	0	0	1	20	21	0	0	0	0	0	0	0	0	0	0	0	15	2	0	0	0	17	17	0	0
0	24	1	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	11	0	0	0	0	11	11	0	0
0	83	5	2	0	2	92	95	0	0	0	0	0	0	0	0	0	1	0	42	3	1	0	0	47	46.7	0	0
0	25	1	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	26	1	0	0	0	27	27	0	0
0	31	0	0	0	1	32	33	0	0	0	0	0	0	0	0	0	0	0	26	1	0	0	0	27	27	0	0
0	41	3	0	0	1	45	46	0	0	0	0	0	0	0	0	0	0	0	17	1	1	0	0	19	19.5	0	0
0	31	1	0	0	1	33	34	0	0	0	0	0	0	0	0	0	0	0	32	1	0	0	0	33	33	0	0
0	128	5	0	0	3	136	139	0	0	0	0	0	0	0	0	0	0	0	101	4	1	0	0	106	106.5	0	0
0	28	0	0	0	0	28	28	0	0	0	0	0	0	0	0	0	0	0	15	0	0	0	0	15	15	0	0
0	29	2	0	0	1	32	33	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	0	18	18	0	0
0	33	0	0	0	1	34	35	0	0	0	0	0	0	0	0	0	0	0	18	1	0	0	0	19	19	0	0
0	23	0	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0	0	20	0	0	0	0	20	20	0	0
0	113	2	0	0	2	117	119	0	0	0	0	0	0	0	0	0	0	0	71	1	0	0	0	72	72	0	0
0	48	0	0	0	1	50	50.2	0	0	0	0	0	0	0	0	0	0	0	31	0	0	0	0	31	31	0	0
0	28	1	0	0	0	29	29	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	21	21	0	0
0	22	1	0	0	1	24	25	0	0	0	0	0	0	0	0	0	0	0	12	1	0	0	0	13	13	0	0
0	26	1	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	0	19	1	0	0	0	20	20	0	0
0	124	3	0	0	2	130	131.2	0	0	0	0	0	0	0	0	0	0	0	83	2	0	0	0	85	85	0	0
2	1130	60	15	0	23	1233	1259.9	0	0	0	0	0	0	0	0	0	4	0	628	19	6	1	0	658	659.1	0	0

D => A					тот	PCU	D => B							тот	PCU	D => C							тот	PCu	P/C	M/C	CAR
CAR	LGv	OGv1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGv1	OGV2	PSV					
0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	0	0	19	1	0	0	0	20	20	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	1	0	0	39	2	0	0	0	41	41	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	33	4	0	0	0	38	37.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	53	6	1	1	0	61	62.8	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	3	0	72	4	2	0	0	81	79.6	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	51	2	0	0	0	54	53.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	5	0	209	16	3	1	0	234	232.8	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	39	4	0	0	0	44	43.4	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	2	0	33	1	1	0	0	37	35.9	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	23	2	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	0	0	31	2	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	2	2	2	1	126	9	1	0	0	139	137.3	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	26	2	1	0	0	29	29.5	0	0	1	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	1	0	19	0	0	0	0	20	19.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	26	1	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	10	4	1	0	0	15	15.5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	81	7	2	0	0	91	91.2	0	0	1	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	0	0	1	16	1	0	0	0	18	17.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	17	4	0	0	0	22	21.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	22	0	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	20	1	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1	75	6	0	0	0	83	81.6	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	22	1	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	22	1	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	20	3	0	0	0	24	23.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	25	3	0	0	0	28	28	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	89	8	0	0	0	98	97.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	0	28	0	0	0	0	30	28.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	30	1	0	0	0	31	31	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	25	2	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	0	0	31	2	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	2	0	114	5	0	0	0	121	119.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	22	2	0	0	0	25	24.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	52	0	0	0	0	52	52	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	33	2	1	0	0	37	36.7	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	24	5	0	0	0	29	29	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	2	0	131	9	1	0	0	143	141.9	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	32	1	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	23	1	0	0	0	25	24.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	27	3	0	0	0	30	30	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	36	0	0	0	0	36	36	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	118	5	0	0	0	124	123.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	23	1	0	0	0	24	24	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	26	0	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	33	0	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	36	3	1	0	0	40	40.5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	118	4	1	0	0	123	123.5	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	41	1	0	0	0	43	42.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	25	2	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	38	0	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	3	3	0	0	43	2	0	0	0	45	45	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	3	3	0	1	147	5	0	0	0	153	152.4	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	30	1	0	0	0	31	31	0	0	1	0	0	0	0	1	1	0	0	0
1	0	0	0	0	1	1	0	0	40	2	0	0	0	42	42	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	11	1	0	0	0	13	12.2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	33	2	0	0	0	35	35	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	1	1	0	114	6	0	0	0	121	120.2	0	0	1	0	0	0	0	1	1	0	0	0
7	1	0	0	0	8	8	15	4	1361	82	8	1	0	1471	1461.9	0	0	2	0	0	0	0	2	2	0	0	0

D => D					
Lev	ogvi	OGv2	PSv	тот	PCU
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0

			Gofole bneys of Malahide $\mathrm{Na}_{\text {dota } 02023}$																							
time	A => A							тот	PCU	P/C	M/C	CAR	$\begin{gathered} \text { A }=>\text { B } \\ \text { LGV } \\ \hline \end{gathered}$	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	A => C				тот
	P/C	M/C	CAR	Lgv	OGv1	OGV2	PSV															LGV	OGV1	OGV2	PSV	
07:00	0	0	0	0	0	0	0	0	0	0	0	16	1	3	0	0	20	21.5	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	56	1	0	0	2	59	61	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	29	3	3	0	0	35	36.5	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	1	0	24	2	3	0	0	30	30.7	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	125	7	9	0	2	144	149.7	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	1	0	55	6	1	0	1	64	64.7	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	72	6	1	1	0	80	81.8	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	77	7	5	0	1	90	93.5	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	4	0	49	6	2	0	0	61	58.8	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	5	0	253	25	9	1	2	295	298.8	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	2	1	47	8	1	0	0	59	57.3	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	2	0	45	3	1	0	0	51	49.9	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	25	5	1	0	1	32	33.5	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	49	2	2	0	0	53	54	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	4	1	166	18	5	0	1	195	194.7	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	1	0	50	6	1	0	1	59	59.7	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	1	0	61	2	2	0	1	67	68.2	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	57	7	0	0	0	64	64	0	0	0	0	0	0	0	0
10:45	0	0	1	0	0	0	0	1	1	0	0	48	7	1	0	0	56	56.5	0	0	0	0	0	0	0	0
H/TOT	0	0	1	0	0	0	0	1	1	2	0	216	22	4	0	2	246	248.4	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	1	46	9	0	0	1	57	57.4	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	1	0	34	5	2	0	0	42	42.2	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	42	2	1	0	0	45	45.5	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	48	5	1	0	1	55	56.5	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	1	170	21	4	0	2	199	201.6	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	38	8	0	0	0	46	46	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	1	50	1	0	0	0	52	51.4	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	54	2	0	0	1	57	58	0	1	0	0	0	0	0	1
12:45	0	0	0	0	0	0	0	0	0	0	0	52	4	0	0	0	56	56	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	1	194	15	0	0	1	211	211.4	0	1	0	0	0	0	0	1
13:00	0	0	0	0	0	0	0	0	0	2	0	37	3	0	0	1	43	42.4	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	1	0	53	3	1	0	0	58	57.7	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	41	4	0	0	1	46	47	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	44	3	0	0	0	47	47	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	3	0	175	13	1	0	2	194	194.1	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	3	0	42	2	3	0	1	51	51.1	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	1	0	59	0	0	0	0	60	59.2	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	1	1	53	2	2	0	1	60	60.6	0	0	0	0	0	0	0	0
14:45	0	0	0	1	0	0	0	1	1	0	0	47	4	1	0	0	52	52.5	0	0	0	0	0	0	0	0
H/TOT	0	0	0	1	0	0	0	1	1	5	1	201	8	6	0	2	223	223.4	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	56	4	0	0	0	60	60	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	1	0	51	2	2	0	1	57	58.2	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	53	5	0	0	1	59	60	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	64	0	0	0	0	64	64	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	224	11	2	0	2	240	242.2	0	0	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	45	4	0	0	0	49	49	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	43	1	0	0	1	45	46	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	76	2	0	0	1	79	80	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	70	2	1	0	1	74	75.5	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	234	9	1	0	3	247	250.5	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	1	63	1	0	0	0	65	64.4	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	53	3	0	0	1	57	58	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	72	2	0	0	1	75	76	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	1	0	72	1	0	0	0	74	73.2	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	1	260	7	0	0	2	271	271.6	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	1	0	76	2	0	0	1	80	80.2	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	48	1	0	0	0	49	49	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	41	2	0	0	1	44	45	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	62	1	0	0	0	63	63	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	227	6	0	0	2	236	237.2	0	0	0	0	0	0	0	0
12 тот	0	0	1	1	0	0	0	2	2	24	5	2445	162	41	1	23	2701	2723.6	0	1	0	0	0	0	0	1

PCU	B => A							тот	PCU	B => B							тот	PCU	B => C							тот	PCU
	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV			P/C	M/C	CAR	LGV	OGV1	OGV2	PSV		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	2	0	2	0	0	0	0	4	2.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.4	5	0	4	0	0	0	0	9	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

P/C	$\mathrm{c}=>\mathrm{A}$						тот	PCU	$\mathrm{C}=>\mathrm{B}$							тот	PCU	P/C	M/C	CAR	$\mathrm{c}=>\mathrm{C}$		OGv2	Psv	тот	PCU
	M/C	CAR	LGv	OGv1	OGV2	PSv			P/C	M/C	CAR	Lgv	OGV1	OGV2	Psv						Lgv	OGV1				
0	0	4	0	0	0	0	4	4	0	0	2	1	1	0	0	4	4.5	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	7	2	0	0	0	10	9.2	0	0	0	1	2	0	0	3	4	0	0	0	0	0	0	0	0	0
0	0	7	1	0	0	0	8	8	0	0	2	0	1	0	0	3	3.5	0	0	0	0	0	0	0	0	0
1	0	20	3	0	0	0	24	23.2	0	0	4	2	4	0	0	10	12	0	0	0	0	0	0	0	0	0
0	0	15	3	0	0	0	18	18	0	0	1	0	1	0	0	2	2.5	0	0	0	0	0	0	0	0	0
1	0	14	0	0	0	0	15	14.2	0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	14	0	0	0	0	14	14	0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
0	0	28	1	0	0	0	29	29	0	0	11	3	2	0	0	16	17	0	0	0	0	0	0	0	0	0
1	0	71	4	0	0	0	76	75.2	0	0	18	4	3	0	0	25	26.5	0	0	0	0	0	0	0	0	0
3	0	21	1	1	0	0	26	24.1	1	0	16	2	0	0	0	19	18.2	0	0	0	0	0	0	0	0	0
0	0	14	1	0	0	0	15	15	0	0	11	3	0	0	0	14	14	0	0	0	0	0	0	0	0	0
0	0	12	2	0	0	0	14	14	0	0	15	0	0	0	0	15	15	0	0	0	0	0	0	0	0	0
0	0	13	3	0	0	0	16	16	0	0	20	3	0	0	0	23	23	0	0	0	0	0	0	0	0	0
3	0	60	7	1	0	0	71	69.1	1	0	62	8	0	0	0	71	70.2	0	0	0	0	0	0	0	0	0
0	0	19	0	0	0	0	19	19	0	0	10	1	1	0	0	12	12.5	0	0	0	0	0	0	0	0	0
0	0	26	4	0	0	0	30	30	0	0	17	1	2	0	0	20	21	0	0	0	0	0	0	0	0	0
3	0	22	1	0	0	0	26	23.6	0	0	22	2	0	0	0	24	24	0	0	0	0	0	0	0	0	0
2	0	15	1	0	0	0	18	16.4	1	0	22	1	0	0	0	24	23.2	0	0	0	0	0	0	0	0	0
5	0	82	6	0	0	0	93	89	1	0	71	5	3	0	0	80	80.7	0	0	0	0	0	0	0	0	0
0	0	18	2	0	0	0	20	20	0	0	19	4	2	0	0	25	26	0	0	0	0	0	0	0	0	0
1	0	19	2	0	0	0	22	21.2	0	0	18	1	0	0	0	19	19	0	0	0	0	0	0	0	0	0
1	0	16	0	0	0	0	17	16.2	0	0	23	0	0	0	0	23	23	0	0	0	0	0	0	0	0	0
0	0	25	0	0	0	0	25	25	1	0	13	3	0	0	0	17	16.2	0	0	0	0	0	0	0	0	0
2	0	78	4	0	0	0	84	82.4	1	0	73	8	2	0	0	84	84.2	0	0	0	0	0	0	0	0	0
1	0	15	3	0	0	0	19	18.2	0	0	20	0	1	0	0	21	21.5	0	0	0	0	0	0	0	0	0
0	0	18	3	0	0	0	21	21	0	0	28	2	0	0	0	30	30	0	0	0	0	0	0	0	0	0
1	0	21	3	0	0	0	25	24.2	0	0	24	0	0	0	0	24	24	0	0	0	0	0	0	0	0	0
0	0	30	1	0	0	0	31	31	0	0	11	3	0	0	0	14	14	0	0	0	0	0	0	0	0	0
2	0	84	10	0	0	0	96	94.4	0	0	83	5	1	0	0	89	89.5	0	0	0	0	0	0	0	0	0
0	0	19	4	0	0	0	23	23	0	0	20	1	0	0	0	21	21	0	0	0	0	0	0	0	0	0
0	0	16	1	0	0	0	17	17	0	0	16	0	1	0	0	17	17.5	0	0	0	0	0	0	0	0	0
0	0	28	3	0	0	0	31	31	0	0	17	0	3	0	0	20	21.5	0	0	0	0	0	0	0	0	0
0	0	29	1	0	0	0	30	30	0	0	16	5	0	0	0	21	21	0	0	0	0	0	0	0	0	0
0	0	92	9	0	0	0	101	101	0	0	69	6	4	0	0	79	81	0	0	0	0	0	0	0	0	0
1	0	22	1	0	0	0	24	23.2	0	0	20	1	0	0	0	21	21	0	0	0	0	0	0	0	0	0
1	0	15	3	0	0	0	19	18.2	0	0	10	2	1	0	0	13	13.5	0	0	0	0	0	0	0	0	0
1	0	14	2	0	0	0	17	16.2	0	0	15	3	1	0	0	19	19.5	0	0	0	0	0	0	0	0	0
0	0	19	2	2	0	0	23	24	0	0	30	1	0	0	0	31	31	0	0	0	0	0	0	0	0	0
3	0	70	8	2	0	0	83	81.6	0	0	75	7	2	0	0	84	85	0	0	0	0	0	0	0	0	0
0	0	17	2	0	0	0	19	19	0	0	23	1	0	0	0	24	24	0	0	0	0	0	0	0	0	0
0	0	25	3	0	0	0	28	28	0	0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0
0	0	16	1	1	0	0	18	18.5	0	0	20	0	0	0	0	20	20	0	0	0	0	0	0	0	0	0
0	0	32	0	0	0	0	32	32	0	0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0
0	0	90	6	1	0	0	97	97.5	0	0	81	1	0	0	0	82	82	0	0	0	0	0	0	0	0	0
0	0	21	0	0	0	0	21	21	1	0	17	0	0	0	0	18	17.2	0	0	0	0	0	0	0	0	0
1	0	29	5	0	0	0	35	34.2	0	0	21	1	0	0	0	22	22	0	0	0	0	0	0	0	0	0
0	0	30	3	0	0	0	33	33	0	0	17	1	0	0	0	18	18	0	0	0	0	0	0	0	0	0
0	0	30	1	0	0	0	31	31	0	0	23	2	0	0	0	25	25	0	0	0	0	0	0	0	0	0
1	0	110	9	0	0	0	120	119.2	1	0	78	4	0	0	0	83	82.2	0	0	0	0	0	0	0	0	0
0	0	28	3	0	0	0	31	31	0	0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0
0	0	25	3	0	0	0	28	28	0	0	21	1	0	0	0	22	22	0	0	0	0	0	0	0	0	0
0	0	28	1	0	0	0	29	29	0	0	19	1	0	0	0	20	20	0	0	0	0	0	0	0	0	0
0	0	14	2	0	0	0	16	16	0	0	21	0	0	0	0	21	21	0	0	0	0	0	0	0	0	0
0	0	95	9	0	0	0	104	104	0	0	80	2	0	0	0	82	82	0	0	0	0	0	0	0	0	0
1	0	27	3	0	0	0	31	30.2	0	0	14	0	0	0	0	14	14	0	0	0	0	0	0	0	0	0
1	0	17	0	0	0	0	18	17.2	0	0	11	0	0	0	0	11	11	0	0	0	0	0	0	0	0	0
1	0	15	1	0	0	0	17	16.2	0	0	9	0	0	0	0	9	9	0	0	0	0	0	0	0	0	0
1	0	24	0	0	0	0	25	24.2	0	0	19	1	0	0	0	20	20	0	0	0	0	0	0	0	0	0
4	0	83	4	0	0	0	91	87.8	0	0	53	1	0	0	0	54	54	0	0	0	0	0	0	0	0	0
22	0	935	79	4	0	0	1040	1024.4	4	0	747	53	19	0	0	823	829.3	0	0	0	0	0	0	0	0	0

PCU	A => D							тот	PCU	B => A							тот	PCU	P/C	M/C	CAR	B => B				тот	PCU
	P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	ogv2	Psv						Lgv	OGV1	OGV2	PSv		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1.5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	2	1.2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	2.5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1.5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	1	1	3	0	0	6	6.7	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	1	0	0	1	1.5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0.2	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	2.5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0.2	1	0	0	0	0	0	0	1	0.2	0	0	3	1	2	0	0	6	7	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	0	2	0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.6	5	0	0	0	0	0	0	5	1	2	0	12	4	5	0	0	23	23.9	0	0	0	0	0	0	0	0	0

$B=>C$							$B=>\mathrm{D}$									C => A									тот	PCU	P/C
P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGv	OGV1	OGv2	PSV	тот	PCu	P/C	M/C	CAR	Lgv	ogvi	ogv2	Psv			
0	0	2	0	2	0	0	4	5	0	0	38	6	1	1	4	50	55.8	0	0	2	0	0	0	0	2	2	0
0	0	8	1	0	0	0	9	9	0	0	83	3	0	0	2	88	90	0	0	0	0	0	0	0	0	0	0
0	0	5	1	0	0	0	6	6	0	0	74	1	2	0	2	79	82	0	0	1	0	0	0	0	1	1	0
0	0	6	2	0	0	1	9	10	1	0	60	2	5	0	1	69	71.7	0	0	5	0	0	0	0	5	5	0
0	0	21	4	2	0	1	28	30	1	0	255	12	8	1	9	286	299.5	0	0	8	0	0	0	0	8	8	0
0	0	13	2	0	0	0	15	15	1	0	87	9	3	1	3	104	109	0	0	3	1	0	0	0	4	4	0
0	0	21	2	0	0	0	23	23	1	0	73	5	0	1	0	80	80.5	0	0	5	1	0	0	0	6	6	0
0	0	40	2	0	0	0	42	42	1	0	86	4	3	1	5	100	107	0	0	3	0	0	0	0	3	3	0
2	0	29	2	1	0	0	34	32.9	2	0	81	5	1	1	0	90	90.2	0	0	8	0	1	0	0	9	9.5	0
2	0	103	8	1	0	0	114	112.9	5	0	327	23	7	4	8	374	386.7	0	0	19	2	1	0	0	22	22.5	0
0	0	23	2	1	0	0	26	26.5	1	0	99	7	1	0	2	110	111.7	0	0	7	1	0	0	0	8	8	1
0	0	11	1	0	0	0	12	12	0	0	79	5	3	0	1	88	90.5	0	0	1	1	0	0	0	2	2	0
0	0	15	1	0	0	0	16	16	0	0	69	4	1	0	1	75	76.5	0	0	0	1	0	0	0	1	1	0
0	0	16	1	2	0	0	19	20	1	0	59	2	0	0	0	62	61.2	0	0	1	0	0	0	0	1	1	0
0	0	65	5	3	0	0	73	74.5	2	0	306	18	5	0	4	335	339.9	0	0	9	3	0	0	0	12	12	1
0	0	17	1	1	0	0	19	19.5	1	0	70	4	1	0	2	78	79.7	0	0	2	2	0	0	0	4	4	0
0	0	25	2	0	0	0	27	27	0	0	69	7	5	0	1	82	85.5	0	0	3	0	0	0	0	3	3	0
0	0	23	1	0	0	0	24	24	0	0	65	7	0	0	1	73	74	0	0	1	0	0	0	0	1	1	0
0	0	16	2	0	0	0	18	18	0	0	73	10	1	0	2	86	88.5	0	0	2	0	0	0	0	2	2	0
0	0	81	6	1	0	0	88	88.5	1	0	277	28	7	0	6	319	327.7	0	0	8	2	0	0	0	10	10	0
0	0	9	3	1	0	0	13	13.5	1	0	80	11	3	0	0	95	95.7	0	0	1	0	0	0	0	1	1	0
0	0	21	1	1	0	0	23	23.5	1	0	58	9	3	0	2	73	75.7	0	0	0	0	0	0	0	0	0	0
0	0	22	2	2	0	0	26	27	0	0	75	9	1	0	0	85	85.5	0	0	0	0	0	0	0	0	0	0
0	0	23	1	0	0	0	24	24	1	0	66	4	1	0	1	73	73.7	0	0	0	0	0	0	0	0	0	0
0	0	75	7	4	0	0	86	88	3	0	279	33	8	0	3	326	330.6	0	0	1	0	0	0	0	1	1	0
0	0	10	1	0	0	0	11	11	0	0	88	14	2	1	1	106	109.3	0	0	0	0	0	0	0	0	0	0
0	0	19	1	0	0	0	20	20	0	0	56	8	1	0	0	65	65.5	0	0	0	0	0	0	0	0	0	0
0	0	18	1	0	0	0	19	19	0	0	71	13	1	1	2	88	91.8	0	0	0	0	0	0	0	0	0	0
0	0	19	2	0	0	0	21	21	0	0	80	7	0	0	1	88	89	0	0	0	0	0	0	0	0	0	0
0	0	66	5	0	0	0	71	71	0	0	295	42	4	2	4	347	355.6	0	0	0	0	0	0	0	0	0	0
0	0	31	2	0	0	0	33	33	1	0	79	9	3	0	2	94	96.7	0	0	0	0	0	0	0	0	0	0
0	0	19	1	0	0	0	20	20	0	0	72	7	2	0	1	82	84	0	0	0	0	0	0	0	0	0	0
0	0	23	4	0	0	0	27	27	0	0	73	5	4	0	1	83	86	0	0	0	0	0	0	0	0	0	0
0	0	29	2	0	0	0	31	31	0	0	59	7	5	0	1	72	75.5	0	0	0	0	0	0	0	0	0	1
0	0	102	9	0	0	0	111	111	1	0	283	28	14	0	5	331	342.2	0	0	0	0	0	0	0	0	0	1
0	0	28	1	0	0	0	29	29	0	0	63	10	5	0	1	79	82.5	0	0	0	0	0	0	0	0	0	0
0	0	22	1	0	0	0	23	23	0	0	79	9	0	0	1	89	90	0	0	0	0	0	0	0	0	0	0
0	0	35	2	0	0	0	37	37	0	0	70	5	4	1	2	82	87.3	0	0	0	0	0	0	0	0	0	0
0	0	20	2	0	0	0	22	22	0	0	76	13	2	0	0	91	92	0	0	0	0	0	0	0	0	0	0
0	0	105	6	0	0	0	111	111	0	0	288	37	11	1	4	341	351.8	0	0	0	0	0	0	0	0	0	0
0	0	17	0	0	0	0	17	17	0	0	75	9	5	2	1	92	98.1	0	0	0	0	0	0	0	0	0	0
0	0	25	1	0	0	0	26	26	0	0	69	6	2	0	1	78	80	0	0	0	0	0	0	0	0	0	0
0	0	17	0	0	0	0	17	17	0	0	84	12	0	1	2	99	102.3	0	0	0	0	0	0	0	0	0	0
0	0	21	4	0	0	0	25	25	1	0	67	5	2	0	1	76	77.2	1	0	0	0	0	0	0	1	0.2	2
0	0	80	5	0	0	0	85	85	1	0	295	32	9	3	5	345	357.6	1	0	0	0	0	0	0	1	0.2	2
0	0	22	0	0	0	0	22	22	0	0	68	7	2	0	2	79	82	0	0	0	0	0	0	0	0	0	1
0	0	18	0	0	0	1	19	20	1	1	67	12	1	0	5	87	91.1	0	0	0	0	0	0	0	0	0	0
0	0	14	1	0	0	0	15	15	0	0	87	8	0	0	3	98	101	0	0	0	0	0	0	0	0	0	0
0	0	19	2	0	0	0	21	21	0	0	66	5	0	1	1	73	75.3	0	0	0	0	0	0	0	0	0	0
0	0	73	3	0	0	1	77	78	1	1	288	32	3	1	11	337	349.4	0	0	0	0	0	0	0	0	0	1
0	0	19	2	0	0	0	21	21	0	1	70	3	1	0	3	78	80.9	0	0	0	0	0	0	0	0	0	0
0	0	12	2	0	0	0	14	14	0	0	82	5	0	0	0	87	87	0	0	0	0	0	0	0	0	0	0
0	0	20	1	0	0	0	21	21	1	0	82	3	1	0	2	89	90.7	0	0	0	0	0	0	0	0	0	0
0	0	14	2	0	0	0	16	16	0	0	57	2	1	0	0	60	60.5	0	0	0	0	0	0	0	0	0	0
0	0	65	7	0	0	0	72	72	1	1	291	13	3	0	5	314	319.1	0	0	0	0	0	0	0	0	0	0
0	0	22	1	0	0	0	23	23	1	0	76	0	1	0	4	82	85.7	0	0	0	0	0	0	0	0	0	1
0	0	14	1	0	0	0	15	15	0	0	69	4	1	0	2	76	78.5	0	0	0	0	0	0	0	0	0	0
0	0	17	1	0	0	0	18	18	0	0	68	2	0	0	2	72	74	0	0	0	0	0	0	0	0	0	0
0	0	14	1	0	0	0	15	15	0	0	54	0	0	0	0	54	54	0	0	0	0	0	0	0	0	0	0
0	0	67	4	0	0	0	71	71	1	0	267	6	2	0	8	284	292.2	0	0	0	0	0	0	0	0	0	1
2	0	903	69	11	0	2	987	992.9	17	2	3451	304	81	12	72	3939	4052.3	1	0	45	7	1	0	0	54	53.7	6

M/C	C => B					тот	PCU	$\mathrm{C}=>\mathrm{C}$							тот	PCU	$\mathrm{C}=>\mathrm{D}$							тот	PCU	P/C	M/C
	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV				
0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	12	0	1	0	1	14	15.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	3	0	0	2	21	23	0	0
0	5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	1	14	0	0	0	3	18	20.4	0	0
0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	17	0	1	0	2	20	22.5	0	0
0	12	1	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	1	59	3	2	0	8	73	81.4	0	0
0	9	1	0	0	0	10	10	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	2	18	20	0	0
0	13	1	1	0	0	15	15.5	0	0	0	0	0	0	0	0	0	0	0	52	0	1	0	1	54	55.5	1	0
0	19	3	0	0	0	22	22	0	0	0	0	0	0	0	0	0	2	0	27	2	0	0	1	32	31.4	0	0
0	29	1	0	0	0	30	30	0	0	0	0	0	0	0	0	0	0	0	39	0	0	0	1	40	41	0	0
0	70	6	1	0	0	77	77.5	0	0	0	0	0	0	0	0	0	2	0	134	2	1	0	5	144	147.9	1	0
0	24	1	0	0	0	26	25.2	0	0	0	0	0	0	0	0	0	0	0	33	1	0	0	0	34	34	0	0
0	15	0	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	22	5	2	0	1	30	32	0	0
0	9	2	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	15	3	0	0	1	19	20	0	0
0	17	1	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	23	0	2	0	1	26	28	0	0
0	65	4	0	0	0	70	69.2	0	0	0	0	0	0	0	0	0	0	0	93	9	4	0	3	109	114	0	0
0	12	1	0	0	0	13	13	0	0	0	0	0	0	0	0	0	0	0	26	2	0	0	0	28	28	0	0
0	17	0	0	0	0	17	17	0	0	0	0	0	0	0	0	0	0	0	34	4	1	0	1	40	41.5	0	0
0	16	1	1	0	0	18	18.5	0	0	0	0	0	0	0	0	0	0	0	18	1	0	0	0	19	19	0	0
0	14	1	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	1	21	3	1	0	1	27	27.9	0	0
0	59	3	1	0	0	63	63.5	0	0	0	0	0	0	0	0	0	0	1	99	10	2	0	2	114	116.4	0	0
0	16	2	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	26	1	0	0	0	27	27	0	0
0	12	3	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	30	2	0	0	1	33	34	0	0
0	13	2	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	21	8	1	0	0	30	30.5	0	0
0	17	1	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	21	2	0	0	1	24	25	1	0
0	58	8	0	0	0	66	66	0	0	0	0	0	0	0	0	0	0	0	98	13	1	0	2	114	116.5	1	0
0	18	2	0	0	0	20	20	0	0	0	0	0	0	0	0	0	0	0	15	1	0	0	0	16	16	0	0
0	15	2	0	0	0	17	17	0	0	0	0	0	0	0	0	0	1	0	19	2	0	1	1	24	25.5	0	0
0	15	3	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	1	15	3	2	0	0	21	21.4	0	0
0	22	0	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	19	1	0	0	1	21	22	0	0
0	70	7	0	0	0	77	77	0	0	0	0	0	0	0	0	0	1	1	68	7	2	1	2	82	84.9	0	0
0	34	0	0	0	0	34	34	0	0	0	0	0	0	0	0	0	0	0	23	3	0	0	0	26	26	1	0
0	19	1	1	0	0	21	21.5	0	0	0	0	0	0	0	0	0	0	0	27	2	2	1	1	33	36.3	0	0
0	21	3	0	0	0	24	24	0	0	0	0	0	0	0	0	0	0	0	22	1	0	0	0	23	23	0	0
0	24	0	0	0	0	25	24.2	0	0	1	0	0	0	0	1	1	0	0	23	0	0	0	1	24	25	1	0
0	98	4	1	0	0	104	103.7	0	0	1	0	0	0	0	1	1	0	0	95	6	2	1	2	106	110.3	2	0
0	25	1	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	22	2	2	0	0	26	27	0	0
0	26	3	0	0	1	30	31	0	0	0	0	0	0	0	0	0	0	0	17	1	1	0	1	20	21.5	0	0
0	27	2	0	0	0	29	29	0	0	0	0	0	0	0	0	0	0	0	18	2	0	1	0	21	22.3	0	0
0	25	0	1	0	0	26	26.5	0	0	0	0	0	0	0	0	0	0	0	40	1	0	0	1	42	43	0	0
0	103	6	1	0	1	111	112.5	0	0	0	0	0	0	0	0	0	0	0	97	6	3	1	2	109	113.8	0	0
0	22	0	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	28	0	0	0	0	28	28	1	0
0	15	0	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	21	1	1	0	1	24	25.5	0	0
0	18	0	0	0	0	18	18	0	0	0	0	0	0	0	0	0	0	0	23	2	0	0	0	25	25	0	0
0	16	0	0	0	0	18	16.4	0	0	0	0	0	0	0	0	0	0	0	31	0	0	0	1	32	33	0	0
0	71	0	0	0	0	73	71.4	0	0	0	0	0	0	0	0	0	0	0	103	3	1	0	2	109	111.5	1	0
0	21	1	0	0	0	23	22.2	0	0	0	0	0	0	0	0	0	3	0	56	2	1	0	0	62	60.1	0	0
0	21	0	0	0	0	21	21	0	0	0	0	0	0	0	0	0	0	0	48	4	0	0	1	53	54	0	0
0	24	1	0	0	0	25	25	0	0	0	0	0	0	0	0	0	1	0	29	3	0	0	1	34	34.2	0	0
0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0	0	14	2	0	0	1	17	18	0	0
0	85	2	0	0	0	88	87.2	0	0	0	0	0	0	0	0	0	4	0	147	11	1	0	3	166	166.3	0	0
0	23	3	0	0	0	26	26	0	0	0	0	0	0	0	0	0	1	0	33	1	0	0	1	36	36.2	0	0
0	13	2	0	0	0	15	15	0	0	0	0	0	0	0	0	0	0	0	42	3	1	0	1	47	48.5	0	0
0	22	0	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	34	0	0	0	1	35	36	0	0
0	21	1	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0	0	32	1	0	0	1	34	35	0	0
0	79	6	0	0	0	85	85	0	0	0	0	0	0	0	0	0	1	0	141	5	1	0	4	152	155.7	0	0
0	18	3	0	0	0	22	21.2	0	0	0	0	0	0	0	0	0	1	0	36	2	0	0	0	39	38.2	0	0
0	25	0	0	0	0	25	25	0	0	1	0	0	0	0	1	1	1	0	27	4	0	0	1	33	33.2	0	0
0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0	0	29	2	1	0	0	32	32.5	0	0
0	15	1	0	0	0	16	16	0	0	0	0	0	0	0	0	0	1	0	22	1	1	0	1	26	26.7	0	0
0	77	4	0	0	0	82	81.2	0	0	1	0	0	0	0	1	1	3	0	114	9	2	0	2	130	130.6	0	0
0	847	51	4	0	1	909	907.2	0	0	2	0	0	0	0	2	2	11	3	1248	84	22	3	37	1408	1449.3	5	0

D => A					тот	PCU	D => B							тот	PCU	D => C							тот	PCU	P/C	M/C	CAR
CAR	LGv	OGV1	OGv2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSv			P/C	M/C	CAR	LGV	OGV1	OGV2	PSV					
0	0	0	0	0	0	0	1	0	19	8	2	1	2	33	36.5	0	0	4	1	0	0	0	5	5	0	0	0
0	0	0	0	0	0	0	0	0	21	5	0	0	3	29	32	0	0	11	0	0	0	1	12	13	0	0	0
3	1	0	0	0	4	4	0	0	32	10	3	0	4	49	54.5	1	0	11	3	0	0	1	16	16.2	0	0	0
1	0	2	0	0	3	4	1	0	46	11	0	0	4	62	65.2	0	0	13	1	0	0	1	15	16	0	0	0
4	1	2	0	0	7	8	2	0	118	34	5	1	13	173	188.2	1	0	39	5	0	0	3	48	50.2	0	0	0
1	0	0	0	0	1	1	0	0	48	6	1	0	3	58	61.5	0	0	35	2	1	0	0	38	38.5	0	0	0
0	1	0	0	0	2	1.2	0	0	42	2	2	1	0	47	49.3	0	0	45	1	0	0	2	48	50	0	0	0
0	0	0	0	0	0	0	0	0	54	10	3	0	1	68	70.5	0	0	46	0	0	0	0	46	46	0	0	0
2	1	0	0	0	3	3	2	0	62	6	3	0	2	75	76.9	0	0	14	2	0	0	1	17	18	0	0	0
3	2	0	0	0	6	5.2	2	0	206	24	9	1	6	248	258.2	0	0	140	5	1	0	3	149	152.5	0	0	0
3	0	0	0	0	3	3	1	0	50	8	3	0	1	63	64.7	0	0	19	1	1	0	1	22	23.5	0	0	0
2	1	0	0	0	3	3	0	0	61	7	2	1	1	72	75.3	0	0	13	2	0	0	1	16	17	0	0	0
1	1	3	0	0	5	6.5	3	0	39	9	0	0	1	52	50.6	0	0	5	2	0	0	0	7	7	0	0	0
3	1	1	0	0	5	5.5	1	0	57	6	4	0	0	68	69.2	1	0	11	1	1	0	1	15	15.7	0	0	0
9	3	4	0	0	16	18	5	0	207	30	9	1	3	255	259.8	1	0	48	6	2	0	3	60	63.2	0	0	0
0	1	0	0	0	1	1	0	0	54	4	3	0	1	62	64.5	1	0	6	3	1	0	1	12	12.7	0	0	0
3	1	0	0	0	4	4	0	0	61	3	1	1	0	66	67.8	0	0	15	0	0	0	0	15	15	0	0	0
2	2	1	0	0	5	5.5	1	0	55	3	1	0	1	61	61.7	0	0	6	0	0	0	1	7	8	0	0	0
2	0	0	0	0	2	2	0	0	53	6	1	0	0	60	60.5	0	0	11	2	1	0	0	14	14.5	0	0	0
7	4	1	0	0	12	12.5	1	0	223	16	6	1	2	249	254.5	1	0	38	5	2	0	2	48	50.2	0	0	0
1	2	0	0	0	3	3	1	0	57	6	2	1	0	67	68.5	0	0	5	2	0	0	1	8	9	0	0	0
1	1	0	0	0	2	2	0	0	53	10	0	0	1	64	65	0	0	4	2	0	0	0	6	6	0	0	0
0	0	0	0	0	0	0	0	0	44	3	2	0	0	49	50	0	0	9	2	0	0	0	11	11	0	0	0
0	0	0	0	0	1	0.2	1	1	55	5	1	0	1	64	64.1	0	0	11	0	0	0	1	12	13	0	0	0
2	3	0	0	0	6	5.2	2	1	209	24	5	1	2	244	247.6	0	0	29	6	0	0	2	37	39	0	0	0
0	0	0	0	0	0	0	0	0	69	4	1	0	1	75	76.5	0	0	8	0	0	0	0	8	8	0	0	0
0	0	0	0	0	0	0	2	0	55	6	1	0	0	64	62.9	0	0	6	2	1	0	1	10	11.5	0	0	0
0	0	0	0	0	0	0	0	0	61	8	0	0	1	70	71	0	0	8	0	0	1	0	9	10.3	0	0	0
0	0	0	0	0	0	0	0	0	76	9	2	0	0	87	88	0	0	14	0	0	0	1	15	16	0	0	0
0	0	0	0	0	0	0	2	0	261	27	4	0	2	296	298.4	0	0	36	2	1	1	2	42	45.8	0	0	0
0	0	0	0	0	1	0.2	0	0	64	6	1	1	1	73	75.8	0	0	7	2	0	0	0	9	9	0	0	1
0	0	0	0	0	0	0	0	0	74	4	1	0	0	79	79.5	0	0	14	0	0	0	1	15	16	0	0	0
0	0	0	0	0	0	0	1	0	54	6	4	0	1	66	68.2	0	0	12	0	1	0	0	13	13.5	0	0	0
0	0	0	0	0	1	0.2	1	0	53	4	4	1	0	63	65.5	0	0	10	0	0	0	1	11	12	0	0	0
0	0	0	0	0	2	0.4	2	0	245	20	10	2	2	281	289	0	0	43	2	1	0	2	48	50.5	0	0	1
0	0	0	0	0	0	0	0	0	43	5	0	0	1	49	50	0	0	9	1	1	0	0	11	11.5	0	0	0
0	0	0	0	0	0	0	1	0	58	10	3	0	1	73	74.7	0	0	15	0	0	0	1	16	17	0	0	0
0	0	0	0	0	0	0	0	0	70	3	1	0	1	75	76.5	1	0	7	0	0	0	0	8	7.2	0	0	1
0	0	0	0	0	0	0	1	0	56	4	1	0	1	63	63.7	0	0	9	2	2	0	2	15	18	0	0	0
0	0	0	0	0	0	0	2	0	227	22	5	0	4	260	264.9	1	0	40	3	3	0	3	50	53.7	0	0	1
0	0	0	0	0	1	0.2	0	0	50	5	0	0	2	57	59	0	0	6	0	0	0	0	6	6	0	0	0
0	0	0	0	0	0	0	0	0	59	4	1	0	0	64	64.5	0	0	18	3	0	0	1	22	23	0	0	0
0	0	0	0	0	0	0	0	0	61	2	0	0	1	64	65	0	0	41	2	1	0	0	44	44.5	0	0	0
0	0	0	0	0	0	0	0	0	55	3	0	0	3	61	64	1	0	36	1	0	0	1	39	39.2	0	0	0
0	0	0	0	0	1	0.2	0	0	225	14	1	0	6	246	252.5	1	0	101	6	1	0	2	111	112.7	0	0	0
0	0	0	0	0	0	0	0	1	64	5	0	0	0	70	69.4	1	0	13	1	0	0	0	15	14.2	0	0	0
0	0	0	0	0	0	0	0	0	71	5	1	0	2	79	81.5	0	0	6	1	0	0	1	8	9	0	0	1
0	0	0	0	0	0	0	0	0	66	2	0	0	2	70	72	0	0	8	2	0	0	0	10	10	0	0	0
0	0	0	0	0	0	0	0	0	77	4	0	0	1	82	83	0	0	10	0	1	0	1	12	13.5	0	0	0
0	0	0	0	0	0	0	0	1	278	16	1	0	5	301	305.9	1	0	37	4	1	0	2	45	46.7	0	0	1
0	0	0	0	0	0	0	0	0	58	4	0	0	0	62	62	0	0	16	0	1	0	1	18	19.5	0	0	1
0	0	0	0	0	0	0	0	0	69	4	0	0	1	74	75	0	1	16	0	0	0	1	18	18.4	0	0	0
0	0	0	0	0	0	0	1	0	67	3	0	0	1	72	72.2	0	0	12	0	0	0	0	12	12	0	0	1
0	0	0	0	0	0	0	0	0	84	2	0	0	0	86	86	0	0	32	0	0	0	3	35	38	0	0	0
0	0	0	0	0	0	0	1	0	278	13	0	0	2	294	295.2	0	1	76	0	1	0	5	83	87.9	0	0	2
0	0	0	0	0	0	0	2	0	70	0	0	0	1	73	72.4	0	0	16	3	0	0	2	21	23	0	0	0
0	0	0	0	0	0	0	0	0	72	3	0	0	0	75	75	0	0	23	0	0	0	2	25	27	0	0	0
0	0	0	0	0	0	0	0	0	70	2	0	0	1	73	74	0	0	20	0	0	0	1	21	22	0	0	0
0	0	0	0	0	0	0	1	0	82	2	1	0	0	86	85.7	0	0	30	0	0	0	2	32	34	0	0	0
0	0	0	0	0	0	0	3	0	294	7	1	0	2	307	307.1	0	0	89	3	0	0	7	99	106	0	0	0
25	13	7	0	0	50	49.5	22	2	2771	247	56	7	49	3154	3221.3	6	1	716	47	13	1	36	820	858.4	0	0	5

D => D					
Lev	ogvi	OGv2	PSv	тот	PCU
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	2	2
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	5	5

PCU	B => A							тот	PCU	B => B							тот	PCU	B => C							TOT	PCU
	P/C	M/C	CAR	LGv	ogvi	OGv2	PSV			P/C	M/C	CAR	LGv	ogvi	ogv2	PSV			P/C	M/C	CAR	LGv	OGV1	OGv2	PSV		
0	0	0	4	0	1	0	0	5	5.5	0	0	0	0	0	0	0	0	0	0	0	40	7	4	1	4	56	63.3
0	0	0	2	1	2	0	0	5	6	0	0	0	0	0	0	0	0	0	1	0	94	4	0	0	2	101	102.2
0	0	0	7	2	0	0	0	9	9	0	0	1	0	0	0	0	1	1	0	1	82	2	4	0	2	91	94.4
0	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0	2	0	69	4	5	0	2	82	84.9
0	0	0	20	3	3	0	0	26	27.5	0	0	1	0	0	0	0	1	1	3	1	285	17	13	1	10	330	344.8
0	0	0	12	1	1	0	0	14	14.5	0	0	0	0	0	0	0	0	0	0	0	98	11	4	1	3	117	123.3
0	0	0	14	0	0	0	0	14	14	0	0	0	0	0	0	0	0	0	2	0	104	7	1	1	0	115	115.2
0	0	0	17	1	2	0	0	20	21	0	0	0	0	0	0	0	0	0	1	0	131	6	3	1	5	147	154
0	1	0	33	1	0	0	0	35	34.2	0	0	0	0	0	0	0	0	0	4	0	114	9	2	1	0	130	129.1
0	1	0	76	3	3	0	0	83	83.7	0	0	0	0	0	0	0	0	0	7	0	447	33	10	4	8	509	521.6
0	2	0	32	0	0	0	0	34	32.4	0	0	0	0	0	0	0	0	0	1	0	119	12	3	0	2	137	139.7
0	0	0	15	1	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	90	6	2	0	1	99	101
0	0	0	19	1	1	0	0	21	21.5	0	0	0	0	0	0	0	0	0	0	0	85	4	1	0	1	91	92.5
0	0	0	18	1	0	0	0	19	19	0	0	0	0	0	0	0	0	0	1	0	74	3	2	0	0	80	80.2
0	2	0	84	3	1	0	0	90	88.9	0	0	0	0	0	0	0	0	0	2	0	368	25	8	0	4	407	413.4
0	0	0	30	1	1	0	0	32	32.5	0	0	0	0	0	0	0	0	0	1	0	89	8	2	0	2	102	104.2
0	0	0	30	6	0	0	0	36	36	0	0	0	0	0	0	0	0	0	0	0	96	8	5	0	2	111	115.5
0	2	0	34	2	1	0	0	39	37.9	0	0	0	0	0	0	0	0	0	0	1	88	9	1	0	0	99	98.9
0	1	0	27	1	0	0	0	29	28.2	0	0	0	0	0	0	0	0	0	0	0	90	10	0	0	2	102	104
0	3	0	121	10	2	0	0	136	134.6	0	0	0	0	0	0	0	0	0	1	1	363	35	8	0	6	414	422.6
0	0	0	13	3	1	0	0	17	17.5	0	0	0	0	0	0	0	0	0	1	0	89	14	4	0	0	108	109.2
0.2	0	0	17	1	0	0	0	18	18	0	0	0	0	0	0	0	0	0	1	0	79	11	4	0	2	97	100.2
0	0	0	26	0	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	97	9	3	0	0	109	110.5
0	0	0	19	3	0	0	0	22	22	0	0	0	0	0	0	0	0	0	1	0	92	6	1	0	1	101	101.7
0.2	0	0	75	7	1	0	0	83	83.5	0	0	0	0	0	0	0	0	0	3	0	357	40	12	0	3	415	421.6
0	1	0	19	4	1	0	0	25	24.7	0	0	0	0	0	0	0	0	0	1	0	96	15	2	1	1	116	118.5
0	0	0	24	1	0	0	0	25	25	0	0	1	0	0	0	0	1	1	0	0	79	9	1	0	1	90	91.5
0	0	0	16	0	0	0	0	16	16	0	0	0	0	0	0	0	0	0	0	0	86	14	1	1	1	103	105.8
0	0	0	28	3	0	0	0	31	31	0	0	0	0	0	0	0	0	0	0	0	98	9	0	0	1	108	109
0	1	0	87	8	1	0	0	97	96.7	0	0	1	0	0	0	0	1	1	1	0	359	47	4	2	4	417	424.8
0	1	0	24	1	0	0	0	26	25.2	0	0	0	0	0	0	0	0	0	0	0	110	11	4	0	2	127	131
0	0	0	13	0	2	0	0	15	16	0	0	0	0	0	0	0	0	0	0	0	88	10	2	0	1	101	103
0	0	0	27	3	0	0	0	30	30	0	0	0	0	0	0	0	0	0	0	0	96	7	4	0	1	108	111
0	1	0	26	1	0	0	0	28	27.2	0	0	0	0	0	0	0	0	0	0	0	88	9	5	0	1	103	106.5
0	2	0	90	5	2	0	0	99	98.4	0	0	0	0	0	0	0	0	0	0	0	382	37	15	0	5	439	451.5
0	2	0	20	1	1	0	0	24	22.9	0	0	0	0	0	0	0	0	0	0	0	98	11	4	0	1	114	117
0	1	0	19	4	0	0	0	24	23.2	0	0	0	0	0	0	0	0	0	0	0	93	10	0	0	1	104	105
0	0	0	16	3	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0	1	109	4	4	1	2	121	125.7
0	0	0	26	3	2	0	0	31	32	0	0	0	0	0	0	0	0	0	0	0	94	16	2	0	0	112	113
0	3	0	81	11	3	0	0	98	97.1	0	0	0	0	0	0	0	0	0	0	1	394	41	10	1	4	451	460.7
0	0	0	22	3	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	92	9	6	2	1	110	116.6
0	0	0	21	1	1	0	0	23	23.5	0	0	0	0	0	0	0	0	0	0	0	94	7	1	0	1	103	104.5
0	0	0	25	0	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	101	9	0	1	2	113	116.3
0	0	0	27	1	0	0	0	28	28	0	0	0	0	0	0	0	0	0	1	0	89	8	2	0	1	101	102.2
0	0	0	95	5	1	0	0	101	101.5	0	0	0	0	0	0	0	0	0	1	0	376	33	9	3	5	427	439.6
0	0	0	26	0	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	92	7	2	0	3	104	108
0	0	0	22	6	0	0	0	28	28	0	0	0	0	0	0	0	0	0	1	1	84	14	1	0	6	107	112.1
0	0	0	36	2	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0	0	101	8	0	0	2	111	113
0	0	0	33	2	0	0	0	35	35	0	0	0	0	0	0	0	0	0	1	0	81	8	1	1	1	93	95
0	0	0	117	10	0	0	0	127	127	0	0	0	0	0	0	0	0	0	2	1	358	37	4	1	12	415	428.1
0	0	0	27	0	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0	1	89	6	2	0	3	101	104.4
0	0	0	17	2	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0	0	93	7	0	0	0	100	100
0	0	0	25	1	0	0	0	26	26	0	0	0	0	0	0	0	0	0	0	0	103	4	1	0	2	110	112.5
0.2	0	0	21	2	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0	0	76	5	0	0	1	82	83
0.2	0	0	90	5	0	0	0	95	95	0	0	0	0	0	0	0	0	0	0	1	361	22	3	0	6	393	399.9
0	0	0	22	1	0	0	0	23	23	0	0	0	0	0	0	0	0	0	0	0	93	1	0	0	3	97	100
0	1	0	13	0	0	0	0	14	13.2	0	0	0	0	0	0	0	0	0	0	0	83	4	1	0	2	90	92.5
0	2	0	18	1	0	0	0	21	19.4	0	0	0	0	0	0	0	0	0	0	0	84	3	0	0	2	89	91
0	0	0	29	0	0	0	0	29	29	0	0	0	0	0	0	0	0	0	0	0	72	0	0	0	0	72	72
0	3	0	82	2	0	0	0	87	84.6	0	0	0	0	0	0	0	0	0	0	0	332	8	1	0	7	348	355.5
0.4	15	0	1018	72	17	0	0	1122	1118.5	0	0	2	0	0	0	0	2	2	20	5	4382	375	97	12	74	4965	5084.1

IDASO																										
						Survey Site: Locatio Date:	Name:		003 (23) Site 6 Old St/ Tue 10	$\begin{aligned} & \text {)2718 } \\ & \text { Main St, } \\ & \text { Jan-202 } \end{aligned}$	MALA Malah 3	IDE TR de Rd	AFFIC	URVEY												
	A => A							тот	PCU	A => B							тот	PCU	A => C							
time	P/C	M/C	CAR	Lgv	ogvi	ogv2	PSV			P/C	M/C	CAR	Lgv	ogvi	OGv2	PSV			P/C	M/C	CAR	Lgv	ogvi	ogv2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1

i		$\bigcirc 000$	$\stackrel{\circ}{\sim}$	i 000	－	$\bigcirc 0000$	－	$\bigcirc 000$	－	$\bigcirc 0000$	－	$\bigcirc 000$		$\bigcirc 0000$		$\bigcirc 000$	－	0000	－	$\bigcirc 000$	－	00000	\bigcirc	$\bigcirc 000$	¢
ω																								$\bigcirc 000$	$\stackrel{0}{0}$
－			\|0	$\bigcirc 000$	－	$\bigcirc 0000$	－	$\bigcirc 000$	－	$\bigcirc 000$		0000		$\mid 0 \text { н ○ } 0$		$0 \text { 0 } 0 \cdot 0$		0000		0000		0000	－	$\bigcirc 000$	$\frac{3}{n}$
\％		$\stackrel{\rightharpoonup}{\sim} \text { G }$	¢	N～～は	¢	$\stackrel{\rightharpoonup}{\omega} \stackrel{\sim}{\infty}$		岕岁岁		$0 \mid \stackrel{\rightharpoonup}{\infty}$		v 宸		6 号 岁 台		$\sigma \text { に ○ N }$	ぶ	ज N N		$\stackrel{u}{u} v \stackrel{\rightharpoonup}{\sim}$	m	N 光 U	N		$\underset{\sim}{\infty}$
$\stackrel{\text { w }}{ }$		$\mid 0 \vdash \circ 0$	$\mid \rightarrow$	$0 \vdash N r$	a	－N N＋		－ω r	$\stackrel{-}{-}$	$\mid \vdash \circ \circ \circ \circ$		$0 \mathrm{~N} O \quad 0$		$\mid \vdash \omega<$		$\mid \vdash \vdash \circ \circ$		$\circ \circ \circ \text { ○ } \omega$		$0 \text { O N O }$		○ ㄷ ○	$\text { \| } \omega$	$\vdash \circ \circ \vdash \vdash$	
三				$\circ \circ \circ 0$		0000		0000				$\circ \circ \circ \vdash+$		$\circ \circ \circ \circ 0$		0000		$\circ \circ \circ \text { ○ } 0$		$\vdash \circ \circ \circ$	ω	ー \vdash ○ \quad	$\mid-$	$\circ \circ \circ \circ \vdash$	O
－		$\bigcirc 000$		－		$\bigcirc 000$		$\bigcirc 000$		$\circ \circ \circ \circ$		00000		00000		$00000 \mid$				$\circ \quad 0 \quad 0 \quad 0$		$\circ \circ \circ \circ \circ$	0	0000	© ì
N	N		N	$\bigcirc \bullet \circ$－	ω		N							－¢ 0 －		－		－		\bigcirc－ 0 O		O－ 0 －	N	$\bigcirc 0 \sim 0$	¢冖
＊	8		$\stackrel{\infty}{\infty}$	N ↔～	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\sim} \sim \underset{\sim}{\omega}$	9	兄	¢		＊		ฯ	号 岁 岗 胹	U	$\infty \sim \sim$	$\stackrel{\infty}{\omega}$		＊	㒸 ∞ 岕	\％	※ そ ぞ	N	\checkmark u ${ }^{\text {N }} \mathrm{w}$	－1
－	～	号 「 こ－	®	N N～	8	¢ N ${ }_{\sim}^{\sim}$	v	示 ${ }_{\text {N }}$	9		N		$\left\|\begin{array}{c} v \\ \infty \\ \infty \end{array}\right\|$		～	$\bigcirc \sim_{0} 0$	$\begin{gathered} \infty \\ \substack{\infty \\ i \\ i} \end{gathered}$		\because	$\underset{i n}{\stackrel{H}{i n}} \circ \underset{i}{\vec{i}} \underset{\sim}{N}$	$\stackrel{\infty}{\sim}$	$\left.\begin{array}{\|ccc} \underset{\sim}{\sim} & \stackrel{N}{v} & \stackrel{N}{i} \\ i \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \text { N} \\ \dot{i} \end{array}\right\|$	\checkmark V ${ }^{\text {¢ }}$	¢
－																		$\bigcirc 000$							$\stackrel{\square}{n}$
－		$\circ \quad \circ \quad \circ \quad 0$		$\circ \circ \circ \circ$		$\circ \quad 0 \quad 0 \quad 0$		$\circ \circ \circ \circ$		$\circ \circ \circ \circ$				0000		00000		$\circ \circ \circ \circ 0$		$\circ \quad 0 \quad \circ \quad 0$		$\circ \circ \circ$		0000	$\frac{3}{n}$
－		0		$\circ \circ \circ$		$\circ \circ \circ \circ \circ$		$\circ \circ \circ \circ$	0	0000		0		0000		$0<0<0 \mid$		$\circ \circ \circ \circ 0$		$0<0 c c \mid$	0	$\circ \circ \circ \circ \circ$		0	$\underset{\sim}{\infty}$
		$\circ \quad \circ \quad \circ \quad 0$		$\circ \circ \circ$		$\circ \circ \circ \text { - }$		$\circ \circ \circ \circ$		$\circ \quad 0 \quad 0 \quad 0$		0		$\circ \circ \circ \circ \circ$				$0 \quad 0 \quad 0 \quad 0$		$\circ \quad 0 \quad 0 \quad 0$	0	$\circ 000$		$\circ \quad \circ \quad \circ \quad 0$	
－		$\circ \quad \circ \quad 0$		$\circ \circ \circ \circ$		$\circ \quad \circ \quad 0 \quad 0$		0000		0000		0				$\left\lvert\, \begin{array}{llll} 0 & \circ & 0 & 0 \end{array}\right.$		$\circ \quad 0$		$0 \text { ○ } 0$		$\circ \quad 0$		$0 \text { ○ } 0 \text { ○ } 0$	$\begin{aligned} & \text { O} \\ & \text { Q } \\ & \hline 1 \end{aligned}$
		0000		$\bigcirc 000$		$\circ \quad \circ \quad 0 \quad 0$		$\circ \circ \circ \circ$		0		$\bigcirc 000$	0	0000	0	0000	O								
－	－	$\bigcirc 000$		$\bigcirc 00$		$\bigcirc 000$		－ 0		－ 0		$\bigcirc 000$	－	$\bigcirc 000$	\bigcirc	$\bigcirc 00$	¢								
－	－	$\bigcirc 0000$	\bigcirc	$\bigcirc 000$	－	$\bigcirc 000 \sim$	－	$\bigcirc 000$	－	$\bigcirc 000$	－	$\bigcirc 0000$	－	$\bigcirc 0000$	\bigcirc	$\bigcirc 000$	－	$\bigcirc 000$	－	$\bigcirc 000$	－	$\bigcirc 0000$	\bigcirc	$\bigcirc \bigcirc 00$	－1
		$\bigcirc 000$	\bigcirc	$\bigcirc 000$	－	$\bigcirc 00$	－	$\bigcirc 000$	－	$\bigcirc 00$	－	$\bigcirc 00$	¢												
N		－ 0 －N		－ 0 ○		－ャ－A		－○－ 0		－ 0 － 0		$\bigcirc \bigcirc \bigcirc{ }^{\circ}$		$\bigcirc \circ \circ{ }^{\circ}$		－○－N		$\bigcirc \circ \circ$－		－○ ○－		－+ O			\bigcirc
\checkmark		$\bigcirc 000$		$\bigcirc 0$		－ 0 － 0		$\bigcirc \circ \circ$				$\bigcirc 000$		$\bigcirc 000$		$\bigcirc 000$		- ○		$\bigcirc \circ 00$	－	$\circ \circ \circ$	－		3
¢	$\left\|\begin{array}{c} \omega \\ \omega \\ \hline \end{array}\right\|$		$\stackrel{\sim}{\sim}$	ソ ロ ㄴ～		$\infty \text { 莑 } \underset{\sim}{\circ}$	\sim_{\sim}^{ω}	$\underset{\sim}{\infty} \circ \underbrace{\circ}$		¢ ¢ ¢ ¢ ¢		$\infty \infty$		∞ ¢ \％\％		$\left\lvert\, \begin{array}{lll} \infty & \infty & \approx \\ \sim \end{array}\right.$		$\forall ル \propto \forall$			合	啳苍 鿖 \&	N	ロ～～ロ ロ	为
¢				$\text { U } \omega \text { v A }$		$\text { の } 0 \text { ひ v }$		\checkmark ¢ v v		$\stackrel{\rightharpoonup}{\perp} \circ 00$		$a \sim u c c \mid$		$\infty \stackrel{\rightharpoonup}{\omega}$		$u \stackrel{\rightharpoonup}{\circ}$		$\because 6$		$\begin{array}{llll} N & \infty & 0 & 0 \end{array}$	\sim	$\text { ज } a \operatorname{ul}$	部		
$\stackrel{\sim}{\sim}$		－		$\longmapsto \vdash \vdash \vdash$		$00 \sim \omega$		No wu		$N \omega+\infty$	$\stackrel{I}{N}$	$\omega+\omega N$		$0 \omega \sim N$		$-\omega \sim \omega$		NOU			u	$0 \sim+N$	$\text { \| } 6$	$\sigma \sim 0+$	荅
G		$\bigcirc 000$		$\bigcirc 000$		－ 0		O－ON		O N O O		$\bigcirc 0$－ 0			0	$\bigcirc 000$		$\bigcirc 000$	0	$\bigcirc 000$	－	ート	\square	$\circ \circ 0 \quad 1$	財
¢	\bullet	$\checkmark \sim \omega+$		－N N N				$N+r+$	u	－+ N	u	－ 0 N N	＋	ャ + －		－ 0.00	u		σ	Нト N N	F	－U r	ur	$\rightarrow \mathrm{urbu}$	¢
$\stackrel{\text { div }}{\text { div }}$	N		$\stackrel{\sim}{\sim}$	¢ 号点兌	$\stackrel{\text { N }}{ }$		$\stackrel{\sim}{\sim}$	¢ 点 \sim_{0}° 总	ט		$\stackrel{\sim}{\circ}$	$\infty \times \sim$	$\stackrel{\sim}{0}$	웃ํ 合	$\stackrel{\sim}{0}$	® 岁 은	$\stackrel{\omega}{\omega}$	¢ \％¢ ¢	${ }_{\sim}^{*}$		$\stackrel{\text { H }}{4}$	点尝岇台	$\stackrel{\sim}{u}_{\substack{0}}^{\sim}$	® ¢ ¢～～	－1
$\stackrel{+}{*}$	¢	$\left\|\begin{array}{cccc} \substack{0 \\ i} & \stackrel{0}{i} & \underset{y}{u} & \stackrel{\rightharpoonup}{0} \\ i \end{array}\right\|$	$\stackrel{\sim}{\infty}$		（		$\left\|\begin{array}{c\|} \hline \\ 0 \\ \dot{-} \\ \hline \end{array}\right\|$	$\text { o } \stackrel{\rightharpoonup}{\circ}$	$\stackrel{\text { ¢ }}{\text {－}}$	$\underset{\sim}{\text { E }} \underset{\sim}{\sim}$	$\begin{gathered} \hat{o} \\ \underset{y}{\mid} \end{gathered}$	$\left\lvert\, \begin{array}{llll} \stackrel{\circ}{\circ} & 0 & \stackrel{\rightharpoonup}{\mid} \\ \text { in } & & \underset{\sim}{\omega} \end{array}\right.$	$\stackrel{\text { w }}{\text { O }}$		$\stackrel{\text { d }}{\text { i }}$		W		$\stackrel{+}{\sim}$	$\begin{array}{lll} \stackrel{\sim}{\circ} \\ \text { in in } \\ \text { in } \\ \underset{\sim}{v} \end{array}$	＋			$\left.\begin{array}{cccc} \infty \\ \underset{\sim}{\circ} & \stackrel{\rightharpoonup}{\circ} & \therefore & \stackrel{\infty}{\infty} \\ \dot{\infty} \end{array}\right)$	¢

P/C	M/C	$\mathrm{C}=>\mathrm{A}$			OGV2	PSV	тот	PCU	P/C	M/C	CAR	$\begin{gathered} \hline \text { C => B } \\ \text { LGV } \\ \hline \end{gathered}$	OGV1	OGv2	PSV	тот	PCU	P/C	M/C	CAR	$\mathrm{c}=>\mathrm{C}$		OGv2	PSv	тот	PCU
		CAR	LGv	OGV1																	Lgv	OGV1				
0	0	7	1	0	0	0	8	8	1	0	22	9	2	1	1	36	38.5	0	0	0	0	0	0	0	0	0
0	0	19	0	2	0	0	21	22	0	0	32	6	0	0	4	42	46	0	0	1	0	0	0	0	1	1
0	0	6	0	1	0	0	7	7.5	1	0	47	15	3	0	5	71	76.7	0	0	0	0	0	0	0	0	0
0	0	12	0	0	0	0	12	12	1	0	63	11	2	0	5	82	87.2	0	0	1	0	0	0	0	1	1
0	0	44	1	3	0	0	48	49.5	3	0	164	41	7	1	15	231	248.4	0	0	2	0	0	0	0	2	2
0	0	26	2	0	1	0	29	30.3	0	0	81	8	2	0	3	94	98	0	0	0	0	0	0	0	0	0
0	0	10	1	0	0	0	11	11	1	0	96	6	2	1	2	108	111.5	0	0	0	0	0	0	0	0	0
0	0	10	0	1	0	0	11	11.5	0	0	89	7	3	0	1	100	102.5	0	0	0	0	0	0	0	0	0
0	0	15	2	0	0	0	17	17	2	0	80	10	3	0	3	98	100.9	0	0	0	0	0	0	0	0	0
0	0	61	5	1	1	0	68	69.8	3	0	346	31	10	1	9	400	412.9	0	0	0	0	0	0	0	0	0
0	0	19	0	0	0	0	19	19	1	0	74	10	4	0	2	91	94.2	0	0	0	0	0	0	0	0	0
0	0	16	1	0	0	0	17	17	0	0	74	10	2	1	2	89	93.3	0	0	0	0	0	0	0	0	0
0	0	5	2	1	0	0	8	8.5	3	0	48	12	4	0	1	68	68.6	0	0	0	0	0	0	0	0	0
0	0	17	0	0	0	0	17	17	2	0	68	9	5	0	1	85	86.9	0	0	0	0	0	0	0	0	0
0	0	57	3	1	0	0	61	61.5	6	0	264	41	15	1	6	333	343	0	0	0	0	0	0	0	0	0
1	0	23	2	0	0	0	26	25.2	1	0	62	7	4	0	2	76	79.2	0	0	0	0	0	0	0	0	0
0	0	31	0	1	0	0	32	32.5	0	0	81	5	1	1	0	88	89.8	0	0	0	0	0	0	0	0	0
0	0	16	4	1	0	0	21	21.5	1	0	61	4	3	0	2	71	73.7	0	0	0	0	0	0	0	0	0
0	0	23	5	0	0	0	28	28	0	0	65	8	1	0	0	74	74.5	0	0	0	0	0	0	0	0	0
1	0	93	11	2	0	0	107	107.2	2	0	269	24	9	1	4	309	317.2	0	0	0	0	0	0	0	0	0
0	0	17	3	1	0	0	21	21.5	1	0	63	10	2	1	1	78	80.5	0	0	0	0	0	0	0	0	0
0	0	16	0	0	0	0	16	16	0	0	60	13	0	0	1	74	75	0	0	0	0	0	0	0	0	0
0	0	13	1	0	0	0	14	14	0	0	54	5	2	0	0	61	62	0	0	0	0	0	0	0	0	0
0	0	20	1	0	0	0	21	21	2	1	71	6	1	0	2	83	83.3	0	0	0	0	0	0	0	0	0
0	0	66	5	1	0	0	72	72.5	3	1	248	34	5	1	4	296	300.8	0	0	0	0	0	0	0	0	0
0	0	22	2	0	0	0	24	24	0	0	71	3	1	0	1	76	77.5	0	0	0	0	0	0	0	0	0
1	0	12	2	2	0	0	17	17.2	2	0	60	8	2	0	1	73	73.4	0	0	0	0	0	0	0	0	0
0	0	13	0	0	0	0	13	13	0	0	71	9	0	1	1	82	84.3	0	0	0	0	0	0	0	0	0
0	0	17	4	0	0	0	21	21	0	0	87	8	2	0	1	98	100	0	0	0	0	0	0	0	0	0
1	0	64	8	2	0	0	75	75.2	2	0	289	28	5	1	4	329	335.2	0	0	0	0	0	0	0	0	0
0	0	14	1	0	0	0	15	15	1	0	70	10	1	1	1	84	86	0	0	0	0	0	0	0	0	0
0	0	17	2	1	0	0	20	20.5	0	0	86	4	1	0	1	92	93.5	0	0	0	0	0	0	0	0	0
0	0	10	3	0	0	0	13	13	1	0	66	7	5	0	1	80	82.7	0	0	0	0	0	0	0	0	0
0	0	11	2	0	0	0	13	13	2	0	67	4	4	1	1	79	81.7	0	0	0	0	0	0	0	0	0
0	0	52	8	1	0	0	61	61.5	4	0	289	25	11	2	4	335	343.9	0	0	0	0	0	0	0	0	0
1	0	13	0	0	0	0	14	13.2	0	0	53	7	1	0	1	62	63.5	0	0	0	0	0	0	0	0	0
0	0	14	0	0	0	0	14	14	1	1	80	8	3	0	2	95	97.1	0	0	0	0	0	0	0	0	0
0	0	14	2	0	0	0	16	16	1	0	70	4	1	0	1	77	77.7	0	0	0	0	0	0	0	0	0
0	0	22	1	0	0	0	23	23	1	0	65	6	3	0	3	78	81.7	0	0	0	0	0	0	0	0	0
1	0	63	3	0	0	0	67	66.2	3	1	268	25	8	0	7	312	320	0	0	0	0	0	0	0	0	0
0	0	14	0	0	0	0	14	14	1	0	56	5	0	0	3	65	67.2	0	0	0	0	0	0	0	0	0
1	0	16	2	1	0	0	20	19.7	0	0	84	7	1	0	0	92	92.5	0	0	0	0	0	0	0	0	0
0	0	11	1	0	0	0	12	12	0	0	102	3	1	0	1	107	108.5	0	0	0	0	0	0	0	0	0
0	0	17	3	0	0	0	20	20	1	0	93	4	0	0	4	102	105.2	0	0	0	0	0	0	0	0	0
1	0	58	6	1	0	0	66	65.7	2	0	335	19	2	0	8	366	373.4	0	0	0	0	0	0	0	0	0
0	0	15	1	0	0	0	16	16	1	1	71	5	0	0	0	78	76.6	0	0	0	0	0	0	0	0	0
0	0	31	0	0	0	0	31	31	0	0	75	6	1	0	3	85	88.5	0	0	0	0	0	0	0	0	0
0	0	15	3	0	0	0	18	18	0	0	71	5	0	0	2	78	80	0	0	0	0	0	0	0	0	0
0	0	30	0	0	0	0	30	30	0	0	90	3	1	0	2	96	98.5	0	0	0	0	0	0	0	0	0
0	0	91	4	0	0	0	95	95	1	1	307	19	2	0	7	337	343.6	0	0	0	0	0	0	0	0	0
0	0	21	0	0	0	0	21	21	0	0	75	5	1	0	1	82	83.5	0	0	0	0	0	0	0	0	0
0	0	19	2	0	0	0	21	21	0	1	88	5	0	0	2	96	97.4	0	0	0	0	0	0	0	0	0
0	0	26	0	0	0	0	26	26	1	0	78	3	0	0	1	83	83.2	0	0	0	0	0	0	0	0	0
0	0	23	0	0	0	0	23	23	1	0	116	3	0	0	3	123	125.2	0	0	0	0	0	0	0	0	0
0	0	89	2	0	0	0	91	91	2	1	357	16	1	0	7	384	389.3	0	0	0	0	0	0	0	0	0
0	0	26	0	0	0	0	26	26	1	0	89	2	0	0	3	95	97.2	0	0	0	0	0	0	0	0	0
0	0	21	1	0	0	0	22	22	0	0	92	3	1	0	2	98	100.5	0	0	0	0	0	0	0	0	0
0	0	17	1	0	0	0	18	18	0	0	88	2	0	0	2	92	94	0	0	0	0	0	0	0	0	0
0	0	15	0	0	0	0	15	15	1	0	116	2	0	0	2	121	122.2	0	0	0	0	0	0	0	0	0
0	0	79	2	0	0	0	81	81	2	0	385	9	1	0	9	406	413.9	0	0	0	0	0	0	0	0	0
4	0	817	58	12	1	0	892	896.1	33	4	3521	312	76	8	84	4038	4141.6	0	0	2	0	0	0	0	2	2

PCU	A => D							тот	PCU	B => A							тот	PCU	P/C	M/C	CAR	B => B		OGv2	PSv	тот	PCU
	P/C	M/C	CAR	LGv	ogvi	ogv2	PSV			P/C	M/C	CAR	LGV	ogvi	OGV2	Psv						LGv	OGv1				
0	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	,	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
1	0	0	3	1	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	0	5	1	0	0	0	6	6	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	7	0	0	0	0	7	7	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	4	1	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	6	1	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	5	0	0	0	0	5	5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
3	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
6	0	0	7	0	0	0	0	7	7	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
3	0	0	5	0	0	0	0	5	5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
29	0	0	47	3	0	0	0	50	50	0	0	10	0	0	0	0	10	10	0	0	0	0	0	0	0	0	0

B => C							$B=>\mathrm{D}$									C => A									тот	PCU	P/C
P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGv	OGV1	OGv2	PSV	тот	PCu	P/C	M/C	CAR	Lgv	ogvi	ogv2	Psv			
0	0	5	0	1	0	1	7	8.5	0	0	11	2	3	0	0	16	17.5	0	0	0	0	0	0	0	0	0	0
0	0	18	2	0	0	1	21	22	0	0	29	0	0	0	0	29	29	0	0	0	0	0	0	0	0	0	0
0	0	15	4	1	0	0	20	20.5	0	0	19	1	3	0	0	23	24.5	0	0	0	0	0	0	0	0	0	0
0	0	12	0	2	0	1	15	17	0	0	16	1	3	0	0	20	21.5	0	0	0	0	0	0	0	0	0	0
0	0	50	6	4	0	3	63	68	0	0	75	4	9	0	0	88	92.5	0	0	0	0	0	0	0	0	0	0
1	0	30	0	0	0	0	31	30.2	0	0	20	4	2	0	0	26	27	0	0	0	0	0	0	0	0	0	0
0	0	50	4	0	0	1	55	56	0	0	24	4	1	1	0	30	31.8	0	0	0	0	0	0	0	0	0	0
0	0	44	3	1	0	0	48	48.5	0	0	29	4	3	0	0	36	37.5	0	0	0	0	0	0	0	0	0	1
0	0	35	5	3	0	1	44	46.5	0	0	24	4	2	0	0	30	31	0	0	0	0	0	0	0	0	0	0
1	0	159	12	4	0	2	178	181.2	0	0	97	16	8	1	0	122	127.3	0	0	0	0	0	0	0	0	0	1
2	0	33	6	0	0	0	41	39.4	1	0	24	5	1	0	0	31	30.7	0	0	0	0	0	0	0	0	0	0
0	0	29	3	0	0	0	32	32	0	0	21	2	1	0	0	24	24.5	0	0	0	0	0	0	0	0	0	0
0	0	21	3	0	0	0	24	24	0	0	16	3	1	0	0	20	20.5	0	0	1	0	0	0	0	1	1	0
0	0	25	2	0	0	0	27	27	0	0	22	3	1	0	0	26	26.5	0	0	2	0	0	0	0	2	2	0
2	0	108	14	0	0	0	124	122.4	1	0	83	13	4	0	0	101	102.2	0	0	3	0	0	0	0	3	3	0
1	0	37	2	0	0	1	41	41.2	0	0	24	3	3	0	0	30	31.5	0	0	2	0	0	0	0	2	2	0
1	0	35	2	2	0	0	40	40.2	0	0	36	2	2	0	0	40	41	0	0	1	0	0	0	0	1	1	0
0	0	38	7	0	0	1	46	47	0	0	35	2	0	0	0	37	37	0	0	2	0	0	0	0	2	2	0
0	0	32	6	0	0	0	38	38	0	0	41	2	1	0	0	44	44.5	0	0	2	0	0	0	0	2	2	0
2	0	142	17	2	0	2	165	166.4	0	0	136	9	6	0	0	151	154	0	0	7	0	0	0	0	7	7	0
0	1	34	3	0	0	1	39	39.4	0	0	28	8	0	0	0	36	36	0	0	0	0	0	0	0	0	0	0
1	0	22	3	1	0	1	28	28.7	0	0	30	5	3	0	0	38	39.5	0	0	3	0	0	0	0	3	3	0
0	0	33	2	1	0	0	36	36.5	0	0	32	0	0	0	0	32	32	0	0	0	0	0	0	0	0	0	0
0	0	36	4	1	0	0	41	41.5	0	0	30	4	0	0	0	34	34	0	0	0	0	0	0	0	0	0	0
1	1	125	12	3	0	2	144	146.1	0	0	120	17	3	0	0	140	141.5	0	0	3	0	0	0	0	3	3	0
0	0	29	2	0	0	0	31	31	0	0	30	5	1	0	0	36	36.5	0	0	1	0	0	0	0	1	1	0
0	0	42	1	0	0	1	44	45	0	0	29	4	0	0	0	33	33	0	0	0	0	0	0	0	0	0	0
0	0	46	2	0	0	0	48	48	0	0	36	0	0	0	0	36	36	0	0	0	0	0	0	0	0	0	0
0	0	33	3	0	0	1	37	38	0	0	30	3	0	0	0	33	33	0	0	2	0	0	0	0	2	2	0
0	0	150	8	0	0	2	160	162	0	0	125	12	1	0	0	138	138.5	0	0	3	0	0	0	0	3	3	0
3	0	36	1	0	0	0	40	37.6	0	0	27	3	0	0	0	30	30	0	0	1	0	0	0	0	1	1	0
0	0	39	0	0	0	0	39	39	0	0	30	2	2	0	0	34	35	0	0	0	1	0	0	0	1	1	0
0	0	36	0	0	0	1	37	38	0	0	22	2	3	0	0	27	28.5	0	0	0	0	0	0	0	0	0	0
0	0	38	4	0	0	0	42	42	0	0	20	4	0	0	0	24	24	0	0	1	0	0	0	0	1	1	0
3	0	149	5	0	0	1	158	156.6	0	0	99	11	5	0	0	115	117.5	0	0	2	1	0	0	0	3	3	0
0	0	35	2	0	0	1	38	39	0	0	20	2	3	0	0	25	26.5	0	0	0	0	0	0	0	0	0	0
0	0	33	1	0	0	0	34	34	0	0	31	3	0	0	0	34	34	0	0	1	0	0	0	0	1	1	0
1	1	38	3	2	0	1	46	46.6	0	0	31	1	2	0	0	34	35	0	0	1	0	0	0	0	1	1	1
0	0	39	5	0	0	1	45	46	0	0	30	1	1	0	0	32	32.5	0	0	0	0	0	0	0	0	0	0
1	1	145	11	2	0	3	163	165.6	0	0	112	7	6	0	0	125	128	0	0	2	0	0	0	0	2	2	1
0	0	53	1	0	0	0	54	54	0	0	31	3	0	0	0	34	34	0	0	1	0	0	0	0	1	1	0
0	0	44	0	1	0	1	46	47.5	0	0	25	1	1	0	0	27	27.5	0	0	1	0	0	0	0	1	1	0
0	0	49	4	0	0	0	53	53	0	0	35	3	0	0	0	38	38	0	0	1	0	0	0	0	1	1	0
1	0	54	0	0	0	1	56	56.2	0	0	27	0	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0
1	0	200	5	1	0	2	209	210.7	0	0	118	7	1	0	0	126	126.5	0	0	3	0	0	0	0	3	3	0
1	0	33	1	0	0	0	35	34.2	0	0	26	1	0	0	0	27	27	0	0	0	0	0	0	0	0	0	0
0	0	43	3	0	0	1	47	48	0	0	22	0	0	0	0	22	22	0	0	0	0	0	0	0	0	0	0
0	0	59	2	0	0	1	62	63	0	0	34	2	0	0	0	36	36	0	0	0	0	0	0	0	0	0	0
0	0	62	3	0	0	0	65	65	0	0	30	1	1	0	0	32	32.5	0	0	1	0	0	0	0	1	1	0
1	0	197	9	0	0	2	209	210.2	0	0	112	4	1	0	0	117	117.5	0	0	1	0	0	0	0	1	1	0
0	0	56	3	0	0	1	60	61	0	1	29	0	0	0	0	30	29.4	0	0	2	0	0	0	0	2	2	0
0	0	44	1	0	0	0	45	45	0	0	25	4	0	0	0	29	29	0	0	2	0	0	0	0	2	2	0
1	0	61	3	0	0	1	66	66.2	0	0	37	1	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0
1	0	61	2	0	0	0	64	63.2	0	0	22	2	0	0	0	24	24	0	0	0	0	0	0	0	0	0	0
2	0	222	9	0	0	2	235	235.4	0	1	113	7	0	0	0	121	120.4	0	0	4	0	0	0	0	4	4	0
0	0	67	1	0	0	1	69	70	0	0	30	0	0	0	0	30	30	0	0	1	0	0	0	0	1	1	0
0	0	37	1	0	0	0	38	38	0	0	17	1	0	0	0	18	18	0	0	1	0	0	0	0	1	1	0
0	0	35	1	0	0	1	37	38	0	0	18	1	0	0	0	19	19	0	0	0	0	0	0	0	0	0	0
0	0	40	3	0	0	0	43	43	0	0	24	0	0	0	0	24	24	0	0	0	0	0	0	0	0	0	0
0	0	179	6	0	0	2	187	189	0	0	89	2	0	0	0	91	91	0	0	2	0	0	0	0	2	2	0
14	2	1826	114	16	0	23	1995	2013.6	1	1	1279	109	44	1	0	1435	1456.9	0	0	30	1	0	0	0	31	31	2

M/C	C => B					тот	PCU	$\mathrm{c}=>\mathrm{C}$							тот	PCU	$\mathrm{C}=>\mathrm{D}$							тот	PCU	P/C	M/C
	CAR	Lgv	OGv1	OGv2	PSV			P/C	M/C	CAR	Lgv	ogvi	OGv2	PSv			P/C	M/C	CAR	Lgv	OGv1	OGv2	PSV				
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	3	2	1	4	44	50.3	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	74	6	2	0	2	86	87.4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	73	2	1	0	2	79	80.9	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	64	2	3	0	2	73	74.9	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	245	13	8	1	10	282	293.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	92	8	2	1	3	106	111.3	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	96	4	0	0	0	102	100.4	0	0
0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	1	0	114	3	2	1	5	126	132.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0	119	6	0	1	0	131	128.3	0	0
0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	8	0	421	21	4	3	8	465	472.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	124	7	2	0	2	137	138.4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	78	5	1	0	1	85	86.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	85	2	1	0	1	89	90.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	76	2	1	0	1	81	81.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	363	16	5	0	5	392	397.1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	86	8	0	0	1	96	96.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	93	10	3	0	2	108	111.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	72	10	2	0	0	87	85.8	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	68	8	0	0	2	79	80.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	1	319	36	5	0	5	370	373.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	77	8	4	0	0	90	91.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	66	6	1	0	2	76	77.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86	8	3	0	0	97	98.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	78	4	1	0	2	86	87.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	307	26	9	0	4	349	355.1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	79	14	2	1	0	98	98.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	5	1	0	1	80	81.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	13	1	1	1	84	86.8	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89	11	0	0	2	102	104	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	309	43	4	2	4	364	371	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	99	10	4	0	1	115	117.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	75	7	2	0	1	85	87	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89	8	3	0	1	101	103.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	89	7	3	0	1	101	102.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	352	32	12	0	4	402	410.4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	98	10	2	0	1	113	113.4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	72	12	0	0	1	86	86.2	0	0
0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	0	1	96	5	2	1	2	107	110.7	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86	19	3	0	0	108	109.5	0	0
0	0	0	0	0	0	1	0.2	0	0	0	0	0	0	0	0	0	3	1	352	46	7	1	4	414	419.8	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	10	5	2	1	91	97.1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	87	7	1	0	1	96	97.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	84	6	0	1	2	94	96.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90	9	2	0	1	102	104	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	334	32	8	3	5	383	395.1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	88	5	2	0	3	98	102	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	76	19	1	0	6	104	109.1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	98	7	0	0	2	109	109.4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	90	8	0	1	1	100	102.3	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	352	39	3	1	12	411	422.8	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	88	4	2	0	3	97	101	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	4	0	0	0	77	77	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	84	3	1	0	2	90	92.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73	3	0	0	1	77	78	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	318	14	3	0	6	341	348.5	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	86	2	0	0	3	91	94	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	60	3	1	0	2	68	68.9	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	78	3	0	0	2	84	85.2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	77	0	0	0	0	77	77	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	301	8	1	0	7	320	325.1	0	0
0	0	0	0	0	0	2	0.4	0	0	0	0	0	0	0	0	0	36	4	3973	326	69	11	74	4493	4584.6	0	0

D => A					тот	PCU	D => B							тот	PCU	D => C							тот	PCU	P/C	M/C	CAR
CAR	Lgv	OGv1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGV1	OGV2	PSV					
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	18	7	2	1	2	30	34.3	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	21	4	0	0	3	28	31	0	0	0
0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	38	9	3	0	4	55	59.7	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	48	14	0	0	4	67	70.2	0	0	0
1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	2	0	125	34	5	1	13	180	195.2	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	46	7	0	0	3	56	59	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	51	3	3	1	0	58	60.8	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	61	10	3	0	1	75	77.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	74	5	3	0	2	84	87.5	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	232	25	9	1	6	273	284.8	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	52	9	3	0	1	67	68.1	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	60	5	2	1	1	69	72.3	0	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	2	0	35	7	0	0	1	45	44.4	0	0	0
2	1	0	0	0	3	3	0	0	0	0	0	0	0	0	0	1	0	44	6	3	0	0	54	54.7	0	0	0
5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	4	1	191	27	8	1	3	235	239.5	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	54	0	3	0	1	58	60.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	52	4	1	1	0	59	60.2	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	1	0	48	2	2	0	1	54	55.2	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	50	4	1	0	0	55	55.5	0	0	1
5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	1	1	204	10	7	1	2	226	231.4	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	52	5	2	1	0	60	62.3	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	43	8	0	0	1	52	53	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	45	5	1	0	0	51	51.5	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	54	7	1	0	1	64	64.9	0	0	0
3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	1	194	25	4	1	2	227	231.7	0	0	0
0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	64	4	1	0	1	70	71.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	51	6	1	0	0	58	58.5	0	0	1
2	1	0	0	0	3	3	0	0	0	0	0	0	0	0	0	1	0	54	7	0	0	1	63	63.2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	68	5	2	0	0	75	76	0	0	0
3	2	0	0	0	5	5	0	0	0	0	0	0	0	0	0	1	0	237	22	4	0	2	266	269.2	0	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	72	5	0	1	1	79	81.3	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	71	3	1	0	0	75	75.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	60	8	4	0	1	74	76.2	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	53	5	3	1	0	63	65	0	0	0
4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	2	0	256	21	8	2	2	291	298	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	55	4	1	0	1	61	62.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	67	6	0	0	2	75	77	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	79	7	3	0	1	90	92.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	48	4	1	0	1	54	55.5	0	0	0
4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	0	0	249	21	5	0	5	280	287.5	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	51	4	0	0	2	57	59	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	49	4	1	0	0	54	54.5	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	60	2	0	0	1	64	64.2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	47	2	0	0	3	54	55.4	0	0	0
4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0	3	0	207	12	1	0	6	229	233.1	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	72	7	0	0	0	80	79.4	0	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	60	3	1	0	2	66	68.5	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	70	1	0	0	2	73	75	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	1	0	79	5	0	0	1	86	86.2	0	0	0
5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	1	1	281	16	1	0	5	305	309.1	0	0	1
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	64	3	0	0	0	67	67	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	67	4	0	0	1	73	73.4	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	65	4	0	0	1	71	71.2	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	91	4	0	0	0	95	95	0	0	0
2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	1	1	287	15	0	0	2	306	306.6	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	70	2	0	0	1	74	74.2	0	0	0
1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	0	74	3	0	0	0	78	77.2	0	0	0
3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	1	0	70	3	0	0	1	75	75.2	0	0	0
5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	75	2	1	0	0	78	78.5	0	0	0
10	0	0	0	0	10	10	0	0	0	0	0	0	0	0	0	3	0	289	10	1	0	2	305	305.1	0	0	0
48	4	0	0	0	52	52	0	0	0	0	0	0	0	0	0	18	5	2752	238	53	7	50	3123	3191.2	0	0	4

D => D					
Lev	OGv1	OGv2	PSv	тот	PCU
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	1	1
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
0	0	0	0	4	4

(9)	IDASO	
5	Survey Name:	003 (23) 22718 MALAHIDE TRAFFIC SURVEY V2
and croper cut	Site:	Site 8
	Location:	The Mall R106/The Rise
	Date:	Tue 10-Jan-2023

Google																										
				A $=>\mathrm{A}$									A => B									A => C				
time	P/C	M/C	CAR	LGv	OGv1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV	тот	PCu	P/C	M/C	CAR	LGv	OGV1	OGV2	PSV	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	21	5	3	1	3	33	38.8	0	0	0	1	0	0	0	1
07:15	0	0	0	0	0	0	0	0	0	0	0	41	4	0	0	4	49	53	0	0	8	0	0	0	0	8
07:30	0	0	0	0	0	0	0	0	0	1	0	44	15	4	0	4	68	73.2	0	0	5	0	0	0	0	5
07:45	0	0	1	0	0	0	0	1	1	1	0	63	14	2	0	5	85	90.2	0	0	2	0	0	0	0	2
H/TOT	0	0	1	0	0	0	0	1	1	2	0	169	38	9	1	16	235	255.2	0	0	15	1	0	0	0	16
08:00	0	0	0	0	0	0	0	0	0	1	0	65	7	0	0	3	76	78.2	0	0	11	0	0	0	0	11
08:15	0	0	0	0	0	0	0	0	0	0	0	84	6	3	1	1	95	98.8	0	0	18	1	0	0	0	19
08:30	0	0	0	0	0	0	0	0	0	0	0	104	11	3	0	1	119	121.5	0	0	2	0	0	0	0	2
08:45	0	0	0	0	0	0	0	0	0	0	0	106	12	7	0	3	128	134.5	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	359	36	13	1	8	418	433	0	0	31	1	0	0	0	32
09:00	0	0	0	0	0	0	0	0	0	2	1	85	14	3	0	1	106	106.3	1	0	1	0	0	0	0	2
09:15	0	0	0	0	0	0	0	0	0	0	0	84	9	2	1	1	97	100.3	0	0	3	0	0	0	0	3
09:30	0	0	0	0	0	0	0	0	0	2	0	53	10	0	0	1	66	65.4	0	0	3	0	0	0	0	3
09:45	0	0	0	0	0	0	0	0	0	1	0	65	6	3	0	0	75	75.7	0	0	4	1	0	0	0	5
H/TOT	0	0	0	0	0	0	0	0	0	5	1	287	39	8	1	3	344	347.7	1	0	11	1	0	0	0	13
10:00	0	0	1	0	0	0	0	1	1	1	0	83	4	2	0	2	92	94.2	0	0	6	0	0	0	0	6
10:15	0	0	1	0	0	0	0	1	1	1	1	73	4	4	1	0	84	85.9	0	0	11	0	0	0	0	11
10:30	0	0	0	0	0	0	0	0	0	1	0	83	9	2	0	2	97	99.2	0	0	6	0	0	0	0	6
10:45	0	0	0	0	0	0	0	0	0	0	0	73	10	1	0	0	84	84.5	0	0	8	0	0	0	0	8
H/TOT	0	0	2	0	0	0	0	2	2	3	1	312	27	9	1	4	357	363.8	0	0	31	0	0	0	0	31
11:00	0	0	1	0	0	0	0	1	1	0	1	85	8	2	1	1	98	100.7	0	0	6	0	0	0	0	6
11:15	0	0	0	0	0	0	0	0	0	1	0	63	12	1	0	2	79	80.7	0	0	3	0	0	0	0	3
11:30	0	0	1	0	0	0	0	1	1	0	0	72	6	2	0	0	80	81	0	0	5	1	0	0	0	6
11:45	0	0	0	0	0	0	0	0	0	0	1	88	10	2	0	1	102	103.4	0	0	4	2	0	0	0	6
H/TOT	0	0	2	0	0	0	0	2	2	1	2	308	36	7	1	4	359	365.8	0	0	18	3	0	0	0	21
12:00	0	0	0	0	0	0	0	0	0	0	0	84	6	1	0	1	92	93.5	0	0	9	0	0	0	0	9
12:15	0	0	0	0	0	0	0	0	0	0	0	86	6	1	0	1	94	95.5	0	0	5	0	0	0	0	5
12:30	0	0	0	0	0	0	0	0	0	1	0	89	8	0	0	1	99	99.2	0	0	11	1	0	0	0	12
12:45	0	0	1	0	0	0	0	1	1	0	0	100	7	2	0	0	109	110	0	0	4	0	0	0	0	4
H/TOT	0	0	1	0	0	0	0	1	1	1	0	359	27	4	0	3	394	398.2	0	0	29	1	0	0	0	30
13:00	0	0	0	0	0	0	0	0	0	3	0	108	6	0	1	2	120	120.9	0	0	2	0	0	0	0	2
13:15	0	0	0	0	0	0	0	0	0	0	0	104	3	1	0	0	108	108.5	0	0	3	0	0	0	0	3
13:30	0	0	0	0	0	0	0	0	0	1	0	93	6	4	0	2	106	109.2	0	0	3	2	0	0	0	5
13:45	0	0	0	0	0	0	0	0	0	1	0	92	9	3	1	0	106	108	0	0	1	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	5	0	397	24	8	2	4	440	446.6	0	0	9	2	0	0	0	11
14:00	0	0	0	0	1	0	0	1	1.5	0	0	83	6	0	0	2	91	93	0	0	7	0	0	0	0	7
14:15	0	0	0	0	0	0	0	0	0	0	0	95	6	0	0	2	103	105	0	0	4	1	0	0	0	5
14:30	0	0	0	0	0	0	0	0	0	1	0	120	10	4	0	2	137	140.2	0	1	1	0	1	0	0	3
14:45	0	0	0	0	0	0	0	0	0	0	0	84	8	0	0	2	94	96	0	0	3	0	0	0	0	3
H/TOT	0	0	0	0	1	0	0	1	1.5	1	0	382	30	4	0	8	425	434.2	0	1	15	1	1	0	0	18
15:00	0	0	0	0	0	0	0	0	0	0	0	95	6	1	0	1	103	104.5	0	0	11	0	0	0	0	11
15:15	0	0	0	0	0	0	0	0	0	0	0	85	4	2	0	1	92	94	0	0	5	0	0	0	0	5
15:30	0	0	0	0	0	0	0	0	0	1	0	98	6	0	0	2	107	108.2	0	0	10	0	0	0	0	10
15:45	0	0	0	0	0	0	0	0	0	3	0	92	2	0	0	4	101	102.6	0	0	10	0	0	0	0	10
H/TOT	0	0	0	0	0	0	0	0	0	4	0	370	18	3	0	8	403	409.3	0	0	36	0	0	0	0	36
16:00	0	0	0	0	0	0	0	0	0	1	1	95	7	0	0	0	104	102.6	0	0	9	0	0	0	0	9
16:15	0	0	0	0	0	0	0	0	0	0	0	90	5	1	0	3	99	102.5	0	0	15	1	0	0	0	16
16:30	0	0	0	0	0	0	0	0	0	0	0	105	2	0	0	3	110	113	0	0	24	1	0	0	0	25
16:45	0	0	0	0	0	0	0	0	0	1	0	114	7	0	0	1	123	123.2	0	0	24	1	0	0	0	25
H/TOT	0	0	0	0	0	0	0	0	0	2	1	404	21	1	0	7	436	441.3	0	0	72	3	0	0	0	75
17:00	0	0	0	0	0	0	0	0	0	0	0	105	5	0	0	1	111	112	0	0	19	0	0	0	0	19
17:15	0	0	0	0	0	0	0	0	0	0	1	104	6	0	0	1	112	112.4	0	0	10	0	0	0	0	10
17:30	0	0	0	0	0	0	0	0	0	2	0	105	7	0	0	2	116	116.4	0	0	20	0	0	0	0	20
17:45	0	0	0	0	0	0	0	0	0	1	0	135	6	0	0	0	142	141.2	0	0	16	0	0	0	0	16
H/TOT	0	0	0	0	0	0	0	0	0	3	1	449	24	0	0	4	481	482	0	0	65	0	0	0	0	65
18:00	0	0	0	0	0	0	0	0	0	1	0	112	3	0	0	2	118	119.2	0	0	24	0	0	0	0	24
18:15	0	0	1	0	0	0	0	1	1	1	0	97	4	0	0	0	102	101.2	0	0	11	0	0	0	0	11
18:30	0	0	0	0	0	0	0	0	0	1	0	97	4	0	0	2	104	105.2	0	0	10	0	0	0	0	10
18:45	0	0	0	0	0	0	0	0	0	0	0	108	4	1	0	0	113	113.5	0	0	8	0	0	0	0	8
H/TOT	0	0	1	0	0	0	0	1	1	3	0	414	15	1	0	4	437	439.1	0	0	53	0	0	0	0	53
12 тот	0	0	7	0	1	0	0	8	8.5	31	6	4210	335	67	7	73	4729	4816.2	1	1	385	13	1	0	0	401

PCU	B => A									B => B							тот	PCU	B => C							тот	PCU
	P/C	M/C	CAR	LGv	OGV1	OGV2	PSV	тот	PCU	P/C	M/C	CAR	LGV	OGV1	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV		
1	0	0	30	4	2	1	4	41	47.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	2	0	72	5	2	0	2	83	84.4	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
5	0	1	71	2	1	0	2	77	78.9	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
2	2	0	59	3	3	0	2	69	70.9	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
16	4	1	232	14	8	1	10	270	281.5	0	0	0	0	0	0	0	0	0	0	0	12	0	0	0	0	12	12
11	0	0	91	8	2	1	3	105	110.3	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
19	2	0	94	4	1	0	0	101	99.9	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
2	2	0	93	2	1	1	5	104	109.2	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
0	5	0	86	6	0	1	0	98	95.3	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0.2
32	9	0	364	20	4	3	8	408	414.7	0	0	0	0	0	0	0	0	0	1	0	10	0	0	0	0	11	10.2
1.2	2	0	93	5	2	0	1	103	103.4	0	0	0	1	0	0	0	1	1	0	0	1	0	0	0	0	1	1
3	0	0	75	5	1	0	1	82	83.5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
3	0	0	82	2	1	0	1	86	87.5	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
5	1	0	75	2	1	0	1	80	80.7	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1
12.2	3	0	325	14	5	0	4	351	355.1	0	0	0	1	0	0	0	1	1	0	0	5	1	0	0	0	6	6
6	1	0	83	8	0	0	1	93	93.2	0	0	1	0	0	0	0	1	1	0	0	3	0	0	0	0	3	3
11	0	0	87	9	3	0	2	101	104.5	0	0	0	0	0	0	0	0	0	0	0	4	2	0	0	0	6	6
6	3	1	72	10	2	0	0	88	86	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
8	0	0	65	9	0	0	2	76	78	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
31	4	1	307	36	5	0	5	358	361.7	0	0	1	0	0	0	0	1	1	0	0	16	2	0	0	0	18	18
6	1	0	69	8	4	0	0	82	83.2	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
3	1	0	65	7	1	0	2	76	77.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	80	8	3	0	0	91	92.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
6	1	0	75	4	1	0	2	83	84.7	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5
21	3	0	289	27	9	0	4	332	338.1	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10
9	2	0	72	15	2	1	0	92	92.7	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
5	0	0	68	4	1	0	1	74	75.5	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
12	0	0	67	11	1	1	1	81	83.8	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
4	0	0	86	10	0	0	2	98	100	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
30	2	0	293	40	4	2	4	345	352	0	0	2	0	0	0	0	2	2	0	0	4	0	0	0	0	4	4
2	1	0	96	7	4	0	1	109	111.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	70	8	2	0	1	81	83	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	72	7	3	0	1	83	85.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	83	6	3	0	1	94	95.7	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
11	2	0	321	28	12	0	4	367	375.4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
7	2	0	87	9	1	0	1	100	99.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	0	68	10	0	0	1	80	80.2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
2.9	1	1	70	4	2	1	2	81	83.9	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
3	0	0	78	17	4	0	0	99	101	0	0	0	0	0	0	0	0	0	0	0	3	0	1	0	0	4	4.5
17.9	4	1	303	40	7	1	4	360	365	0	0	0	0	0	0	0	0	0	0	0	7	0	1	0	0	8	8.5
11	0	0	71	9	4	2	1	87	92.6	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
5	0	0	78	7	1	0	1	87	88.5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
10	1	0	81	6	0	1	2	91	93.5	0	0	1	0	0	0	0	1	1	0	0	7	0	0	0	0	7	7
10	0	0	84	8	2	0	1	95	97	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10
36	1	0	314	30	7	3	5	360	371.6	0	0	1	0	0	0	0	1	1	0	0	24	0	0	0	0	24	24
9	0	0	87	5	2	0	4	98	103	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
16	1	1	75	19	1	0	5	102	106.1	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3
25	2	0	85	7	0	0	2	96	96.4	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7
25	0	0	80	8	0	1	1	90	92.3	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
75	3	1	327	39	3	1	12	386	397.8	0	0	0	0	0	0	0	0	0	0	0	17	1	0	0	0	18	18
19	0	0	78	6	2	0	3	89	93	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
10	0	0	70	5	0	0	0	75	75	0	0	1	0	0	0	0	1	1	0	0	5	0	0	0	0	5	5
20	0	0	84	3	1	0	2	90	92.5	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
16	0	0	68	3	0	0	1	72	73	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
65	0	0	300	17	3	0	6	326	333.5	0	0	1	0	0	0	0	1	1	0	0	16	0	0	0	0	16	16
24	0	0	83	2	0	0	3	88	91	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
11	2	0	60	4	1	0	2	69	69.9	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
10	1	0	72	3	0	0	2	78	79.2	0	0	1	0	0	0	0	1	1	0	0	3	0	0	0	0	3	3
8	0	0	75	0	0	0	0	75	75	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7
53	3	0	290	9	1	0	7	310	315.1	0	0	1	0	0	0	0	1	1	0	0	20	0	0	0	0	20	20
400.1	38	4	3665	314	68	11	73	4173	4261.5	0	0	6	1	0	0	0	7	7	1	0	142	4	1	0	0	148	147.7

P/C	M/C	$\mathrm{C}=>\mathrm{A}$			OGv2	PSV	тот	PCU	$\mathrm{C}=>\mathrm{B}$							тот	PCU	P/C	M/C	CAR	$\mathrm{c}=>\mathrm{C}$		OGV2	PSV	тот	PCU
		CAR	LGv	OGv1					P/C	M/C	CAR	Lgv	OGv1	OGV2	Psv						Lgv	OGV1				
0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	10	0	0	0	0	10	10	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	22	0	0	0	0	22	22	0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0
0	0	36	0	0	0	0	36	36	0	0	33	0	0	0	0	33	33	0	0	0	0	0	0	0	0	0
0	0	62	0	0	0	0	62	62	0	0	50	0	0	0	0	50	50	0	0	0	0	0	0	0	0	0
0	0	27	1	0	0	1	29	30	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	37	1	0	0	1	39	40	0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	22	0	0	0	0	22	22	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	5	0	0	0	0	5	5	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	16	0	0	0	0	16	16	0	0	4	1	0	0	0	5	5	0	0	0	0	0	0	0	0	0
0	0	5	0	0	0	0	5	5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	1	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	10	1	0	0	0	11	11	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0
0	0	5	2	0	0	0	7	7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	19	0	0	0	0	19	19	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	36	2	0	0	0	38	38	0	0	13	0	0	0	0	13	13	0	0	0	0	0	0	0	0	0
0	0	10	1	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	4	1	0	0	0	5	5	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	30	1	0	0	0	31	31	0	0	13	2	0	0	0	15	15	0	0	0	0	0	0	0	0	0
0	0	3	1	0	0	0	4	4	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	47	4	0	0	0	51	51	0	0	16	2	0	0	0	18	18	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	2	1	0	0	0	3	3	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	22	1	0	0	0	23	23	0	0	12	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0
0	0	6	0	0	0	0	6	6	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	3	1	0	0	0	4	4	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	8	0	0	0	0	8	8	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	24	1	0	0	0	25	25	0	0	12	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0
0	0	10	0	0	0	0	10	10	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	7	0	0	0	0	7	7	0	0	8	0	0	0	0	8	8	0	0	0	0	0	0	0	0	0
0	0	27	0	0	0	0	27	27	0	0	18	0	0	0	0	18	18	0	0	0	0	0	0	0	0	0
0	0	5	0	0	0	0	5	5	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	4	0	0	0	0	4	4	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	3	0	0	0	0	3	3	0	0	4	0	0	0	0	4	4	0	0	0	0	0	0	0	0	0
0	0	2	0	0	0	0	2	2	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0
0	0	14	0	0	0	0	14	14	0	0	19	0	0	0	0	19	19	0	0	0	0	0	0	0	0	0
0	0	327	10	0	0	1	338	339	0	0	170	3	0	0	0	173	173	0	0	0	0	0	0	0	0	0

PCU	B => A							тот	PCU	B => B							тот	PCU	P/C	M/C	CAR	B => C		OGv2	PSv	тот	PCU
	P/C	M/C	CAR	LGV	ogv1	OGV2	PSV			P/C	M/C	CAR	Lgv	ogvi	OGV2	PSV						Lgv	OGV1				
5	1	0	28	5	2	0	4	40	44.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	65	6	2	0	2	77	78.6	0	0	1	0	0	0	0	1	1	0	0	2	0	0	0	0	2	2
13	0	1	74	2	1	0	2	80	81.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	2	0	55	2	2	0	3	64	66.4	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
31	4	2	222	15	7	0	11	261	271.1	0	0	1	0	0	0	0	1	1	0	0	3	0	0	0	0	3	3
12	0	0	82	7	2	1	2	94	98.3	0	0	0	0	0	0	0	0	0	0	0	4	0	1	0	0	5	5.5
14	3	0	93	4	1	0	0	101	99.1	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	4
23	0	0	85	1	1	0	5	92	97.5	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
45.5	6	0	81	6	0	1	0	94	90.5	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
94.5	9	0	341	18	4	2	7	381	385.4	0	0	0	0	0	0	0	0	0	0	0	23	1	1	0	0	25	25.5
17.2	2	0	77	4	2	0	1	86	86.4	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
15	0	0	71	5	1	0	1	78	79.5	0	0	1	0	0	0	0	1	1	0	0	2	1	,	0	0	3	3
7.2	0	0	72	1	1	0	1	75	76.5	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0	0	3	3.5
11.5	1	0	73	1	1	0	1	77	77.7	0	0	1	0	0	0	0	1	1	0	0	4	0	0	0	0	4	4
50.9	3	0	293	11	5	0	4	316	320.1	0	0	2	0	0	0	0	2	2	0	0	11	1	1	0	0	13	13.5
13.5	1	0	83	6	0	0	1	91	91.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
9	0	0	79	11	2	0	2	94	97	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
14	2	0	66	7	2	0	0	77	76.4	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
11	0	0	64	7	0	0	2	73	75	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3
47.5	3	0	292	31	4	0	5	335	339.6	0	0	0	0	0	0	0	0	0	0	0	8	1	0	0	0	9	9
11	1	0	65	7	4	0	0	77	78.2	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
6	1	0	59	6	1	0	2	69	70.7	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5
12.5	0	0	71	8	2	0	0	81	82	0	0	0	0	0	0	0	0	0	0	0	6	1	0	0	0	7	7
12	1	0	65	4	1	0	2	73	74.7	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
41.5	3	0	260	25	8	0	4	300	305.6	0	0	0	0	0	0	0	0	0	0	0	15	1	0	0	0	16	16
10	2	0	66	16	2	1	0	87	87.7	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
9	0	0	62	3	1	0	1	67	68.5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
13	0	0	67	11	1	1	1	81	83.8	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
18.5	0	0	74	10	0	0	2	86	88	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
50.5	2	0	269	40	4	2	4	321	328	0	0	0	0	0	0	0	0	0	0	0	13	0	0	0	0	13	13
22	1	0	83	6	4	0	1	95	97.2	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0	0	4	4
20.5	0	0	66	10	2	0	1	79	81	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
14	0	0	60	4	1	0	1	66	67.5	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
11	1	0	71	7	3	0	1	83	84.7	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
67.5	2	0	280	27	10	0	4	323	330.4	0	0	0	0	0	0	0	0	0	0	0	13	1	0	0	0	14	14
18	1	0	75	7	1	0	1	85	85.7	0	0	0	0	0	0	0	0	0	0	0	6	1	0	0	0	7	7
18	1	0	56	10	0	0	1	68	68.2	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
18	1	0	67	4	2	1	2	77	80.5	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
14	0	0	62	15	5	0	0	82	84.5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
68	3	0	260	36	8	1	4	312	318.9	0	0	0	0	0	0	0	0	0	0	0	18	1	0	0	0	19	19
11	0	0	66	8	3	2	1	80	85.1	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
10	0	0	77	5	1	0	1	84	85.5	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
9	1	0	80	5	0	1	2	89	91.5	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9
9	0	0	82	7	2	0	1	92	94	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	9	9
39	1	0	305	25	6	3	5	345	356.1	0	0	0	0	0	0	0	0	0	0	0	25	0	0	0	0	25	25
7	0	0	87	5	2	0	4	98	103	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5
10	1	1	69	15	1	0	5	92	96.1	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7
13	2	0	83	4	0	0	2	91	91.4	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
19	0	0	80	7	0	1	1	89	91.3	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3
49	3	1	319	31	3	1	12	370	381.8	0	0	0	0	0	0	0	0	0	0	0	17	1	0	0	0	18	18
13	0	0	78	4	2	0	3	87	91	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
13	0	0	66	4	0	0	0	70	70	0	0	0	0	0	0	0	0	0	0	0	2	0	-	0	0	2	2
16	0	0	70	4	1	0	2	77	79.5	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
13	0	0	59	4	0	0	1	64	65	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7
55	0	0	273	16	3	0	6	298	305.5	0	0	0	0	0	0	0	0	0	0	0	14	0	0	0	0	14	14
15	0	0	78	2	0	0	3	83	86	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
12.2	2	0	53	3	1	0	2	61	61.9	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5
6	1	0	76	2	0	0	2	81	82.2	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
9	0	0	70	1	0	0	0	71	71	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
42.2	3	0	277	8	1	0	7	296	301.1	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	0	19	19
636.6	36	3	3391	283	63	9	73	3858	3943.6	0	0	3	0	0	0	0	3	3	0	0	179	7	2	0	0	188	189

TE:Andrew'a church						IDASO																				
samber						Survey Site: Locatio Date:	Name: n:		$003(2$ Site 11 Church Tue 10	$\text {) } 22718$ Rd/Grov Jan-202	MALA ve Rd 3	IDE TR	AFFIC	SURVEY												
time	A => A							тот	PCU	A => B							тот	PCU	A => C							
	P/C	M/C	CAR	LGv	OGv1	OGV2	Psv			P/C	M/C	CAR	LGv	OGV1	OGV2	PSV			P/C	M/C	CAR	Lgv	OGv1	OGV2	PSv	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12	1	2	0	0	15
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	18	0	0	0	1	19
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	1	1.5	1	0	18	3	0	0	0	22
07:45	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	20	0	0	0	3	23
H/TOT	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	2.5	1	0	68	4	2	0	4	79
08:00	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5	0	0	42	3	0	0	0	45
08:15	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	84	4	0	0	2	90
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	92	2	0	0	0	95
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71	3	0	0	1	75
H/TOT	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8	1	0	289	12	0	0	3	305
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	67	3	2	0	1	75
09:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	30	4	1	0	1	36
09:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	21	3	0	0	0	24
09:45	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	2	2.5	0	0	20	1	2	0	1	24
H/TOT	0	0	0	0	0	0	0	0	0	0	0	2	1	1	0	0	4	4.5	2	0	138	11	5	0	3	159
10:00	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	21	6	1	0	1	29
10:15	0	0	0	0	0	0	0	0	0	0	0	2	1	0	0	0	3	3	0	0	26	2	0	0	0	28
10:30	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	21	4	0	0	1	26
10:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	16	3	1	0	0	20
H/TOT	0	0	0	0	0	0	0	0	0	0	0	9	1	0	0	0	10	10	0	0	84	15	2	0	2	103
11:00	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0	2	2.5	0	0	20	5	0	0	1	26
11:15	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	18	4	1	0	0	23
11:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	1	0	24	6	1	0	0	32
11:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	35	2	1	0	1	39
H/TOT	0	0	0	0	0	0	0	0	0	0	0	6	0	1	0	0	7	7.5	1	0	97	17	3	0	2	120
12:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	22	1	0	0	0	23
12:15	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	22	2	1	0	1	26
12:30	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	1	0	28	1	0	1	0	31
12:45	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	29	4	0	0	1	34
H/TOT	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	1	0	101	8	1	1	2	114
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	37	4	0	0	0	41
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	27	3	1	0	1	32
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	34	4	1	0	0	39
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	45	1	0	0	1	48
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	143	12	2	0	2	160
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	41	3	0	0	0	45
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	29	1	0	0	1	32
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48	2	0	0	0	50
14:45	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	1	34	2	2	0	2	41
H/TOT	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	2	1	152	8	2	0	3	168
15:00	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	21	0	0	0	0	21
15:15	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3	0	0	34	3	0	0	1	38
15:30	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	0	0	59	1	1	0	0	61
15:45	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	0	0	62	5	0	0	1	68
H/TOT	0	0	1	0	0	0	0	1	1	0	0	9	0	0	0	0	9	9	0	0	176	9	1	0	2	188
16:00	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	32	1	0	0	0	33
16:15	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4	1	0	21	4	0	0	2	28
16:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	17	3	0	0	0	20
16:45	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	34	3	1	0	1	39
H/TOT	0	0	0	0	0	0	0	0	0	0	0	7	0	0	0	0	7	7	1	0	104	11	1	0	3	120
17:00	0	0	0	0	0	0	0	0	0	0	0	6	1	0	0	0	7	7	0	0	30	2	1	0	1	34
17:15	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6	0	0	32	2	0	0	1	35
17:30	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1	0	0	33	1	0	0	0	34
17:45	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8	0	0	45	1	0	0	3	49
H/TOT	0	0	0	0	0	0	0	0	0	0	0	21	1	0	0	0	22	22	0	0	140	6	1	0	5	152
18:00	0	0	0	0	0	0	0	0	0	0	0	10	0	0	0	0	10	10	0	0	38	0	0	0	2	40
18:15	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5	0	0	33	1	0	0	2	36
18:30	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2	1	0	34	2	0	0	1	38
18:45	0	0	0	0	0	0	0	0	0	0	0	5	0	0	0	0	5	5	0	0	30	0	0	0	1	31
H/TOT	0	0	0	0	0	0	0	0	0	0	0	22	0	0	0	0	22	22	1	0	135	3	0	0	6	145
12 тOT	0	0	1	0	0	0	0	1	1	0	0	94	3	3	0	0	100	101.5	11	1	1627	116	20	1	37	1813

PCU	B => A							тот	PCU	B => B							тот	PCU	P/C	M/C	CAR	B => C				тот	PCU
	P/C	M/C	CAR	LGv	ogvi	OGV2	PSV			P/C	M/C	CAR	LGv	OGV1	OGV2	PSv						LGv	ogvi	OGV2	Psv		
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
26	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
85.7	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
93	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
96.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
301.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
56.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
31.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
30.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
142.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
123	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
27.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
37.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
43.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
137.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
21	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
28.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
116	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
43	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
40.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
41.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
158.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
39.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
39.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
48.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
161.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
64.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
69	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
197.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
33.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
36.5	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
121.7	0	0	6	0	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
37.5	0	0	9	0	0	0	0	9	9	0	0	0	0	0	0	0	0	0	0	0	4	0	0	0	0	4	4
32	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0	0	8	0	0	0	0	8	8
37	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
55	0	0	11	0	0	0	0	11	11	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0	0	6	6
161.5	0	0	25	0	0	0	0	25	25	0	0	0	0	0	0	0	0	0	0	0	19	0	0	0	0	19	19
48	0	0	5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0	2	2
42	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
40.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
168.2	0	0	5	1	0	0	0	6	6	0	0	0	0	0	0	0	0	0	0	0	3	0	0	0	0	3	3
1874.4	0	0	37	1	0	0	0	38	38	0	0	0	0	0	0	0	0	0	0	0	30	0	0	0	0	30	30

P/C	M/C	$\mathrm{C}=>\mathrm{A}$			OGV2	PSv	тот	PCU	P/C	M/C	CAR	$\begin{gathered} \hline \text { C => B } \\ \text { Lgv } \end{gathered}$	OGV1	OGV2	PSv	тот	PCU	P/C	M/C	CAR	$\mathrm{c}=>\mathrm{C}$		OGv2	PSv	тот	PCU
		CAR	LGv	OGV1																	LGv	OGV1				
0	0	14	0	2	0	1	17	19	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	25	1	0	0	2	28	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	25	1	1	0	3	31	33.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	32	1	0	0	2	35	37	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	96	3	3	0	8	111	119.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	41	4	1	0	2	48	50.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	82	1	1	0	1	85	86.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	73	5	0	0	1	80	80.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	85	3	0	0	1	90	90.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	281	13	2	0	5	303	307.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	80	1	0	0	0	82	81.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	41	8	2	0	2	53	56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	30	3	0	0	0	34	33.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	45	1	2	0	1	49	51	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	196	13	4	0	3	218	221.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	48	6	0	0	0	55	54.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	47	6	2	0	1	56	58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	37	2	1	0	0	40	40.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	40	3	0	0	1	44	45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	172	17	3	0	2	195	197.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	43	4	0	0	0	47	47	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	49	5	0	0	1	55	56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	36	7	1	0	0	44	44.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	36	3	0	0	1	40	41	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	164	19	1	0	2	186	188.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	37	3	0	0	0	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	37	3	0	1	1	44	44.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	34	4	2	0	0	41	41.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	35	1	0	0	1	37	38	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	143	11	2	1	2	162	164.1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	59	7	0	0	0	67	66.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	54	2	3	1	1	61	64.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	44	2	0	0	0	46	46	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	45	1	0	0	1	48	48.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	202	12	3	1	2	222	225.2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	48	2	2	0	0	52	53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	55	6	1	1	2	65	68.8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	44	4	0	0	0	48	48	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	66	2	1	0	1	70	71.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	213	14	4	1	3	235	241.3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	49	0	0	0	0	49	49	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
1	0	43	2	1	0	1	48	48.7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	36	1	0	0	0	38	37.2	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	1
3	0	68	2	0	0	1	74	72.6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	0	196	5	1	0	2	209	207.5	0	0	1	0	0	0	0	1	1	0	0	1	0	0	0	0	1	1
2	0	93	7	1	0	0	103	101.9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	66	4	0	0	1	72	72.2	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	51	7	0	0	1	59	60	0	0	2	0	0	0	0	2	2	0	0	0	0	0	0	0	0	0
0	0	36	2	0	0	1	39	40	0	0	8	0	0	0	0	8	8	0	0	0	0	0	0	0	0	0
3	0	246	20	1	0	3	273	274.1	0	0	12	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0
0	0	52	3	0	0	1	56	57	0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
0	0	61	4	1	0	1	67	68.5	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
0	0	49	0	0	0	1	50	51	0	0	3	0	0	0	0	3	3	0	0	0	0	0	0	0	0	0
1	0	47	2	0	0	1	51	51.2	0	0	12	0	0	0	0	12	12	0	0	0	0	0	0	0	0	0
1	0	209	9	1	0	4	224	227.7	0	0	23	0	0	0	0	23	23	0	0	0	0	0	0	0	0	0
2	0	54	4	0	0	0	60	58.4	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
2	0	51	4	0	0	1	58	57.4	0	0	1	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
0	0	43	4	1	0	1	49	50.5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	39	0	1	0	0	41	40.7	0	0	5	0	0	0	0	5	5	0	0	0	0	0	0	0	0	0
5	0	187	12	2	0	2	208	207	0	0	7	0	0	0	0	7	7	0	0	0	0	0	0	0	0	0
24	1	2305	148	27	3	38	2546	2581.6	0	0	43	0	0	0	0	43	43	0	0	1	0	0	0	0	1	1

Sites Overview

Irish Traffic Surveys

Survey Name :	ITS J-372 Malahide
Site:	1 to 9
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4449143,-6.1781695,5326$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C,Peds

Survey Name:	ITS J-372 Malahide
Site:	Site 1
Date:	12.12 .2019
Time:	07:00-20:00
Location:	$53.4507222,-6.153686$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

TIME	A => A							тот	CAR	LGV	OGV1	$\begin{gathered} \text { A }=>B \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C										
07:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	2
07:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	8
07:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	6
07:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	17
H/TOT	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5	33
08:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	16
08:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	51
08:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	39
08:45	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4	25
H/TOT	0	0	0	0	0	0	0	0	10	1	0	0	0	0	0	11	131
09:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	30
09:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	16
09:30	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	8
09:45	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	6
H/TOT	0	0	0	0	0	0	0	0	26	1	0	0	0	0	0	27	60
10:00	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6	10
10:15	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10	14
10:30	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8	8
10:45	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	13
H/TOT	0	0	0	0	0	0	0	0	26	5	0	0	0	0	0	31	45
11:00	0	0	0	0	0	0	0	0	2	2	1	0	0	0	0	5	12
11:15	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	6	10
11:30	0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10	15
11:45	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	11
H/TOT	0	0	0	0	0	0	0	0	20	7	1	0	0	0	0	28	48
12:00	0	0	0	0	0	0	0	0	8	3	0	0	0	0	0	11	22
12:15	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	11
12:30	0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	6	11
12:45	0	0	0	0	0	0	0	0	8	3	0	0	0	0	0	11	12
H/TOT	0	0	0	0	0	0	0	0	26	9	0	0	0	0	0	35	56
13:00	0	0	0	0	0	0	0	0	5	6	0	0	0	0	0	11	19
13:15	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8	10
13:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	9
13:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	16
H/TOT	0	0	0	0	0	0	0	0	18	8	0	0	0	0	0	26	54
14:00	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8	6
14:15	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8	15
14:30	0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9	17
14:45	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	18
H/TOT	0	0	0	0	0	0	0	0	26	5	0	0	0	0	0	31	56
15:00	0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10	12
15:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	18
15:30	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8	20
15:45	0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8	24
H/TOT	0	0	0	0	0	0	0	0	27	4	0	0	0	0	0	31	74
16:00	0	0	0	0	0	0	0	0	9	2	0	0	0	0	0	11	18
16:15	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	13
16:30	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	9
16:45	0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9	11
H/TOT	0	0	0	0	0	0	0	0	33	3	0	0	0	0	0	36	51
17:00	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	18
17:15	0	0	0	0	0	0	0	0	10	0	1	0	0	0	0	11	16
17:30	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	14
17:45	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13	19
H/TOT	0	0	0	0	0	0	0	0	44	0	1	0	0	0	0	45	67
18:00	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	15
18:15	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0	12	18
18:30	0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	16	27
18:45	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	15
H/TOT	0	0	0	0	0	0	0	0	43	1	0	0	0	0	0	44	75
19:00	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	25
19:15	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13	15
19:30	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	18
19:45	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13	16
H/TOT	0	0	0	0	0	0	0	0	42	0	0	0	0	0	0	42	74
13 HR TOT	0	0	0	0	0	0	0	0	345	45	2	0	0	0	0	392	824

LGV	$\begin{array}{ll} \hline & A=>C \\ \text { oGv1 } & \text { OGV2 } \\ \hline \end{array}$		PSV	M/C	P/C	тот	CAR	LGv	OGV1	$\begin{gathered} \text { A => D } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGv	OGV1	$\begin{gathered} \text { B }=>A \\ \text { OGV2 } \end{gathered}$
0	0	0	0	0	0	2	14	0	1	0	0	0	0	15	2	0	0	0
0	0	0	0	0	0	8	8	0	0	0	0	0	0	8	0	0	0	0
0	0	0	0	0	0	6	13	0	0	0	0	0	0	13	5	0	0	0
0	1	0	0	0	0	18	14	0	0	0	0	1	0	15	4	0	0	0
0	1	0	0	0	0	34	49	0	1	0	0	1	0	51	11	0	0	0
2	0	0	0	0	0	18	10	2	0	0	0	0	0	12	3	0	0	0
2	0	0	0	0	1	54	13	1	0	0	0	0	0	14	2	0	0	0
0	1	0	0	0	0	40	22	1	0	0	0	0	0	23	0	0	0	0
0	0	0	0	0	0	25	31	2	0	0	0	0	0	33	5	0	0	0
4	1	0	0	0	1	137	76	6	0	0	0	0	0	82	10	0	0	0
1	0	0	0	0	0	31	26	1	0	0	0	0	0	27	4	0	0	0
1	0	0	0	0	0	17	15	2	0	0	0	0	0	17	3	1	0	0
0	0	0	0	0	0	8	21	2	2	0	0	0	0	25	6	0	0	0
0	0	0	0	0	0	6	20	8	1	0	0	0	0	29	7	4	0	0
2	0	0	0	0	0	62	82	13	3	0	0	0	0	98	20	5	0	0
3	0	0	0	0	0	13	25	5	1	0	0	0	0	31	7	0	0	0
0	0	0	0	0	0	14	18	5	1	0	0	0	0	24	4	0	0	0
2	1	0	0	0	0	11	13	2	0	0	0	0	0	15	11	0	0	0
2	0	0	0	0	0	15	17	2	0	0	0	0	0	19	4	0	0	0
7	1	0	0	0	0	53	73	14	2	0	0	0	0	89	26	0	0	0
1	0	0	0	0	0	13	17	4	0	0	0	0	0	21	7	0	0	0
1	0	0	0	0	0	11	11	5	2	0	0	0	0	18	11	1	0	0
2	0	0	0	0	0	17	11	4	1	0	0	0	0	16	10	0	1	0
0	0	0	0	0	0	11	14	4	1	1	0	0	0	20	7	1	1	0
4	0	0	0	0	0	52	53	17	4	1	0	0	0	75	35	2	2	0
0	0	0	0	0	0	22	18	7	1	0	0	0	0	26	5	0	2	0
1	0	0	0	0	0	12	15	2	1	0	0	0	0	18	12	0	0	0
0	0	0	0	0	0	11	10	3	1	0	0	0	0	14	10	1	0	0
2	0	0	0	0	0	14	28	2	1	0	0	0	0	31	12	0	0	0
3	0	0	0	0	0	59	71	14	4	0	0	0	0	89	39	1	2	0
3	0	0	0	0	0	22	16	4	1	0	0	0	0	21	8	4	0	0
3	0	0	0	0	0	13	13	3	0	0	0	0	0	16	4	1	1	0
1	0	0	0	0	0	10	16	1	0	0	0	0	0	17	9	0	0	0
2	0	0	0	0	0	18	18	1	1	0	0	0	0	20	6	0	0	0
9	0	0	0	0	0	63	63	9	2	0	0	0	0	74	27	5	1	0
2	0	0	0	0	0	8	16	1	0	0	0	0	0	17	5	0	0	0
0	0	0	0	0	0	15	14	1	0	0	0	0	0	15	4	1	0	0
1	0	0	0	0	0	18	18	4	1	0	0	0	0	23	7	2	0	0
1	0	0	0	0	0	19	15	3	0	0	0	0	0	18	8	0	0	0
4	0	0	0	0	0	60	63	9	1	0	0	0	0	73	24	3	0	0
1	0	0	0	0	0	13	13	3	0	1	0	0	0	17	7	1	0	0
0	0	0	0	0	0	18	20	1	1	0	0	0	0	22	5	2	0	0
3	0	0	0	0	0	23	19	3	0	0	0	0	0	22	12	1	0	0
1	0	0	0	0	0	25	11	4	1	0	0	0	0	16	8	0	0	0
5	0	0	0	0	0	79	63	11	2	1	0	0	0	77	32	4	0	0
0	0	0	0	0	0	18	15	2	0	0	0	0	0	17	10	0	0	0
3	0	0	0	0	0	16	15	1	0	0	0	0	0	16	10	0	0	0
1	0	0	0	0	0	10	14	0	0	0	0	0	0	14	13	0	1	0
2	0	0	0	0	0	13	14	1	0	0	0	0	0	15	9	1	0	0
6	0	0	0	0	0	57	58	4	0	0	0	0	0	62	42	1	1	0
1	0	0	0	0	0	19	16	1	1	0	0	0	0	18	13	2	0	0
0	0	0	0	0	0	16	17	0	0	0	0	0	0	17	7	0	0	0
0	0	0	0	0	0	14	13	2	2	0	0	0	0	17	9	0	0	0
0	0	0	0	0	0	19	29	1	0	0	0	0	0	30	11	0	0	0
1	0	0	0	0	0	68	75	4	3	0	0	0	0	82	40	2	0	0
0	0	0	0	0	0	15	22	0	0	0	0	0	0	22	9	0	0	0
0	0	0	0	0	0	18	23	0	0	0	0	0	0	23	17	1	0	0
0	0	0	0	0	0	27	22	1	0	0	0	0	0	23	11	1	0	0
0	0	0	0	0	0	15	14	1	0	0	0	0	0	15	24	0	0	0
0	0	0	0	0	0	75	81	2	0	0	0	0	0	83	61	2	0	0
0	0	0	0	0	0	25	20	0	0	0	0	0	0	20	11	1	0	0
0	0	0	0	0	0	15	23	0	0	0	0	0	0	23	17	0	0	0
0	0	0	0	0	0	18	33	0	0	0	0	0	0	33	21	0	0	0
0	0	0	0	0	0	16	28	0	0	0	0	0	0	28	9	1	0	0
0	0	0	0	0	0	74	104	0	0	0	0	0	0	104	58	2	0	0
45	3	0	0	0	1	873	911	103	22	2	0	1	0	1039	425	27	6	0

PSV	M/C	P/C	тот	B => B							тот	B => C						
				CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGv	OGV1	OGV2	PSV	M/C	P/C
0	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
2	0	0	2	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0
0	0	0	5	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0
1	0	0	5	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0
3	0	0	14	0	0	0	0	0	0	0	0	18	0	0	0	0	0	0
1	0	0	4	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0
1	0	0	3	0	0	0	0	0	0	0	0	19	1	0	0	0	0	0
1	0	0	1	0	0	0	0	0	0	0	0	21	0	0	0	0	0	0
0	0	0	5	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
3	0	0	13	0	0	0	0	0	0	0	0	56	3	0	0	0	0	0
0	0	0	4	0	0	0	0	0	0	0	0	21	1	0	0	0	0	0
0	0	0	4	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0
1	0	0	7	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0
1	0	0	12	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
2	0	0	27	0	0	0	0	0	0	0	0	60	3	0	0	0	0	0
1	0	0	8	0	0	0	0	0	0	0	0	7	3	0	0	0	0	0
0	0	0	4	0	0	0	0	0	0	0	0	13	1	0	0	0	0	0
0	0	0	11	0	0	0	0	0	0	0	0	12	2	0	0	0	0	0
0	0	0	4	0	0	0	0	0	0	0	0	11	2	0	0	0	0	0
1	0	0	27	0	0	0	0	0	0	0	0	43	8	0	0	0	0	0
1	0	0	8	0	0	0	0	0	0	0	0	6	1	1	1	0	0	0
0	0	0	12	0	0	0	0	0	0	0	0	22	1	0	0	0	0	0
0	0	0	11	0	0	0	0	0	0	0	0	13	1	1	0	0	0	0
0	0	0	9	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0
1	0	0	40	0	0	0	0	0	0	0	0	52	3	2	1	0	0	0
1	0	0	8	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0
0	0	0	12	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0
0	0	0	11	0	0	0	0	0	0	0	0	20	2	0	0	0	0	0
0	0	0	12	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0
1	0	0	43	0	0	0	0	0	0	0	0	49	3	0	0	0	0	0
1	0	0	13	0	0	0	0	0	0	0	0	17	0	0	0	0	0	0
0	0	0	6	0	0	0	0	0	0	0	0	16	2	1	0	0	0	0
0	0	0	9	0	0	0	0	0	0	0	0	14	0	1	0	0	0	0
0	0	0	6	0	0	0	0	0	0	0	0	16	1	1	0	0	0	0
1	0	0	34	0	0	0	0	0	0	0	0	63	3	3	0	0	0	0
1	0	0	6	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
1	0	0	6	0	0	0	0	0	0	0	0	17	2	1	0	0	0	0
0	0	0	9	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0
0	0	0	8	0	0	0	0	0	0	0	0	21	1	0	0	0	0	0
2	0	0	29	0	0	0	0	0	0	0	0	64	4	1	0	0	0	0
0	0	0	8	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0
1	1	0	9	0	0	0	0	0	0	0	0	12	1	0	0	0	0	0
0	0	0	13	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0
0	0	0	8	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0
1	1	0	38	0	0	0	0	0	0	0	0	44	1	0	0	0	0	0
1	0	0	11	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0
0	0	0	10	0	0	0	0	0	0	0	0	10	1	0	0	0	0	0
0	0	0	14	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
1	0	0	11	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0
2	0	0	46	0	0	0	0	0	0	0	0	35	2	0	0	0	0	0
0	0	0	15	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
1	1	0	9	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0
0	0	0	9	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0
0	0	0	11	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0
1	1	0	44	0	0	0	0	0	0	0	0	39	2	0	0	0	0	0
1	0	0	10	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0
2	0	0	20	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
0	0	0	12	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0
0	0	0	24	0	0	0	0	0	0	0	0	12	0	0	0	1	0	0
3	0	0	66	0	0	0	0	0	0	0	0	38	1	0	0	1	0	0
0	0	0	12	0	0	0	0	0	0	0	0	7	0	0	0	1	0	0
0	0	0	17	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0
1	0	0	22	0	0	0	0	0	0	0	0	8	1	0	0	0	0	0
0	0	0	10	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0
1	0	0	61	0	0	0	0	0	0	0	0	33	1	0	0	1	0	0
22	2	0	482	0	0	0	0	0	0	0	0	594	34	6	1	2	0	0

тот	B => D							тот	CAR	LGV	OGV1	$\mathrm{C}=>\mathrm{A}$		M/C	P/C	тот	CAR	LGv
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV					
2	51	3	1	2	1	0	1	59	2	1	0	0	0	0	0	3	1	0
2	77	5	0	0	2	0	0	84	4	0	0	0	0	0	0	4	4	0
8	77	1	1	0	3	0	0	82	3	1	0	0	0	0	0	4	7	0
6	69	4	0	0	1	0	0	74	8	1	0	0	0	0	0	9	5	1
18	274	13	2	2	7	0	1	299	17	3	0	0	0	0	0	20	17	1
6	70	2	0	0	3	0	0	75	16	0	0	0	0	0	0	16	10	1
20	92	1	1	0	0	0	0	94	23	1	0	0	0	0	0	24	14	0
21	80	3	1	0	0	0	1	85	19	1	0	0	0	0	0	20	31	2
12	74	2	1	0	3	0	0	80	11	2	0	0	0	0	0	13	28	2
59	316	8	3	0	6	0	1	334	69	4	0	0	0	0	0	73	83	5
22	62	8	1	0	2	0	0	73	17	1	0	0	0	0	0	18	24	1
19	61	3	1	2	0	0	0	67	21	0	0	0	0	0	0	21	28	1
10	56	7	0	1	2	0	0	66	16	1	0	0	0	0	0	17	22	0
12	68	8	2	0	1	0	0	79	10	0	0	0	0	0	0	10	15	3
63	247	26	4	3	5	0	0	285	64	2	0	0	0	0	0	66	89	5
10	54	4	2	1	1	0	0	62	16	1	0	0	0	0	0	17	16	0
14	62	4	0	0	1	0	0	67	9	1	0	0	0	0	0	10	17	0
14	71	8	2	3	1	0	0	85	12	0	0	0	0	0	0	12	16	2
13	56	4	3	0	0	0	0	63	17	1	0	0	0	0	0	18	19	1
51	243	20	7	4	3	0	0	277	54	3	0	0	0	0	0	57	68	3
9	77	5	1	2	0	1	0	86	12	0	1	0	0	0	0	13	15	2
23	67	6	2	2	0	0	0	77	14	0	0	0	0	0	0	14	16	2
15	52	7	0	1	1	0	0	61	14	2	0	0	0	0	0	16	18	6
11	70	8	1	0	0	0	1	80	17	0	0	0	0	0	0	17	13	2
58	266	26	4	5	1	1	1	304	57	2	1	0	0	0	0	60	62	12
7	75	8	1	1	1	0	0	86	11	1	0	0	0	0	0	12	11	0
15	61	9	0	1	0	0	0	71	17	0	0	0	0	0	0	17	21	3
22	55	5	3	1	1	0	0	65	15	0	0	0	0	0	0	15	17	0
8	62	7	1	0	0	0	0	70	19	2	1	0	0	0	0	22	13	0
52	253	29	5	3	2	0	0	292	62	3	1	0	0	0	0	66	62	3
17	59	7	0	1	3	0	0	70	12	0	0	0	0	0	0	12	19	4
19	78	6	2	0	1	0	0	87	12	3	0	0	1	0	0	16	38	0
15	56	4	3	2	3	0	0	68	8	0	0	0	0	0	0	8	21	0
18	56	5	1	5	0	0	0	67	18	1	0	0	0	0	0	19	25	2
69	249	22	6	8	7	0	0	292	50	4	0	0	1	0	0	55	103	6
12	65	13	3	0	3	0	0	84	14	1	0	0	0	0	0	15	33	2
20	67	8	2	2	1	0	1	81	9	1	0	0	0	0	0	10	18	1
15	55	10	2	0	0	0	0	67	10	3	0	0	0	0	0	13	31	3
22	52	6	3	1	2	0	0	64	13	1	0	0	0	0	0	14	22	2
69	239	37	10	3	6	0	1	296	46	6	0	0	0	0	0	52	104	8
15	69	9	1	1	0	0	0	80	15	2	0	0	0	0	0	17	15	3
13	52	9	3	1	1	0	0	66	12	0	0	0	1	0	0	13	22	1
8	51	5	2	2	1	0	0	61	7	0	0	0	0	0	0	7	8	0
9	60	10	3	2	0	0	0	75	23	0	0	0	0	0	0	23	27	1
45	232	33	9	6	2	0	0	282	57	2	0	0	1	0	0	60	72	5
8	62	9	0	0	0	0	0	71	17	0	0	0	0	0	0	17	25	0
11	63	7	0	1	6	0	0	77	21	1	0	0	0	0	0	22	19	0
12	68	10	2	1	1	0	0	82	14	1	0	0	0	0	0	15	13	0
6	63	8	1	0	0	0	0	72	16	2	0	0	0	0	0	18	23	0
37	256	34	3	2	7	0	0	302	68	4	0	0	0	0	0	72	80	0
12	47	6	0	0	0	0	0	53	15	1	0	0	0	0	0	16	10	0
7	55	4	1	1	2	0	0	63	11	0	0	0	0	0	0	11	13	1
12	70	5	0	0	1	0	0	76	22	0	0	0	0	0	0	22	21	0
10	55	5	0	1	0	0	0	61	12	1	0	0	0	0	0	13	9	1
41	227	20	1	2	3	0	0	253	60	2	0	0	0	0	0	62	53	2
6	64	4	0	0	2	0	0	70	16	2	0	0	0	0	0	18	11	1
12	59	1	0	0	0	0	1	61	20	0	0	0	0	0	0	20	12	2
9	64	3	0	0	2	0	0	69	15	1	0	0	0	0	0	16	15	0
13	66	0	0	1	1	0	1	69	18	0	0	0	0	0	0	18	19	0
40	253	8	0	1	5	0	2	269	69	3	0	0	0	0	0	72	57	3
8	69	2	0	0	2	0	0	73	16	0	0	0	0	0	0	16	17	1
12	73	1	0	0	0	0	0	74	7	0	0	0	0	0	0	7	12	0
9	67	0	0	1	0	0	0	68	15	0	0	0	0	0	0	15	17	0
6	59	4	0	0	1	0	0	64	22	0	0	0	0	0	0	22	12	0
35	268	7	0	1	3	0	0	279	60	0	0	0	0	0	0	60	58	1
637	3323	283	54	40	57	1	6	3764	733	38	2	0	2	0	0	775	908	54

OGV1	$\begin{gathered} \text { C=>B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { C }=>\mathrm{C} \\ \text { oGV2 } \\ \hline \end{gathered}$	PSV	M/C	P/C	тот	CAR	Lgv	C => D		
																OGV1	ogv2	PSV
0	0	0	0	0	1	0	0	0	0	0	0	0	0	7	0	0	0	0
0	0	0	0	0	4	0	0	0	0	0	0	0	0	19	0	0	0	1
0	0	0	0	0	7	0	0	0	0	0	0	0	0	12	0	0	0	2
0	0	0	0	0	6	0	0	0	0	0	0	0	0	15	2	0	0	4
0	0	0	0	0	18	0	0	0	0	0	0	0	0	53	2	0	0	7
0	0	0	0	0	11	0	0	0	0	0	0	0	0	23	1	1	1	4
0	0	0	0	0	14	0	0	0	0	0	0	0	0	18	1	0	0	0
0	0	1	0	0	34	0	0	0	0	0	0	0	0	19	0	0	0	1
0	0	0	0	0	30	0	0	0	0	0	0	0	0	15	0	0	0	0
0	0	1	0	0	89	0	0	0	0	0	0	0	0	75	2	1	1	5
0	0	0	0	0	25	0	0	0	0	0	0	0	0	27	2	0	0	1
0	0	0	0	0	29	0	0	0	0	0	0	0	0	24	1	0	0	1
0	0	0	0	0	22	0	0	0	0	0	0	0	0	14	1	1	0	1
0	0	0	0	0	18	0	0	0	0	0	0	0	0	20	3	0	0	0
0	0	0	0	0	94	0	0	0	0	0	0	0	0	85	7	1	0	3
0	0	0	0	0	16	0	0	0	0	0	0	0	0	13	3	0	0	0
0	0	0	0	0	17	0	0	0	0	0	0	0	0	16	2	0	0	1
1	0	0	0	0	19	0	0	0	0	0	0	0	0	8	2	0	0	0
0	0	0	0	0	20	0	0	0	0	0	0	0	0	18	4	0	0	1
1	0	0	0	0	72	0	0	0	0	0	0	0	0	55	11	0	0	2
2	0	0	0	0	19	0	0	0	0	0	0	0	0	16	1	1	0	0
0	0	0	0	0	18	0	0	0	0	0	0	0	0	11	2	1	0	1
0	0	0	0	0	24	0	0	0	0	0	0	0	0	20	4	1	0	0
0	0	0	0	0	15	0	0	0	0	0	0	0	0	21	1	0	0	0
2	0	0	0	0	76	0	0	0	0	0	0	0	0	68	8	3	0	1
0	0	0	0	0	11	0	0	0	0	0	0	0	0	16	2	0	0	0
0	0	0	0	0	24	0	0	0	0	0	0	0	0	16	0	0	0	1
0	0	0	0	0	17	0	0	0	0	0	0	0	0	14	2	0	0	0
0	0	0	0	0	13	0	0	0	0	0	0	0	0	11	1	0	0	1
0	0	0	0	0	65	0	0	0	0	0	0	0	0	57	5	0	0	2
1	0	0	0	0	24	0	0	0	0	0	0	0	0	15	1	0	0	0
0	0	0	0	0	38	0	0	0	0	0	0	0	0	15	1	0	0	0
0	1	0	0	0	22	0	0	0	0	0	0	0	0	9	3	1	0	0
1	0	1	0	0	29	0	0	0	0	0	0	0	0	15	1	0	0	1
2	1	1	0	0	113	0	0	0	0	0	0	0	0	54	6	1	0	1
0	0	0	0	0	35	0	0	0	0	0	0	0	0	12	0	0	0	0
1	0	0	0	0	20	0	0	0	0	0	0	0	0	11	0	0	0	1
0	0	0	0	0	34	0	0	0	0	0	0	0	0	13	2	0	0	1
1	0	0	0	0	25	0	0	0	0	0	0	0	0	24	2	0	0	1
2	0	0	0	0	114	0	0	0	0	0	0	0	0	60	4	0	0	3
0	0	0	0	0	18	0	0	0	0	0	0	0	0	13	2	0	0	0
0	0	0	0	0	23	0	0	0	0	0	0	0	0	12	0	0	0	1
0	0	0	0	0	8	0	0	0	0	0	0	0	0	13	1	0	0	0
0	0	0	0	0	28	0	0	0	0	0	0	0	0	30	3	0	0	1
0	0	0	0	0	77	0	0	0	0	0	0	0	0	68	6	0	0	2
0	0	0	0	0	25	0	0	0	0	0	0	0	0	19	3	0	0	0
0	0	0	0	0	19	0	0	0	0	0	0	0	0	18	2	0	0	1
0	0	0	0	0	13	0	0	0	0	0	0	0	0	18	2	0	0	0
0	0	0	0	0	23	0	0	0	0	0	0	0	0	16	0	0	0	1
0	0	0	0	0	80	0	0	0	0	0	0	0	0	71	7	0	0	2
0	0	0	1	0	11	0	0	0	0	0	0	0	0	18	1	0	0	1
0	0	0	0	0	14	0	0	0	0	0	0	0	0	25	3	0	0	2
0	0	0	0	0	21	0	0	0	0	0	0	0	0	20	0	1	0	1
0	0	0	0	0	10	0	0	0	0	0	0	0	0	18	1	0	0	0
0	0	0	1	0	56	0	0	0	0	0	0	0	0	81	5	1	0	4
0	0	0	0	0	12	0	0	0	0	0	0	0	0	17	3	0	0	1
0	0	0	0	0	14	0	0	0	0	0	0	0	0	23	1	0	0	0
0	0	0	0	0	15	0	0	0	0	0	0	0	0	19	1	0	0	1
0	0	0	0	0	19	0	0	0	0	0	0	0	0	24	1	0	0	1
0	0	0	0	0	60	0	0	0	0	0	0	0	0	83	6	0	0	3
0	0	0	0	0	18	0	0	0	0	0	0	0	0	16	0	0	0	0
0	0	0	0	0	12	0	0	0	0	0	0	0	0	21	0	0	0	1
0	0	0	0	0	17	0	0	0	0	0	0	0	0	18	0	0	0	0
0	0	0	0	0	12	0	0	0	0	0	0	0	0	17	1	0	0	1
0	0	0	0	0	59	0	0	0	0	0	0	0	0	72	1	0	0	2
7	1	2	1	0	973	0	0	0	0	0	0	0	0	882	70	7	1	37

M/C	P/C	тот	D => A							тот	CAR	LGV	OGV1	D => B		M/C	P/C	тот
			CAR	LGV	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV			
0	0	7	2	0	0	0	0	0	0	2	30	1	0	1	1	0	0	33
0	0	20	1	1	0	0	0	0	0	2	24	2	2	2	2	0	0	32
0	0	14	3	1	1	0	0	0	0	5	27	5	3	0	1	0	0	36
0	0	21	6	0	0	0	0	0	0	6	70	3	1	0	5	0	0	79
0	0	62	12	2	1	0	0	0	0	15	151	11	6	3	9	0	0	180
0	0	30	3	1	0	0	0	0	0	4	56	5	4	0	5	0	0	70
0	0	19	2	1	0	0	0	0	0	3	48	4	0	0	0	0	1	53
0	0	20	2	0	0	0	0	0	0	2	42	5	4	3	0	0	0	54
0	0	15	8	0	0	0	0	0	0	8	58	10	1	1	3	0	0	73
0	0	84	15	2	0	0	0	0	0	17	204	24	9	4	8	0	1	250
0	0	30	14	1	0	0	0	0	0	15	72	15	2	2	1	0	0	92
0	0	26	13	0	0	0	0	0	0	13	44	7	3	0	4	0	0	58
0	0	17	16	2	0	0	0	0	0	18	56	10	1	0	1	0	1	69
0	0	23	10	0	1	0	0	0	0	11	54	26	4	0	2	0	0	86
0	0	96	53	3	1	0	0	0	0	57	226	58	10	2	8	0	1	305
0	0	16	11	3	1	0	0	0	0	15	57	30	2	0	0	0	0	89
0	0	19	8	1	0	0	0	0	0	9	49	8	1	0	0	0	0	58
0	0	10	3	0	0	0	0	0	0	3	41	6	0	0	1	0	1	49
0	0	23	8	1	0	0	0	0	0	9	62	7	4	0	0	0	1	74
0	0	68	30	5	1	0	0	0	0	36	209	51	7	0	1	0	2	270
0	0	18	6	3	0	0	0	0	0	9	56	10	1	1	1	0	0	69
0	0	15	7	1	0	0	0	0	0	8	53	11	2	1	0	0	0	67
0	0	25	8	2	1	1	0	0	0	12	46	10	3	1	1	0	1	62
0	0	22	14	2	0	0	0	0	0	16	68	6	0	2	0	0	0	76
0	0	80	35	8	1	1	0	0	0	45	223	37	6	5	2	0	1	274
0	0	18	10	0	0	0	0	0	0	10	66	7	3	0	1	0	1	78
0	1	18	12	0	0	0	0	0	0	12	66	7	1	2	0	0	1	77
0	0	16	11	1	0	0	0	0	0	12	66	4	2	2	1	0	0	75
0	0	13	12	2	0	0	0	0	0	14	53	7	0	0	1	0	0	61
0	1	65	45	3	0	0	0	0	0	48	251	25	6	4	3	0	2	291
0	0	16	11	0	0	0	0	0	0	11	58	2	0	0	1	0	2	63
0	0	16	10	0	0	0	0	0	0	10	51	5	2	2	1	0	0	61
0	0	13	9	1	0	0	0	0	0	10	59	9	1	2	1	0	0	72
0	0	17	10	0	0	0	0	0	0	10	62	6	2	1	0	0	0	71
0	0	62	40	1	0	0	0	0	0	41	230	22	5	5	3	0	2	267
0	0	12	11	2	0	0	0	0	0	13	62	5	1	0	1	0	0	69
0	0	12	11	1	0	0	0	0	0	12	65	1	2	1	2	0	0	71
0	0	16	7	0	0	0	0	0	0	7	61	5	1	1	0	0	0	68
0	0	27	7	1	0	1	0	1	0	10	52	4	1	2	1	0	0	60
0	0	67	36	4	0	1	0	1	0	42	240	15	5	4	4	0	0	268
0	0	15	13	3	0	0	0	0	0	16	73	8	0	1	1	0	0	83
0	0	13	7	3	1	0	0	0	0	11	61	3	0	1	1	0	0	66
0	0	14	4	0	1	0	0	0	0	5	55	4	0	0	0	0	1	60
0	0	34	11	1	0	0	0	0	0	12	58	7	0	0	2	0	0	67
0	0	76	35	7	2	0	0	0	0	44	247	22	0	2	4	0	1	276
0	0	22	12	0	0	0	0	0	0	12	57	3	0	1	0	0	1	62
0	0	21	9	1	1	0	0	0	0	11	52	7	0	0	3	0	0	62
0	0	20	10	1	1	0	0	0	0	12	61	3	1	0	2	0	0	67
0	0	17	8	1	0	0	0	0	0	9	61	6	0	1	2	0	0	70
0	0	80	39	3	2	0	0	0	0	44	231	19	1	2	7	0	1	261
0	0	20	12	1	0	0	0	0	0	13	52	2	0	1	0	0	0	55
0	0	30	11	1	0	0	0	0	0	12	53	1	0	0	1	0	0	55
0	0	22	15	0	0	0	0	0	0	15	64	1	0	0	0	0	1	66
0	0	19	13	0	0	0	0	0	0	13	76	2	0	0	0	0	1	79
0	0	91	51	2	0	0	0	0	0	53	245	6	0	1	1	0	2	255
0	0	21	18	1	0	0	0	0	0	19	58	3	0	0	0	0	2	63
0	0	24	24	0	0	0	0	0	0	24	65	4	0	0	1	0	1	71
0	0	21	19	0	0	0	1	0	0	20	56	0	0	0	0	0	1	57
0	0	26	15	1	0	0	0	0	0	16	63	0	0	0	0	0	0	63
0	0	92	76	2	0	0	1	0	0	79	242	7	0	0	1	0	4	254
0	0	16	16	0	0	0	0	0	0	16	69	0	0	0	1	0	0	70
0	0	22	14	0	0	0	0	0	0	14	55	4	0	0	1	0	0	60
0	0	18	20	0	0	0	0	0	0	20	72	1	0	0	1	0	0	74
0	0	19	22	0	0	0	0	0	0	22	50	0	0	0	0	0	0	50
0	0	75	72	0	0	0	0	0	0	72	246	5	0	0	3	0	0	254
0	1	998	539	42	8	2	1	1	0	593	2945	302	55	32	54	0	17	3405

CAR	LGv	OGV1	$\begin{gathered} \hline \text { D }=>\text { C } \\ \text { oGv2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGv	OGV1	$\begin{gathered} \text { D => D } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
9	2	0	0	0	0	0	11	0	0	0	0	0	0	0	0
8	1	0	0	2	0	0	11	0	0	0	0	0	0	0	0
9	2	0	0	2	0	0	13	0	0	0	0	0	0	0	0
28	6	0	0	4	0	0	38	0	0	0	0	0	0	0	0
17	1	0	0	0	0	0	18	0	0	0	0	0	0	0	0
38	0	0	0	2	0	0	40	0	0	0	0	0	0	0	0
27	2	0	0	0	0	0	29	0	0	0	0	0	0	0	0
19	1	0	0	2	0	0	22	0	0	0	0	0	0	0	0
101	4	0	0	4	0	0	109	0	0	0	0	0	0	0	0
13	0	1	0	0	0	0	14	0	0	0	0	0	0	0	0
11	1	0	0	1	0	0	13	0	0	0	0	0	0	0	0
8	3	0	0	0	0	0	11	0	0	0	0	0	0	0	0
4	1	0	0	2	0	0	7	0	0	0	0	0	0	0	0
36	5	1	0	3	0	0	45	0	0	0	0	0	0	0	0
7	3	0	0	0	0	0	10	0	0	0	0	0	0	0	0
7	1	0	0	1	0	0	9	0	0	0	0	0	0	0	0
11	2	0	0	1	0	0	14	0	0	0	0	0	0	0	0
11	2	1	0	0	0	0	14	0	0	0	0	0	0	0	0
36	8	1	0	2	0	0	47	0	0	0	0	0	0	0	0
8	0	2	0	1	0	0	11	0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0
12	2	0	0	0	0	0	14	0	0	0	0	0	0	0	0
12	1	0	0	1	0	0	14	0	0	0	0	0	0	0	0
36	4	2	0	2	0	0	44	0	0	0	0	0	0	0	0
9	0	1	0	0	0	0	10	0	0	0	0	0	0	0	0
12	1	1	0	1	0	0	15	0	0	0	0	0	0	0	0
6	2	0	0	1	1	0	10	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
37	4	2	0	2	1	0	46	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
10	1	0	1	1	0	0	13	0	0	0	0	0	0	0	0
15	2	0	0	2	1	0	20	0	0	0	0	0	0	0	0
12	0	0	0	1	0	0	13	0	0	0	0	0	0	0	0
47	3	0	1	4	1	0	56	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	10	0	0	0	0	0	0	0	0
14	0	0	0	1	0	0	15	0	0	0	0	0	0	0	0
11	1	0	0	1	0	0	13	0	0	0	0	0	0	0	0
41	1	0	0	3	0	0	45	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
7	4	0	0	1	0	0	12	1	0	0	0	0	0	0	1
23	0	0	0	0	0	0	23	0	0	0	0	0	0	0	0
24	1	0	0	0	0	0	25	0	0	0	0	0	0	0	0
64	6	0	0	1	0	0	71	1	0	0	0	0	0	0	1
12	1	0	0	1	0	1	15	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
12	0	0	0	0	2	0	14	0	0	0	0	0	0	0	0
13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
45	3	0	0	1	2	1	52	0	0	0	0	0	0	0	0
17	1	0	0	1	1	0	20	1	0	0	0	0	0	0	1
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
14	0	0	0	1	0	0	15	0	0	0	0	0	0	0	0
14	0	0	0	1	0	0	15	0	0	0	0	0	0	0	0
57	2	0	0	3	1	0	63	1	0	0	0	0	0	0	1
14	0	0	0	1	0	0	15	0	0	0	0	0	0	0	0
12	0	0	0	2	0	0	14	0	0	0	0	0	0	0	0
11	2	0	0	2	0	0	15	0	0	0	0	0	0	0	0
21	0	0	0	2	0	0	23	0	0	0	0	0	0	0	0
58	2	0	0	7	0	0	67	0	0	0	0	0	0	0	0
18	0	0	0	1	0	0	19	0	0	0	0	0	0	0	0
14	1	0	0	1	0	0	16	0	0	0	0	0	0	0	0
16	0	0	0	1	0	0	17	0	0	0	0	0	0	0	0
20	0	0	0	1	0	0	21	0	0	0	0	0	0	0	0
68	1	0	0	4	0	0	73	0	0	0	0	0	0	0	0
654	49	6	1	40	5	1	756	2	0	0	0	0	0	0	2

Survey Name:	ITS J-372 Malahide
Site:	Site 2
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4510026,-6.1511518$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

TIME	A $=>\mathrm{A}$							тот	CAR	LGV	OGV1	$\begin{gathered} \text { A }=>\text { B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR
	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C										
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	48
07:15	0	0	0	0	0	0	0	0	2	-	0	0	0	0	0	2	71
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89
07:45	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	100
H/TOT	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	308
08:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	104
08:15	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	121
08:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	74
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60
H/TOT	0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14	359
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	57
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	89
09:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	96
09:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	89
H/TOT	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	331
10:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	60
10:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	89
10:30	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	86
10:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	66
H/TOT	0	0	0	0	0	0	0	0	11	1	0	0	0	0	0	12	301
11:00	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	79
11:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	77
11:30	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7	81
11:45	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	85
H/TOT	0	0	0	0	0	0	0	0	25	2	0	0	0	0	0	27	322
12:00	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	78
12:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	82
12:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	82
12:45	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5	95
H/TOT	0	0	0	0	0	0	0	0	19	1	0	0	0	0	0	20	337
13:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	85
13:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	108
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	63
13:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	88
H/TOT	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	344
14:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	86
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	82
14:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	82
14:45	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	72
H/TOT	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	322
15:00	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	72
15:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	83
15:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	94
15:45	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	79
H/TOT	0	0	0	0	0	0	0	0	12	1	0	0	0	0	0	13	328
16:00	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10	88
16:15	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	93
16:30	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	96
16:45	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	82
H/TOT	0	0	0	0	0	0	0	0	33	1	0	0	0	0	0	34	359
17:00	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	87
17:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	92
17:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	101
17:45	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	83
H/TOT	0	0	0	0	0	0	0	0	27	0	0	0	0	0	0	27	363
18:00	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13	90
18:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	95
18:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	67
18:45	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	100
H/TOT	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	24	352
19:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	88
19:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	99
19:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	77
19:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	84
H/TOT	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	348
13 HR TOT	0	0	0	0	0	0	0	0	196	7	0	0	0	0	0	203	4374

LGV	A => C			M/C	P/C	тот	CAR	LGv	OGV1	$\begin{gathered} \text { B }=>\text { A } \\ \text { oGv2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { B => B } \\ \text { OGV2 } \end{gathered}$
	OGV1	OGV2	PSV															
2	1	1	2	0	1	55	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	5	0	1	81	,	0	0	0	0	0	0	1	0	0	0	0
1	0	0	3	0	0	93	1	0	0	0	0	0	0	1	0	0	0	0
4	0	0	2	0	0	106	0	0	0	0	0	0	0	0	0	0	0	0
11	1	1	12	0	2	335	2	0	0	0	0	0	0	2	0	0	0	0
2	0	0	3	0	0	109	0	0	1	0	0	0	0	1	0	0	0	0
5	1	0	1	0	0	128	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	3	0	0	81	11	0	0	0	0	0	0	11	0	0	0	0
6	1	0	0	0	0	67	30	0	0	0	0	0	0	30	0	0	0	0
16	3	0	7	0	0	385	41	0	1	0	0	0	0	42	0	0	0	0
6	0	0	0	0	0	63	13	0	0	0	0	0	0	13	0	0	0	0
7	2	2	2	0	2	104	1	0	0	0	0	0	0	1	0	0	0	0
9	1	1	1	0	0	108	2	0	0	0	0	0	0	2	0	0	0	0
8	2	0	1	0	0	100	1	0	0	0	0	0	0	1	0	0	0	0
30	5	3	4	0	2	375	17	0	0	0	0	0	0	17	0	0	0	0
6	2	1	2	0	0	71	4	0	0	0	0	0	0	4	0	0	0	0
5	0	1	1	0	0	96	1	0	0	0	0	0	0	1	0	0	0	0
9	5	2	1	1	0	104	2	1	0	0	0	0	0	3	0	0	0	0
5	2	0	1	0	0	74	3	0	0	0	0	0	0	3	0	0	0	0
25	9	4	5	1	0	345	10	1	0	0	0	0	0	11	0	0	0	0
5	2	1	1	1	0	89	1	0	0	0	0	0	0	1	0	0	0	0
9	5	0	0	0	0	91	3	0	1	0	0	0	0	4	0	0	0	0
7	1	1	1	0	0	91	0	0	0	0	0	0	0	0	0	0	0	0
13	5	1	0	0	1	105	0	1	0	0	0	0	0	1	0	0	0	0
34	13	3	2	1	1	376	4	1	1	0	0	0	0	6	0	0	0	0
9	2	1	1	0	0	91	3	0	0	0	0	0	0	3	0	0	0	0
8	0	1	0	0	0	91	4	0	0	0	0	0	0	4	0	0	0	0
8	2	1	2	0	2	97	1	0	0	0	0	0	0	1	0	0	0	0
11	1	0	0	0	0	107	1	0	0	0	0	0	0	1	0	0	0	0
36	5	3	3	0	2	386	9	0	0	0	0	0	0	9	0	0	0	0
6	0	0	4	0	0	95	1	0	0	0	0	0	0	1	0	0	0	0
16	2	0	1	0	0	127	0	0	0	0	0	0	0	0	0	0	0	0
1	3	1	1	0	0	69	6	0	0	0	0	0	0	6	0	0	0	0
6	1	4	0	0	0	99	1	0	0	0	0	0	0	1	0	0	0	0
29	6	5	6	0	0	390	8	0	0	0	0	0	0	8	0	0	0	0
3	3	1	4	0	0	97	1	0	0	0	0	0	0	1	0	0	0	0
10	2	2	1	0	1	98	3	1	0	0	0	0	0	4	0	0	0	0
7	1	0	1	0	0	91	12	0	0	0	0	0	0	12	0	0	0	0
7	3	2	2	1	0	87	14	0	0	0	0	0	0	14	0	0	0	0
27	9	5	8	1	1	373	30	1	0	0	0	0	0	31	0	0	0	0
14	1	0	1	0	0	88	4	0	0	0	0	0	0	4	0	0	0	0
21	2	1	1	0	0	108	0	0	0	0	0	0	0	0	0	0	0	0
7	1	3	1	0	0	106	3	0	0	0	0	0	0	3	0	0	0	0
15	1	1	0	0	1	97	2	1	0	0	0	0	0	3	0	0	0	0
57	5	5	3	0	1	399	9	1	0	0	0	0	0	10	0	0	0	0
7	0	0	2	0	0	97	3	0	0	0	0	0	0	3	0	0	0	0
2	0	0	0	0	0	95	11	0	0	0	0	0	0	11	0	0	0	0
7	2	0	1	0	0	106	3	0	0	0	0	0	0	3	0	0	0	0
10	1	0	2	0	1	96	3	0	0	0	0	0	0	3	0	0	0	0
26	3	0	5	0	1	394	20	0	0	0	0	0	0	20	0	0	0	0
6	1	0	0	0	0	94	3	0	0	0	0	0	0	3	0	0	0	0
5	0	1	4	0	0	102	3	0	0	0	0	0	0	3	0	0	0	0
4	1	1	0	0	0	107	1	0	0	0	0	0	0	1	0	0	0	0
4	0	0	1	0	0	88	6	0	0	0	0	0	0	6	0	0	0	0
19	2	2	5	0	0	391	13	0	0	0	0	0	0	13	0	0	0	0
2	0	0	3	0	0	95	10	0	0	0	0	0	0	10	0	0	0	0
5	0	0	1	0	0	101	2	0	0	0	0	0	0	2	0	0	0	0
2	0	0	1	0	0	70	4	0	0	0	0	0	0	4	0	0	0	0
1	0	1	2	0	0	104	5	0	0	0	0	0	0	5	0	0	0	0
10	0	1	7	0	0	370	21	0	0	0	0	0	0	21	0	0	0	0
3	0	0	3	0	0	94	3	0	0	0	0	0	0	3	0	0	0	0
0	0	0	0	0	1	100	0	0	0	0	0	0	0	0	0	0	0	0
3	0	1	1	0	0	82	6	0	0	0	0	0	0	6	0	0	0	0
1	0	0	3	0	0	88	0	0	0	0	0	0	0	0	0	0	0	0
7	0	1	7	0	1	364	9	0	0	0	0	0	0	9	0	0	0	0
327	61	33	74	3	11	4883	193	4	2	0	0	0	0	199	0	0	0	0

PSV	M/C	P/C	тот	B => C							тот	$\mathrm{C}=>\mathrm{A}$						
				CAR	LGv	OGV1	ogv2	PSV	M/C	P/C		CAR	LGv	OGV1	OGV2	PSV	M/C	P/C
0	0	0	0	1	1	0	0	0	0	0	2	34	1	0	2	1	0	0
0	0	0	0	1	1	0	0	0	0	0	2	40	8	4	1	3	0	0
0	0	0	0	4	0	0	0	0	0	0	4	53	6	1	0	3	0	0
0	0	0	0	4	1	0	0	0	0	0	5	99	6	2	0	6	0	0
0	0	0	0	10	3	0	0	0	0	0	13	226	21	7	3	13	0	0
0	0	0	0	5	0	0	0	0	0	0	5	104	5	2	1	4	0	0
0	0	0	0	6	0	0	0	0	0	0	6	113	2	1	0	1	0	1
0	0	0	0	30	0	0	0	0	0	0	30	102	8	5	3	1	0	0
0	0	0	0	40	2	0	0	0	0	0	42	142	8	3	0	3	0	0
0	0	0	0	81	2	0	0	0	0	0	83	461	23	11	4	9	0	1
0	0	0	0	39	2	0	0	1	0	0	42	104	9	0	1	1	0	0
0	0	0	0	22	1	0	0	0	0	0	23	83	7	2	0	4	0	0
0	0	0	0	12	0	0	0	0	0	0	12	70	13	1	0	2	0	1
0	0	0	0	6	1	0	0	0	0	0	7	74	16	4	0	1	0	0
0	0	0	0	79	4	0	0	1	0	0	84	331	45	7	1	8	0	1
0	0	0	0	6	0	0	0	0	0	0	6	86	10	0	0	2	0	0
0	0	0	0	4	0	0	0	0	0	0	4	67	2	0	0	0	0	0
0	0	0	0	8	0	0	0	0	0	0	8	59	7	1	0	1	0	0
0	0	0	0	7	0	0	0	0	0	0	7	85	7	2	0	0	0	1
0	0	0	0	25	0	0	0	0	0	0	25	297	26	3	0	3	0	1
0	0	0	0	6	1	0	0	0	0	0	7	66	8	1	1	2	0	0
0	0	0	0	3	1	0	0	0	0	0	4	78	8	2	2	0	0	2
0	0	0	0	3	0	0	0	0	0	0	3	76	15	4	0	0	0	1
0	0	0	0	9	0	0	0	0	0	0	9	104	8	1	3	1	0	1
0	0	0	0	21	2	0	0	0	0	0	23	324	39	8	6	3	0	4
0	0	0	0	5	0	0	0	0	0	0	5	88	7	2	1	2	0	1
0	0	0	0	5	1	0	0	0	0	0	6	99	11	2	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	109	3	3	2	1	0	0
0	0	0	0	4	0	0	0	0	0	0	4	84	9	0	0	0	0	1
0	0	0	0	15	1	0	0	0	0	0	16	380	30	7	3	3	0	2
0	0	0	0	11	3	0	0	0	0	0	14	101	11	1	0	2	1	0
0	0	0	0	14	0	1	0	0	0	0	15	127	3	3	1	1	0	1
0	0	0	0	8	1	0	0	1	0	0	10	95	11	5	2	1	0	0
0	0	0	0	15	1	1	1	0	0	0	18	112	11	2	1	1	0	0
0	0	0	0	48	5	2	1	1	0	0	57	435	36	11	4	5	1	1
0	0	0	0	6	0	0	0	0	0	0	6	125	8	1	0	2	0	0
0	0	0	0	12	2	1	0	0	0	0	15	97	6	1	1	3	0	0
0	0	0	0	12	4	1	0	0	0	0	17	117	11	0	1	0	0	0
0	0	0	0	20	0	0	0	1	0	0	21	98	6	3	2	1	1	0
0	0	0	0	50	6	2	0	1	0	0	59	437	31	5	4	6	1	0
0	0	0	0	5	1	0	0	0	0	0	6	91	13	0	1	1	0	0
0	0	0	0	7	0	0	0	0	0	0	7	108	1	0	1	2	0	1
0	0	0	0	9	1	0	0	0	0	0	10	103	3	1	0	1	0	1
0	0	0	0	12	1	0	0	0	0	0	13	97	9	0	0	2	0	0
0	0	0	0	33	3	0	0	0	0	0	36	399	26	1	2	6	0	2
0	0	0	0	9	0	0	0	0	0	0	9	107	7	1	1	0	0	1
0	0	0	0	12	0	0	0	0	0	0	12	93	7	0	0	3	0	0
0	0	0	0	6	0	0	0	0	0	0	6	121	5	1	0	3	1	0
0	0	0	0	5	1	0	0	0	0	0	6	122	4	0	1	2	0	1
0	0	0	0	32	1	0	0	0	0	0	33	443	23	2	2	8	1	2
0	0	0	0	5	0	0	0	0	0	0	5	84	4	0	1	1	0	0
0	0	0	0	4	0	0	0	0	0	0	4	103	2	0	0	2	0	0
0	0	0	0	10	0	0	0	0	0	0	10	118	6	0	0	0	0	0
0	0	0	0	7	0	0	0	0	0	0	7	125	2	0	0	0	0	1
0	0	0	0	26	0	0	0	0	0	0	26	430	14	0	1	3	0	1
0	0	0	0	8	0	0	0	0	0	0	8	126	4	0	0	1	0	1
0	0	0	0	4	0	0	0	0	0	0	4	100	6	0	0	2	0	1
0	0	0	0	6	1	0	0	0	0	0	7	118	1	0	0	1	0	1
0	0	0	0	11	0	0	0	0	0	0	11	101	2	0	0	0	0	0
0	0	0	0	29	1	0	0	0	0	0	30	445	13	0	0	4	0	3
0	0	0	0	5	0	0	0	0	0	0	5	122	3	0	0	1	0	0
0	0	0	0	5	0	0	0	0	0	0	5	112	3	0	0	1	0	0
0	0	0	0	4	0	0	0	0	0	0	4	102	3	0	0	1	0	1
0	0	0	0	9	0	0	0	0	0	0	9	92	0	0	0	1	0	0
0	0	0	0	23	0	0	0	0	0	0	23	428	9	0	0	4	0	1
0	0	0	0	472	28	4	1	3	0	0	508	5036	336	62	30	75	3	19

тот	C => B							тот	CAR	LGv	OGV1	C => C		M/C	P/C	тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV			
38	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
56	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
63	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	2
113	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
270	8	0	0	0	0	0	0	8	2	0	0	0	0	0	0	2
116	4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
118	8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
119	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
509	13	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
115	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
96	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
87	7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
95	6	1	0	0	0	0	0	7	1	0	0	0	0	0	0	1
393	15	1	0	0	0	0	0	16	1	0	0	0	0	0	0	1
98	5	0	1	0	0	0	0	6	0	0	0	0	0	0	0	0
69	8	2	0	0	0	0	0	10	2	0	0	0	0	0	0	2
68	5	1	0	0	0	0	0	6	1	0	0	0	0	0	0	1
95	12	0	0	0	0	0	0	12	1	0	0	0	0	0	0	1
330	30	3	1	0	0	0	0	34	4	0	0	0	0	0	0	4
78	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
92	7	1	0	0	0	0	0	8	0	1	0	0	0	0	0	1
96	3	0	0	0	0	0	0	3	0	1	0	0	0	0	0	1
118	7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0
384	27	2	0	0	0	0	0	29	0	2	0	0	0	0	0	2
101	6	0	0	0	0	0	0	6	1	0	0	0	0	0	0	1
112	8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
118	7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0
94	6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
425	27	2	0	0	0	0	0	29	1	0	0	0	0	0	0	1
116	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
136	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
114	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
127	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
493	5	2	0	0	0	0	0	7	0	0	0	0	0	0	0	0
136	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
108	1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
129	2	0	0	0	0	0	0	2	1	1	0	0	0	0	0	2
111	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
484	13	1	0	0	0	0	0	14	1	1	0	0	0	0	0	2
106	4	0	0	0	0	0	0	4	1	0	0	0	0	0	0	1
113	3	1	0	0	0	0	0	4	1	0	0	0	0	0	0	1
109	8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
108	6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
436	21	3	0	0	0	0	0	24	2	0	0	0	0	0	0	2
117	9	2	0	0	0	0	0	11	0	0	0	0	0	0	0	0
103	21	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0
131	6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
130	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
481	47	4	0	0	0	0	0	51	0	0	0	0	0	0	0	0
90	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
107	11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
124	3	0	0	0	0	0	0	3	1	0	0	0	0	0	0	1
128	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
449	44	0	0	0	0	0	0	44	1	0	0	0	0	0	0	1
132	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
109	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
121	17	1	0	0	0	0	0	18	0	0	0	0	0	0	0	0
103	11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
465	50	3	0	0	0	0	0	53	1	0	0	0	0	0	0	1
126	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
116	13	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
107	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
93	2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
442	39	0	0	0	0	0	0	39	1	0	0	0	0	0	0	1
5561	339	21	1	0	0	0	0	361	14	3	0	0	0	0	0	17

Survey Name:	ITS J-372 Malahide
Site:	Site 3
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4508276,-6.1490066$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys

TIME	A => A							тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { A }=>\text { B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C										
07:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	35
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	60
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	73
07:45	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	80
H/TOT	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	248
08:00	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	91
08:15	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	115
08:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	62
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59
H/TOT	0	0	0	0	0	0	0	0	18	0	0	0	0	0	0	18	327
09:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	40
09:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	6	71
09:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	91
09:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	83
H/TOT	0	0	0	0	0	0	0	0	13	0	0	0	0	0	1	14	285
10:00	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	61
10:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	92
10:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	67
10:45	0	0	0	0	0	0	0	0	8	0	2	1	0	0	0	11	60
H/TOT	0	0	0	0	0	0	0	0	24	0	2	1	0	0	0	27	280
11:00	0	0	0	0	0	0	0	0	4	2	1	0	0	0	0	7	85
11:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	75
11:30	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	81
11:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	79
H/TOT	0	0	0	0	0	0	0	0	13	2	1	0	0	0	0	16	320
12:00	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4	67
12:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	71
12:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	79
12:45	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4	74
H/TOT	0	0	0	0	0	0	0	0	15	2	0	0	0	0	0	17	291
13:00	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	78
13:15	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	89
13:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	53
13:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	68
H/TOT	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	20	288
14:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	89
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	76
14:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	59
14:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	70
H/TOT	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	294
15:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	75
15:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	73
15:30	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10	87
15:45	0	0	0	0	0	0	0	0	5	2	0	0	0	0	0	7	80
H/TOT	0	0	0	0	0	0	0	0	22	3	0	0	0	0	0	25	315
16:00	0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4	90
16:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	89
16:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	91
16:45	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	70
H/TOT	0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14	340
17:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	85
17:15	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	79
17:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	80
17:45	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	83
H/TOT	0	0	0	0	0	0	0	0	19	0	0	0	0	0	0	19	327
18:00	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	78
18:15	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	78
18:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	59
18:45	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	78
H/TOT	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	20	293
19:00	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	73
19:15	0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	95
19:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	56
19:45	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	12	79
H/TOT	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	30	303
13 HR TOT	0	0	0	0	0	0	0	0	227	8	3	1	0	0	1	240	3911

LGv	$\begin{array}{ll} \hline & A=>C \\ \text { oGV1 } & \text { OGV2 } \end{array}$		PSV	м/С	P/C	тот	CAR	LGv	ogv1	$\begin{gathered} \hline \text { B }=>A \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGv	OGV1	$\begin{gathered} \hline \text { B }=>\text { B } \\ \text { oGV2 } \end{gathered}$
3	1	0	3	0	0	42	4	0	0	0	0	0	0	4	0	0	0	0
1	0	0	4	0	0	65	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	3	0	0	76	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	2	0	0	83	3	0	0	0	0	0	0	3	0	0	0	0
5	1	0	12	0	0	266	8	0	0	0	0	0	0	8	0	0	0	0
2	0	0	3	0	0	96	6	1	0	0	0	0	0	7	0	0	0	0
6	1	0	1	0	0	123	6	0	0	0	0	0	0	6	0	0	0	0
4	2	0	3	0	0	71	1	0	0	0	0	0	0	1	0	0	0	0
6	0	0	1	0	0	66	7	0	0	0	0	0	0	7	0	0	0	0
18	3	0	8	0	0	356	20	1	0	0	0	0	0	21	0	0	0	0
5	0	0	0	0	0	45	15	0	0	0	0	0	0	15	0	0	0	0
9	1	3	2	0	0	86	9	0	0	0	0	0	0	9	0	0	0	0
5	1	0	2	0	0	99	8	0	0	0	0	0	0	8	0	0	0	0
10	2	0	0	0	0	95	10	1	1	0	0	0	0	12	0	0	0	0
29	4	3	4	0	0	325	42	1	1	0	0	0	0	44	0	0	0	0
5	2	1	2	0	0	71	1	0	0	0	1	0	0	2	0	0	0	0
4	1	1	1	0	0	99	6	0	0	0	0	0	0	6	0	0	0	0
9	2	3	1	0	0	82	8	2	0	0	0	0	0	10	0	0	0	0
6	1	0	1	0	0	68	8	2	1	0	0	0	0	11	0	0	0	0
24	6	5	5	0	0	320	23	4	1	0	1	0	0	29	0	0	0	0
5	1	2	1	1	0	95	8	0	0	0	0	0	0	8	0	0	0	0
9	3	1	1	0	0	89	6	0	0	0	0	0	0	6	0	0	0	0
5	2	1	1	1	0	91	6	1	0	0	0	0	0	7	0	0	0	0
14	4	0	1	0	2	100	7	3	0	0	0	0	0	10	0	0	0	0
33	10	4	4	2	2	375	27	4	0	0	0	0	0	31	0	0	0	0
8	2	1	1	0	0	79	9	0	0	0	0	0	0	9	0	0	0	0
6	0	2	1	0	0	80	6	1	0	0	0	0	0	7	0	0	0	0
8	3	0	1	0	1	92	10	2	0	0	0	0	0	12	0	0	0	0
12	0	1	2	0	0	89	5	0	0	0	0	0	0	5	0	0	0	0
34	5	4	5	0	1	340	30	3	0	0	0	0	0	33	0	0	0	0
18	1	1	2	1	0	101	5	0	0	0	0	0	0	5	0	0	0	0
11	1	0	1	0	0	102	6	0	0	0	0	0	0	6	0	0	0	0
3	2	1	2	0	0	61	11	0	0	0	0	0	0	11	0	0	0	0
6	1	4	0	0	0	79	18	0	0	0	0	0	0	18	0	0	0	0
38	5	6	5	1	0	343	40	0	0	0	0	0	0	40	0	0	0	0
5	1	1	5	0	0	101	21	0	1	0	0	0	0	22	0	0	0	0
8	2	1	1	0	0	88	1	0	1	0	0	0	0	2	0	0	0	0
7	1	0	0	0	1	68	20	0	1	0	0	0	0	21	0	0	0	0
8	2	2	1	1	1	85	42	0	0	0	0	0	0	42	0	0	0	0
28	6	4	7	1	2	342	84	0	3	0	0	0	0	87	0	0	0	0
4	2	0	3	0	0	84	12	0	1	0	0	0	0	13	0	0	0	0
19	1	3	0	0	0	96	7	0	0	0	0	0	0	7	0	0	0	0
9	2	1	0	0	0	99	11	1	0	0	0	0	0	12	0	0	0	0
11	3	1	0	0	0	95	7	1	0	0	0	0	0	8	0	0	0	0
43	8	5	3	0	0	374	37	2	1	0	0	0	0	40	0	0	0	0
4	0	0	2	0	0	96	23	0	0	0	0	0	0	23	0	0	0	0
8	2	0	3	0	0	102	19	1	0	0	0	0	0	20	0	0	0	0
9	2	0	1	0	0	103	14	0	0	0	0	0	0	14	0	0	0	0
6	0	0	1	0	0	77	11	0	0	0	0	0	0	11	0	0	0	0
27	4	0	7	0	0	378	67	1	0	0	0	0	0	68	0	0	0	0
7	0	0	0	0	0	92	20	0	0	0	0	0	0	20	0	0	0	0
5	1	1	4	0	0	90	14	0	0	0	0	0	0	14	0	0	0	0
4	0	0	1	0	0	85	19	0	0	0	0	0	0	19	0	0	0	0
3	0	0	2	0	0	88	12	0	0	0	0	0	0	12	0	0	0	0
19	1	1	7	0	0	355	65	0	0	0	0	0	0	65	0	0	0	0
5	0	0	3	0	0	86	16	0	0	0	0	0	0	16	0	0	0	0
3	0	0	0	0	0	81	12	0	0	0	0	0	0	12	0	0	0	0
3	0	0	1	0	0	63	11	0	0	0	0	0	0	11	0	0	0	0
2	0	0	2	0	0	82	10	0	0	0	0	0	0	10	0	0	0	0
13	0	0	6	0	0	312	49	0	0	0	0	0	0	49	0	0	0	0
3	0	0	3	0	0	79	12	0	0	0	0	0	0	12	0	0	0	0
1	0	0	0	0	0	96	7	0	0	0	0	0	0	7	0	0	0	0
1	0	1	1	0	0	59	12	0	0	0	0	0	0	12	0	0	0	0
2	0	0	3	0	0	84	16	0	0	0	0	0	0	16	0	0	0	0
7	0	1	7	0	0	318	47	0	0	0	0	0	0	47	0	0	0	0
318	53	33	80	4	5	4404	539	16	6	0	1	0	0	562	0	0	0	0

PSV	M/C	P/C	тот	B => C							тот	CAR	LGv	OGV1	$\mathrm{C}=>\mathrm{A}$		M/C	P/C
				CAR	LGv	OGV1	ogv2	PSV	M/C	P/C					OGV2	PSV		
0	0	0	0	10	0	0	0	0	0	0	10	27	1	0	1	2	0	0
0	0	0	0	7	0	0	0	0	0	0	7	35	4	2	1	2	0	0
0	0	0	0	13	0	0	0	0	0	0	13	45	5	1	0	3	0	0
0	0	0	0	10	0	0	0	0	0	0	10	76	5	2	0	6	0	0
0	0	0	0	40	0	0	0	0	0	0	40	183	15	5	2	13	0	0
0	0	0	0	13	0	0	0	0	0	0	13	78	4	2	1	3	0	0
0	0	0	0	13	0	0	1	0	0	0	14	91	4	0	0	1	0	1
0	0	0	0	20	0	0	0	0	0	0	20	70	7	0	0	1	0	0
0	0	0	0	20	1	0	0	0	0	0	21	110	7	0	0	1	0	0
0	0	0	0	66	1	0	1	0	0	0	68	349	22	2	1	6	0	1
0	0	0	0	18	2	0	0	0	0	0	20	88	5	0	0	1	0	1
0	0	0	0	17	1	0	0	0	0	2	20	60	5	0	0	4	0	0
0	0	0	0	4	1	0	0	0	0	0	5	63	10	0	0	2	0	1
0	0	0	0	5	0	0	0	0	0	0	5	56	17	0	1	1	0	0
0	0	0	0	44	4	0	0	0	0	2	50	267	37	0	1	8	0	2
0	0	0	0	6	0	0	0	0	0	0	6	74	6	0	0	2	0	0
0	0	0	0	12	1	0	0	0	0	0	13	61	1	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	12	46	5	0	0	1	0	0
0	0	0	0	10	0	1	0	0	0	0	11	131	16	0	1	2	0	1
0	0	0	0	40	1	1	0	0	0	0	42	312	28	0	1	5	0	1
0	0	0	0	8	0	0	0	0	0	0	8	58	9	0	1	2	0	0
0	0	0	0	10	1	0	0	0	0	0	11	67	6	0	2	0	0	2
0	0	0	0	2	0	0	0	0	0	0	2	53	12	0	0	0	0	1
0	0	0	0	16	1	0	0	0	0	0	17	70	9	0	2	1	0	0
0	0	0	0	36	2	0	0	0	0	0	38	248	36	0	5	3	0	3
0	0	0	0	15	0	0	0	0	0	0	15	69	6	0	1	1	0	1
0	0	0	0	14	2	0	0	0	0	0	16	94	9	0	0	1	0	0
0	0	0	0	2	1	0	0	0	0	0	3	98	1	0	2	1	0	0
0	0	0	0	13	1	0	0	0	0	0	14	76	7	0	0	0	0	1
0	0	0	0	44	4	0	0	0	0	0	48	337	23	0	3	3	0	2
0	0	0	0	11	0	0	0	0	0	0	11	78	8	0	0	2	1	0
0	0	0	0	4	12	0	0	0	0	0	16	93	2	0	1	0	0	0
0	0	0	0	17	0	0	1	0	0	0	18	78	11	0	1	1	0	0
0	0	0	0	21	0	0	0	0	0	0	21	98	10	0	1	1	0	0
0	0	0	0	53	12	0	1	0	0	0	66	347	31	0	3	4	1	0
0	0	0	0	12	1	0	0	0	0	0	13	90	5	0	0	2	0	0
0	0	0	0	11	3	0	0	0	0	0	14	70	5	0	1	2	0	0
0	0	0	0	16	2	0	0	0	0	0	18	102	8	0	1	0	0	0
0	0	0	0	9	0	1	0	0	0	0	10	83	6	0	2	1	0	0
0	0	0	0	48	6	1	0	0	0	0	55	345	24	0	4	5	0	0
0	0	0	0	10	0	0	0	0	0	0	10	84	11	0	1	1	0	0
0	0	0	0	18	2	0	0	0	0	0	20	92	2	0	1	2	0	0
0	0	0	0	14	0	0	0	0	0	0	14	84	4	0	0	1	0	1
0	0	0	0	14	0	0	0	0	0	0	14	80	10	0	0	2	0	0
0	0	0	0	56	2	0	0	0	0	0	58	340	27	0	2	6	0	1
0	0	0	0	12	0	0	0	0	0	0	12	93	7	0	1	0	0	0
0	0	0	0	13	0	0	0	0	0	0	13	90	4	0	0	3	0	0
0	0	0	0	13	1	0	0	0	0	0	14	101	6	0	0	3	0	1
0	0	0	0	9	4	0	0	0	0	0	13	98	2	0	1	2	0	1
0	0	0	0	47	5	0	0	0	0	0	52	382	19	0	2	8	0	2
0	0	0	0	9	0	0	0	0	0	0	9	76	4	0	0	1	0	0
0	0	0	0	10	0	0	0	0	0	0	10	79	0	0	0	2	0	0
0	0	0	0	10	0	0	0	0	0	0	10	89	3	0	0	0	0	0
0	0	0	0	11	1	0	0	0	0	0	12	101	2	0	0	0	0	0
0	0	0	0	40	1	0	0	0	0	0	41	345	9	0	0	3	0	0
0	0	0	0	19	0	0	0	0	0	0	19	92	3	0	0	1	0	0
0	0	0	0	12	0	0	0	0	0	0	12	80	4	0	0	2	0	1
0	0	0	0	9	0	0	0	0	0	0	9	99	2	0	0	1	0	0
0	0	0	0	21	0	0	0	0	0	0	21	80	1	0	0	0	0	0
0	0	0	0	61	0	0	0	0	0	0	61	351	10	0	0	4	0	1
0	0	0	0	9	0	0	0	0	0	0	9	79	2	0	0	1	0	0
0	0	0	0	10	0	0	0	0	0	0	10	84	2	0	0	1	0	0
0	0	0	0	15	0	0	0	0	0	0	15	68	2	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	12	40	0	0	0	1	0	0
0	0	0	0	46	0	0	0	0	0	0	46	271	6	0	0	3	0	0
0	0	0	0	621	38	2	2	0	0	2	665	4077	287	7	24	71	1	13

тот	C => B							тот	CAR	LGv	OGV1	C => C		M/C	P/C	тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV			
31	5	0	0	0	0	0	0	5	0	0	0	1	0	0	0	1
44	6	2	1	0	0	0	0	9	0	0	0	0	0	0	0	0
54	8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
89	17	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0
218	36	2	1	0	0	0	0	39	0	0	0	1	0	0	0	1
88	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
97	21	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0
78	38	1	0	0	0	0	0	39	0	0	0	0	0	0	0	0
118	50	1	0	0	0	0	0	51	0	0	0	0	0	0	0	0
381	128	2	0	0	0	0	0	130	0	0	0	0	0	0	0	0
95	24	0	0	0	0	0	0	24	0	0	0	0	0	0	0	0
69	15	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0
76	10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
75	11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
315	60	3	0	0	0	0	0	63	1	0	0	0	0	0	0	1
82	9	0	0	0	0	0	0	9	1	0	0	0	0	0	0	1
62	8	0	0	0	0	0	0	8	1	0	0	0	0	0	0	1
52	14	1	0	0	0	0	0	15	0	0	0	0	0	0	0	0
151	17	0	0	0	0	0	0	17	2	0	0	0	0	0	0	2
347	48	1	0	0	0	0	0	49	4	0	0	0	0	0	0	4
70	11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
77	10	0	1	0	0	0	0	11	1	0	0	0	0	0	0	1
66	9	3	1	0	0	0	0	13	2	0	0	0	0	0	0	2
82	11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
295	41	3	2	0	0	0	0	46	5	0	0	0	0	0	0	5
78	20	1	0	0	0	0	0	21	0	0	0	0	0	0	0	0
104	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
102	18	2	0	0	0	0	0	20	0	0	0	0	0	0	0	0
84	17	3	0	0	0	0	0	20	0	0	0	0	0	0	0	0
368	71	6	0	0	0	0	0	77	0	0	0	0	0	0	0	0
89	25	2	0	0	0	0	0	27	1	0	0	0	0	0	0	1
96	28	0	1	1	0	1	0	31	0	0	0	0	0	0	0	0
91	22	0	0	0	0	0	0	22	0	0	0	0	0	0	0	0
110	20	1	1	0	0	0	0	22	0	0	0	0	0	0	0	0
386	95	3	2	1	0	1	0	102	1	0	0	0	0	0	0	1
97	33	1	0	0	0	0	0	34	1	0	0	0	0	0	0	1
78	20	2	0	0	1	0	0	23	2	0	0	0	0	0	0	2
111	28	1	0	0	0	0	0	29	0	0	0	0	0	0	0	0
92	13	0	1	0	0	0	0	14	0	0	0	0	0	0	0	0
378	94	4	1	0	1	0	0	100	3	0	0	0	0	0	0	3
97	15	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0
97	13	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
90	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
92	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
376	58	1	0	0	0	0	0	59	0	0	0	0	0	0	0	0
101	20	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
97	18	0	0	0	0	0	0	18	0	0	0	0	0	0	0	0
111	13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
104	17	0	0	0	0	0	0	17	0	0	0	0	0	0	0	0
413	68	1	0	0	0	0	0	69	0	0	0	0	0	0	0	0
81	5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
81	8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
92	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
103	15	0	0	0	0	0	0	15	1	0	0	0	0	0	0	1
357	42	1	0	0	0	0	0	43	1	0	0	0	0	0	0	1
96	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
87	7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0
102	13	0	0	0	0	0	0	13	0	0	0	0	0	0	0	0
81	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
366	55	1	0	0	0	0	0	56	0	0	0	0	0	0	0	0
82	18	0	0	0	0	0	0	18	0	0	0	0	0	0	0	0
87	20	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
70	27	0	0	0	0	0	0	27	0	0	0	0	0	0	0	0
41	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
280	84	0	0	0	0	0	0	84	0	0	0	0	0	0	0	0
4480	880	28	6	1	1	1	0	917	15	0	0	1	0	0	0	16

Survey Name:	ITS J-372 Malahide
Site:	Site 3
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	S3.4489025,-6.1531956
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys

time	A => A							тот	CAR	Lgv	A => B			M/C	P/C	тот	CAR	Lgv
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C				OGv1	OGV2	PSV					
07:00	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8	8	1
07:15	0	0	0	0	0	0	0	0	20	0	0	0	0	0	0	20	29	0
07:30	1	0	0	0	0	0	0	1	26	0	0	0	2	0	0	28	25	2
07:45	0	0	0	0	0	0	0	0	29	2	0	0	1	0	0	32	41	1
H/TOT	1	0	0	0	0	0	0	1	83	2	0	0	3	0	0	88	103	4
08:00	0	0	0	0	0	0	0	0	50	2	1	0	0	0	0	53	42	0
08:15	0	0	0	0	0	0	0	0	106	4	0	0	2	0	0	112	75	2
08:30	0	0	0	0	0	0	0	0	108	1	2	0	0	0	0	111	72	4
08:45	0	0	0	0	0	0	0	0	63	1	0	0	2	0	0	66	88	3
H/TOT	0	0	0	0	0	0	0	0	327	8	3	0	4	0	0	342	277	9
09:00	0	0	0	0	0	0	0	0	65	1	1	0	0	0	0	67	86	3
09:15	0	0	0	0	0	0	0	0	47	1	0	0	1	0	0	49	76	2
09:30	0	0	0	0	0	0	0	0	20	2	0	0	0	0	1	23	54	5
09:45	0	0	0	0	0	0	0	0	21	5	1	0	2	0	0	29	46	5
H/TOT	0	0	0	0	0	0	0	0	153	9	2	0	3	0	1	168	262	15
10:00	0	0	0	0	0	0	0	0	30	6	0	0	0	0	0	36	51	8
10:15	0	0	0	0	0	0	0	0	32	3	0	0	1	0	0	36	48	1
10:30	1	0	0	0	0	0	0	1	28	4	1	0	1	0	0	34	48	2
10:45	2	0	0	0	0	0	0	2	32	1	1	0	0	0	0	34	50	7
H/TOT	3	0	0	0	0	0	0	3	122	14	2	0	2	0	0	140	197	18
11:00	0	0	0	0	0	0	0	0	27	1	4	0	1	0	0	33	52	1
11:15	0	0	0	0	0	0	0	0	31	2	1	0	0	0	0	34	44	4
11:30	0	0	0	0	0	0	0	0	34	5	0	0	0	0	0	39	56	7
11:45	0	0	0	0	0	0	0	0	38	2	0	0	1	0	0	41	42	3
H/TOT	0	0	0	0	0	0	0	0	130	10	5	0	2	0	0	147	194	15
12:00	0	0	0	0	0	0	0	0	29	1	1	0	0	0	0	31	52	4
12:15	0	0	0	0	0	0	0	0	45	2	1	0	1	0	0	49	57	4
12:30	0	0	0	0	0	0	0	0	32	2	0	0	1	1	0	36	43	4
12:45	0	0	0	0	0	0	0	0	34	2	0	0	0	0	0	36	50	3
H/TOT	0	0	0	0	0	0	0	0	140	7	2	0	2	1	0	152	202	15
13:00	0	0	0	0	0	0	0	0	44	5	0	0	0	0	0	49	62	8
13:15	0	0	0	0	0	0	0	0	41	6	2	1	1	0	0	51	50	1
13:30	1	0	0	0	0	0	0	1	29	3	1	0	2	0	0	35	47	3
13:45	1	0	0	0	0	0	0	1	49	5	1	0	1	0	0	56	60	4
H/TOT	2	0	0	0	0	0	0	2	163	19	4	1	4	0	0	191	219	16
14:00	0	0	0	0	0	0	0	0	28	4	0	0	0	0	0	32	57	2
14:15	0	0	0	0	0	0	0	0	43	3	1	0	1	0	0	48	48	6
14:30	0	0	0	0	0	0	0	0	47	1	0	0	1	0	0	49	69	7
14:45	0	0	0	0	0	0	0	0	53	4	0	0	1	0	0	58	75	7
H/TOT	0	0	0	0	0	0	0	0	171	12	1	0	3	0	0	187	249	22
15:00	1	0	0	0	0	0	0	1	42	1	0	0	0	0	0	43	40	6
15:15	0	0	0	0	0	0	0	0	39	6	0	0	1	0	0	46	58	5
15:30	0	0	0	0	0	0	0	0	58	2	0	0	0	0	0	60	52	2
15:45	0	0	0	0	0	0	0	0	68	1	1	0	0	0	0	70	64	5
H/TOT	1	0	0	0	0	0	0	1	207	10	1	0	1	0	0	219	214	18
16:00	0	0	0	0	0	0	0	0	41	0	0	0	1	0	0	42	88	2
16:15	0	0	0	0	0	0	0	0	33	3	0	0	0	0	0	36	59	5
16:30	0	0	0	0	0	0	0	0	34	1	0	0	2	0	0	37	66	3
16:45	0	0	0	0	0	0	0	0	38	1	0	0	0	0	0	39	54	1
H/TOT	0	0	0	0	0	0	0	0	146	5	0	0	3	0	0	154	267	11
17:00	1	0	0	0	0	0	0	1	52	5	0	0	1	0	0	58	59	1
17:15	0	0	0	0	0	0	0	0	31	2	0	0	0	0	0	33	54	2
17:30	0	0	0	0	0	0	0	0	46	1	0	0	1	0	0	48	67	1
17:45	0	0	0	0	0	0	0	0	43	1	0	0	1	0	0	45	49	1
H/TOT	1	0	0	0	0	0	0	1	172	9	0	0	3	0	0	184	229	5
18:00	0	0	0	0	0	0	0	0	41	0	0	0	1	0	0	42	60	5
18:15	0	0	0	0	0	0	0	0	35	1	0	0	2	0	0	38	64	0
18:30	0	0	0	0	0	0	0	0	46	2	0	0	2	0	0	50	57	2
18:45	0	0	0	0	0	0	0	0	46	0	0	0	3	0	0	49	66	2
H/TOT	0	0	0	0	0	0	0	0	168	3	0	0	8	0	0	179	247	9
19:00	0	0	0	0	0	0	0	0	52	0	0	0	2	0	0	54	58	0
19:15	0	0	0	0	0	0	0	0	44	0	0	0	1	0	0	45	47	3
19:30	0	0	0	0	0	0	0	0	36	1	0	0	1	0	0	38	55	0
19:45	1	0	0	0	0	0	0	1	42	0	0	0	1	0	0	43	43	0
H/TOT	1	0	0	0	0	0	0	1	174	1	0	0	5	0	0	180	203	3
3 HR TOT	9	0	0	0	0	0	0	9	2156	109	20	1	43	1	1	2331	2863	160

	$\mathrm{B}=>\mathrm{A}$								B => B				
OGV1	OGv2	PSV	M/C	P/C	тот	CAR	Lgv	OGv1	OGv2	PSV	M/C	P/C	тот
0	0	0	0	0	9	0	0	0	0	0	0	0	0
0	0	2	0	0	31	0	0	0	0	0	0	0	0
0	0	3	0	1	31	0	0	0	0	0	0	0	0
0	0	2	0	0	44	0	0	0	0	0	0	0	0
0	0	7	0	1	115	0	0	0	0	0	0	0	0
1	0	4	0	0	47	0	0	0	0	0	0	0	0
0	0	1	0	0	78	0	0	0	0	0	0	0	0
0	0	1	0	0	77	0	0	0	0	0	0	0	0
0	0	1	0	0	92	0	0	0	0	0	0	0	0
1	0	7	0	0	294	0	0	0	0	0	0	0	0
0	0	0	0	0	89	0	0	0	0	0	0	0	0
0	0	1	0	0	79	0	0	0	0	0	0	0	0
1	0	1	0	0	61	0	0	0	0	0	0	0	0
0	0	0	0	0	51	0	0	0	0	0	0	0	0
1	0	2	0	0	280	0	0	0	0	0	0	0	0
0	0	0	0	0	59	0	0	0	0	0	0	0	0
1	0	1	0	0	51	0	0	0	0	0	0	0	0
0	0	0	0	0	50	0	0	0	0	0	0	0	0
0	0	1	0	0	58	0	0	0	0	0	0	0	0
1	0	2	0	0	218	0	0	0	0	0	0	0	0
4	0	0	0	0	57	0	0	0	0	0	0	0	0
2	0	1	0	0	51	0	0	0	0	0	0	0	0
1	0	0	0	0	64	1	0	0	0	0	0	0	1
0	0	1	0	0	46	0	0	0	0	0	0	0	0
7	0	2	0	0	218	1	0	0	0	0	0	0	1
1	0	0	0	1	58	0	0	0	0	0	0	0	0
0	0	1	1	0	63	0	0	0	0	0	0	0	0
0	0	0	0	0	47	0	0	0	0	0	0	0	0
1	0	1	0	0	55	0	0	0	0	0	0	0	0
2	0	2	1	1	223	0	0	0	0	0	0	0	0
2	0	0	1	0	73	0	0	0	0	0	0	0	0
1	0	1	0	0	53	0	0	0	0	0	0	0	0
0	1	0	0	0	51	0	0	0	0	0	0	0	0
1	0	3	0	0	68	0	1	0	0	0	0	0	1
4	1	4	1	0	245	0	1	0	0	0	0	0	1
0	0	0	0	0	59	0	0	0	0	0	0	0	0
1	0	1	0	0	56	0	0	0	0	0	0	0	0
0	0	1	0	0	77	0	0	0	0	0	0	0	0
1	0	1	0	0	84	1	0	0	0	0	0	0	1
2	0	3	0	0	276	1	0	0	0	0	0	0	1
0	0	0	0	0	46	0	0	0	0	0	0	0	0
0	0	1	0	1	65	0	0	0	0	0	0	0	0
0	0	0	0	0	54	0	0	0	0	0	0	0	0
0	0	1	0	0	70	1	0	0	0	0	0	0	1
0	0	2	0	1	235	1	0	0	0	0	0	0	1
0	0	0	0	2	92	0	0	0	0	0	0	0	0
0	0	1	0	0	65	0	0	0	0	0	0	0	0
0	0	1	0	0	70	0	0	0	0	0	0	0	0
0	0	1	0	1	57	0	0	0	0	0	0	0	0
0	0	3	0	3	284	0	0	0	0	0	0	0	0
0	0	0	0	0	60	0	0	0	0	0	0	0	0
1	0	1	0	0	58	0	0	0	0	0	0	0	0
0	0	1	0	0	69	0	0	0	0	0	0	0	0
1	0	0	0	0	51	0	0	0	0	0	0	0	0
2	0	2	0	0	238	0	0	0	0	0	0	0	0
0	0	1	0	3	69	0	0	0	0	0	0	0	0
0	0	1	0	0	65	0	0	0	0	0	0	0	0
0	0	0	0	0	59	0	0	0	0	0	0	0	0
0	0	1	0	0	69	0	0	0	0	0	0	0	0
0	0	3	0	3	262	0	0	0	0	0	0	0	0
0	0	1	0	0	59	0	0	0	0	0	0	0	0
0	0	1	0	0	51	0	0	0	0	0	0	0	0
0	0	0	0	0	55	0	0	0	0	0	0	0	0
1	0	1	0	0	45	0	0	0	0	0	0	0	0
1	0	3	0	0	210	0	0	0	0	0	0	0	0
21	1	42	2	9	3098	3	1	0	0	0	0	0	4

Survey Name:	ITS J-372 Malahide
Site:	Site 3
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4473207,-6.1528574$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys

TIME	A => A							тот	CAR	LGV	OGV1	$\begin{gathered} \text { A }=>B \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C										
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	17
07:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	25
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	86
08:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	39
08:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	102
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	106
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	67
H/TOT	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	314
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	77
09:15	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	46
09:30	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	21
09:45	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	3	10
H/TOT	0	0	0	0	0	0	0	0	10	1	1	0	0	0	0	12	154
10:00	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	20
10:15	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	19
10:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	24
10:45	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6	28
H/TOT	0	0	0	0	0	0	0	0	17	1	0	0	0	0	0	18	91
11:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	24
11:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	29
11:30	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	31
11:45	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	32
H/TOT	0	0	0	0	0	0	0	0	7	2	0	0	0	0	0	9	116
12:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	31
12:15	0	0	0	0	0	0	0	0	3	1	1	0	0	0	0	5	32
12:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	36
12:45	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	29
H/TOT	0	0	0	0	0	0	0	0	10	2	1	0	0	0	0	13	128
13:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	41
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	44
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	33
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	41
H/TOT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	159
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	26
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	40
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	59
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	167
15:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	38
15:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	39
15:30	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5	39
15:45	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	75
H/TOT	0	0	0	0	0	0	0	0	14	1	0	0	0	0	0	15	191
16:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	28
16:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	28
16:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	31
16:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	31
H/TOT	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	14	118
17:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	60
17:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	32
17:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	38
17:45	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	42
H/TOT	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	172
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	42
18:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	31
18:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	34
18:45	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	42
H/TOT	0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	12	149
19:00	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	44
19:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	42
19:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	31
19:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	36
H/TOT	0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11	153
13 HR TOT	0	0	0	0	0	0	0	0	112	8	2	0	0	0	0	122	1998

LGV	$\begin{array}{ll} & \text { A => C } \\ \text { oGV1 } & \text { OGV2 } \\ \hline \end{array}$		PSV	M/C	P/C	тот	CAR	LGv	OGV1	B => A		M/C	P/C	тот	CAR	LGV	OGV1	$\begin{aligned} & \text { B }=>\text { B } \\ & \text { OGV2 } \end{aligned}$	
			OGV2							PSV									
0	0	0		0	0	0	11	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	18	3	0	0	0	0	0	0	3	0	0	0	0	
0	0	0	2	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	
2	0	0	2	0	0	37	1	1	0	0	0	0	0	2	0	0	0	0	
3	0	0	4	0	0	93	4	1	0	0	0	0	0	5	0	0	0	0	
4	0	0	0	0	0	43	4	0	0	0	0	0	0	4	0	0	0	0	
4	0	0	2	0	1	109	1	1	0	0	0	0	0	2	0	0	0	0	
2	1	0	0	0	0	109	0	0	0	0	0	0	0	0	0	0	0	0	
2	1	0	2	0	0	72	0	0	0	0	0	0	0	0	0	0	0	0	
12	2	0	4	0	1	333	5	1	0	0	0	0	0	6	0	0	0	0	
3	1	0	0	0	0	81	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	1	0	0	48	7	0	0	0	0	0	0	7	0	0	0	0	
1	0	0	0	0	0	22	12	0	0	0	0	0	0	12	0	0	0	0	
1	0	0	2	0	0	13	4	1	0	0	0	0	0	5	0	0	0	0	
6	1	0	3	0	0	164	23	1	0	0	0	0	0	24	0	0	0	0	
6	0	0	0	0	0	26	2	0	0	0	0	0	0	2	0	0	0	0	
1	0	0	1	0	0	21	3	0	0	0	0	0	0	3	0	0	0	0	
4	1	0	0	0	0	29	7	0	0	0	0	0	0	7	0	0	0	0	
0	1	0	1	0	0	30	3	1	0	0	0	0	0	4	0	0	0	0	
11	2	0	2	0	0	106	15	1	0	0	0	0	0	16	0	0	0	0	
1	3	0	0	0	0	28	3	0	0	0	0	0	0	3	0	0	0	0	
1	1	0	1	0	0	32	5	0	0	0	0	0	0	5	0	0	0	0	
5	0	0	0	0	0	36	5	0	0	0	0	0	0	5	0	0	0	0	
2	0	0	1	0	0	35	5	1	0	0	0	0	0	6	0	0	0	0	
9	4	0	2	0	0	131	18	1	0	0	0	0	0	19	0	0	0	0	
0	1	0	0	0	0	32	4	0	0	0	0	0	0	4	0	0	0	0	
1	0	0	0	0	0	33	5	0	0	0	0	0	0	5	0	0	0	0	
1	0	0	0	1	0	38	7	1	0	0	0	0	0	8	0	0	0	0	
2	0	0	0	0	0	31	3	0	0	0	0	0	0	3	0	0	0	0	
4	1	0	0	1	0	134	19	1	0	0	0	0	0	20	0	0	0	0	
4	0	0	0	0	0	45	0	0	0	0	0	0	0	0	0	0	0	0	
7	1	0	1	0	0	53	0	0	0	0	0	0	0	0	0	0	0	0	
3	1	0	9	1	0	47	0	0	0	0	0	0	0	0	0	0	0	0	
6	1	0	3	0	0	51	0	0	0	0	0	0	0	0	0	0	0	0	
20	3	0	13	1	0	196	0	0	0	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	
3	1	0	1	0	0	47	0	0	0	0	0	0	0	0	0	0	0	0	
1	0	0	1	0	0	42	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	1	0	0	63	10	0	0	0	0	0	0	10	0	0	0	0	
11	1	0	3	0	0	182	10	0	0	0	0	0	0	10	0	0	0	0	
2	0	0	0	0	0	40	4	0	0	0	0	0	0	4	0	0	0	0	
4	1	0	0	0	0	44	2	0	0	0	0	0	0	2	0	0	0	0	
1	0	0	1	0	0	41	6	1	0	0	0	0	0	7	0	0	0	0	
2	0	0	0	0	0	77	8	0	0	0	0	0	0	8	0	0	0	0	
9	1	0	1	0	0	202	20	1	0	0	0	0	0	21	0	0	0	0	
0	0	0	1	0	0	29	9	0	0	0	0	0	0	9	0	0	0	0	
5	0	0	0	0	0	33	7	3	0	0	0	0	0	10	0	0	0	0	
0	0	0	2	0	0	33	9	0	0	0	0	0	0	9	0	0	0	0	
3	0	0	0	0	0	34	3	0	0	0	0	0	0	3	0	0	0	0	
8	0	0	3	0	0	129	28	3	0	0	0	0	0	31	0	0	0	0	
5	0	0	1	0	0	66	0	0	0	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	35	7	1	0	0	0	0	0	8	0	0	0	0	
2	0	0	1	0	0	41	3	0	0	0	0	0	0	3	0	0	0	0	
1	0	0	1	0	0	44	2	0	0	0	0	0	0	2	0	0	0	0	
11	0	0	3	0	0	186	12	1	0	0	0	0	0	13	0	0	0	0	
1	0	0	1	0	0	44	2	0	0	0	0	0	0	2	0	0	0	0	
0	0	0	2	0	0	33	7	0	0	0	0	0	0	7	0	0	0	0	
3	0	0	2	0	0	39	6	0	0	0	0	0	0	6	0	0	0	0	
2	0	0	3	0	0	47	4	0	0	0	0	0	0	4	0	0	0	0	
6	0	0	8	0	0	163	19	0	0	0	0	0	0	19	0	0	0	0	
0	0	0	2	0	0	46	11	0	0	0	0	0	0	11	0	0	0	0	
0	0	0	0	0	0	42	7	2	0	0	0	0	0	9	0	0	0	0	
1	0	0	2	0	0	34	5	0	0	0	0	0	0	5	0	0	0	0	
0	0	0	1	0	0	37	1	0	0	0	0	0	0	1	0	0	0	0	
1	0	0	5	0	0	159	24	2	0	0	0	0	0	26	0	0	0	0	
111	15	0	51	2	1	2178	197	13	0	0	0	0	0	210	0	0	0	0	

PSV	M/C	P/C	тот	B => C							тот	CAR	LGv	OGV1	$\mathrm{C}=>\mathrm{A}$		M/C	P/C
				CAR	LGv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV		
0	0	0	0	1	1	0	0	0	0	0	2	89	1	0	0	1	0	0
0	0	0	0	9	1	0	0	0	0	0	10	26	0	0	0	2	0	0
0	0	0	0	5	0	0	0	0	0	0	5	25	2	0	0	3	0	0
0	0	0	0	11	0	0	0	0	0	0	11	33	2	1	0	2	0	2
0	0	0	0	26	2	0	0	0	0	0	28	173	5	1	0	8	0	2
0	0	0	0	25	3	0	0	0	0	0	28	42	1	2	0	3	0	0
0	0	0	0	27	1	0	0	0	0	0	28	74	2	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	87	3	0	0	2	0	0
0	0	0	0	0	0	0	0	0	0	0	0	96	6	0	0	1	0	0
0	0	0	0	53	4	0	0	0	0	0	57	299	12	2	0	6	0	0
0	0	0	0	0	0	0	0	0	0	0	0	83	4	0	0	0	0	0
0	0	0	0	25	3	0	0	0	0	0	28	52	3	0	0	1	0	0
0	0	0	0	38	1	0	0	0	0	0	39	42	4	1	0	1	0	0
0	0	0	0	21	0	0	0	0	0	0	21	41	4	0	0	0	0	0
0	0	0	0	84	4	0	0	0	0	0	88	218	15	1	0	2	0	0
0	0	0	0	19	0	0	0	0	0	0	19	38	4	0	0	0	0	0
0	0	0	0	18	1	0	0	0	0	0	19	40	0	1	0	1	0	0
0	0	0	0	19	3	0	0	0	0	0	22	35	3	0	0	0	0	0
0	0	0	0	22	1	0	1	0	0	0	24	47	6	0	0	1	0	0
0	0	0	0	78	5	0	1	0	0	0	84	160	13	1	0	2	0	0
0	0	0	0	29	1	0	0	0	0	0	30	43	1	3	0	0	0	0
0	0	0	0	23	6	2	0	0	0	0	31	38	3	1	0	1	0	1
0	0	0	0	13	2	1	0	0	0	0	16	51	9	1	0	0	0	0
0	0	0	0	27	1	1	0	0	0	0	29	46	2	0	0	1	0	0
0	0	0	0	92	10	4	0	0	0	0	106	178	15	5	0	2	0	1
0	0	0	0	24	2	0	0	0	0	0	26	41	2	0	0	0	0	1
0	0	0	0	20	0	0	1	0	0	0	21	52	5	0	0	1	0	0
0	0	0	0	24	5	0	0	0	0	0	29	35	3	0	0	0	0	0
0	0	0	0	19	2	0	0	0	0	0	21	44	3	1	0	1	0	0
0	0	0	0	87	9	0	1	0	0	0	97	172	13	1	0	2	0	1
0	0	0	0	2	0	0	0	0	0	0	2	62	7	2	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	57	1	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	48	4	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	51	5	0	0	2	0	0
0	0	0	0	2	0	0	0	0	0	0	2	218	17	2	0	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0	58	3	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	50	4	2	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	68	8	0	0	1	0	0
0	0	0	0	11	1	0	0	0	0	0	12	55	5	1	0	1	0	0
0	0	0	0	11	1	0	0	0	0	0	12	231	20	3	0	2	0	0
0	0	0	0	4	0	0	0	0	0	0	4	39	5	1	0	0	0	0
0	0	0	0	17	0	0	0	0	0	0	17	48	5	0	0	1	0	1
0	0	0	0	24	3	0	0	0	0	0	27	44	2	0	0	0	0	0
0	0	0	0	36	1	0	0	0	0	0	37	58	3	0	0	1	0	0
0	0	0	0	81	4	0	0	0	0	0	85	189	15	1	0	2	0	1
0	0	0	0	32	4	0	0	0	0	0	36	82	2	1	0	0	0	2
0	0	0	0	30	3	0	0	0	0	0	33	56	1	0	0	1	0	0
0	0	0	0	34	2	0	0	0	0	0	36	48	4	0	0	1	0	0
0	0	0	0	26	1	0	0	0	0	0	27	45	4	0	0	1	0	0
0	0	0	0	122	10	0	0	0	0	0	132	231	11	1	0	3	0	2
0	0	0	0	29	1	0	0	0	0	0	30	52	2	0	0	0	0	0
0	0	0	0	18	1	1	0	0	0	0	20	48	6	0	0	1	0	0
0	0	0	0	23	0	1	0	0	0	0	24	65	2	0	0	1	0	0
0	0	0	0	33	0	0	0	0	0	0	33	51	3	1	0	0	0	0
0	0	0	0	103	2	2	0	0	0	0	107	216	13	1	0	2	0	0
0	0	0	0	32	0	0	0	0	0	0	32	53	4	0	0	1	0	1
0	0	0	0	29	0	0	0	0	0	0	29	55	2	0	0	1	0	1
0	0	0	0	24	0	0	0	0	0	0	24	54	2	0	0	0	0	0
0	0	0	0	29	0	0	0	0	0	0	29	61	3	0	0	1	0	0
0	0	0	0	114	0	0	0	0	0	0	114	223	11	0	0	3	0	2
0	0	0	0	43	0	0	0	0	0	0	43	52	0	0	0	1	0	0
0	0	0	0	41	3	0	0	0	0	0	44	45	1	0	0	1	0	0
0	0	0	0	28	2	0	0	0	0	0	30	46	0	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	12	36	0	0	0	1	0	0
0	0	0	0	124	5	0	0	0	0	0	129	179	1	0	0	3	0	0
0	0	0	0	977	56	6	2	0	0	0	1041	2687	161	19	0	41	0	9

тот	C => B							тот	CAR	LGv	OGV1	$\mathrm{c}=>\mathrm{C}$		M/C	P/C	тот
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV			
91	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
28	5	2	0	0	0	0	0	7	0	0	0	0	0	0	0	0
30	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
40	8	4	0	0	0	0	0	12	0	0	0	0	0	0	0	0
189	25	6	0	0	0	0	0	31	0	0	0	0	0	0	0	0
48	14	1	0	0	0	0	0	15	0	0	0	0	0	0	0	0
76	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
103	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
319	23	1	0	0	0	0	0	24	0	0	0	0	0	0	0	0
87	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
56	7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
48	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
45	15	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0
236	32	1	0	0	0	0	0	33	0	0	0	0	0	0	0	0
42	14	2	0	0	0	0	0	16	0	0	0	0	0	0	0	0
42	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
38	12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
54	12	4	1	0	0	0	0	17	0	0	0	0	0	0	0	0
176	48	7	1	0	0	0	0	56	0	0	0	0	0	0	0	0
47	18	1	0	1	0	0	0	20	0	0	0	0	0	0	0	0
44	13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
61	11	1	1	0	0	0	0	13	0	0	0	0	0	0	0	0
49	10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
201	52	5	1	1	0	0	0	59	0	0	0	0	0	0	0	0
44	19	1	1	0	0	0	0	21	0	0	0	0	0	0	0	0
58	18	2	0	0	0	0	0	20	0	0	0	0	0	0	0	0
38	12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
49	2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
189	51	4	1	0	0	0	0	56	0	0	0	0	0	0	0	0
71	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
59	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
53	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
58	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
241	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
61	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
56	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
77	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
62	11	0	1	0	0	0	0	12	0	0	0	0	0	0	0	0
256	11	0	1	0	0	0	0	12	0	0	0	0	0	0	0	0
45	17	1	0	0	0	0	0	18	0	0	0	0	0	0	0	0
55	20	0	0	0	0	1	0	21	0	0	0	0	0	0	0	0
46	15	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0
62	16	2	0	0	0	0	0	18	0	0	0	0	0	0	0	0
208	68	4	0	0	0	1	0	73	0	0	0	0	0	0	0	0
87	26	0	0	0	0	0	0	26	0	0	0	0	0	0	0	0
58	29	3	1	0	0	0	0	33	0	0	0	0	0	0	0	0
53	19	4	0	0	0	0	0	23	0	0	0	0	0	0	0	0
50	19	2	0	0	0	0	0	21	0	0	0	0	0	0	0	0
248	93	9	1	0	0	0	0	103	0	0	0	0	0	0	0	0
54	27	2	0	0	0	0	0	29	0	0	0	0	0	0	0	0
55	26	0	0	0	0	0	0	26	0	0	0	0	0	0	0	0
68	19	2	0	0	0	0	0	21	0	0	0	0	0	0	0	0
55	21	0	0	0	0	0	0	21	0	0	0	0	0	0	0	0
232	93	4	0	0	0	0	0	97	0	0	0	0	0	0	0	0
59	40	1	0	0	0	0	0	41	0	0	0	0	0	0	0	0
59	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
56	20	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
65	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
239	95	1	0	0	0	0	0	96	0	0	0	0	0	0	0	0
53	16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
47	13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
46	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
37	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
183	52	1	0	0	0	0	0	53	0	0	0	0	0	0	0	0
2917	643	43	5	1	0	1	0	693	0	0	0	0	0	0	0	0

Survey Name:	ITS J-372 Malahide
Site:	Site 3
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4474898,-6.1503887$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys

TIME	A => A							тот	CAR	LGv	OGV1	A => B		M/C	P/C	тот	CAR
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV				
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
07:15	0	0	0	-	0	0	0	0	0	0	0	0	0	0	0	0	2
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
08:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	9
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
H/TOT	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	18
09:00	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	6
09:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	8
09:45	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	8
H/TOT	0	0	0	0	0	0	0	0	6	2	0	0	0	0	0	8	22
10:00	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	6
10:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	12
10:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	4
10:45	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	18
H/TOT	0	0	0	0	0	0	0	0	3	1	1	0	0	0	0	5	40
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7
11:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	10
11:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	4
11:45	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	16
H/TOT	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6	37
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10
12:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	5
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	31
13:00	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	10
H/TOT	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	10
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
15:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	6
15:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	4
H/TOT	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	13
16:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	8
16:15	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	12
16:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	11
16:45	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4	17
H/TOT	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9	48
17:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3	21
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	11
17:30	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5	8
17:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	21
H/TOT	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10	61
18:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	16
18:15	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2	13
18:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	19
18:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2	23
H/TOT	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6	71
19:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	20
19:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	12
19:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	7
19:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	14
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	53
13 HR TOT	0	0	0	0	0	0	0	0	51	5	1	0	0	0	0	57	415

LGv	$\begin{array}{lc} & A=>C \\ \text { oGV1 } & \text { OGV2 } \end{array}$		PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{aligned} & \text { B }=>A \\ & \text { OGV2 } \end{aligned}$	PSV	M/C	P/C	тот	CAR	LGv	OGV1	$\begin{aligned} & \hline \text { B => B } \\ & \text { OGV2 } \end{aligned}$
0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	6	0	0	1	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	11	1	1	1	0	0	0	0	3	0	0	0	0
0	0	0	0	0	0	9	1	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	10	5	0	0	0	0	0	0	5	0	0	0	0
0	0	0	0	0	0	0	44	0	0	0	0	0	0	44	0	0	0	0
0	0	0	0	0	0	0	99	1	0	0	0	0	0	100	0	0	0	0
1	0	0	0	0	0	19	149	1	0	0	0	0	0	150	0	0	0	0
0	0	0	0	0	0	0	46	2	0	0	1	0	0	49	1	0	0	0
0	0	0	0	0	0	6	2	1	0	0	0	0	0	3	0	0	0	0
0	0	0	0	0	0	8	4	0	0	0	0	0	0	4	0	0	0	0
0	0	0	0	0	0	8	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	22	52	4	0	0	1	0	0	57	1	0	0	0
0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	12	2	1	0	0	0	0	0	3	0	0	0	0
1	0	0	0	0	0	5	2	0	0	0	0	0	0	2	0	0	0	0
1	0	0	0	0	0	19	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	42	4	1	0	0	0	0	0	5	0	0	0	0
0	0	0	0	0	0	7	1	0	1	0	0	0	0	2	0	0	0	0
2	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	1	0	0	0	0	0	0	1	1	0	0	0
0	0	0	0	0	0	16	2	0	0	0	0	0	0	2	0	0	0	0
2	0	0	0	0	0	39	4	0	1	0	0	0	0	5	1	0	0	0
0	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	11	1	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	8	2	0	0	0	0	0	0	2	0	0	0	0
2	0	0	0	0	0	33	3	0	0	0	0	0	0	3	0	0	0	0
0	0	0	0	0	0	0	11	2	0	0	0	0	0	13	0	0	0	0
0	0	0	0	0	0	0	14	0	1	0	0	0	0	15	0	0	0	0
0	0	0	0	0	0	0	14	0	0	0	1	0	0	15	0	0	0	0
0	0	0	0	0	0	0	13	1	1	0	0	0	0	15	0	0	0	0
0	0	0	0	0	0	0	52	3	2	0	1	0	0	58	0	0	0	0
0	0	0	0	0	0	0	7	0	0	0	0	0	0	7	0	0	0	0
0	0	0	0	0	0	0	12	2	1	0	0	0	0	15	0	0	0	0
0	0	0	0	0	0	0	27	1	0	0	0	0	0	28	0	0	0	0
0	0	0	0	0	0	10	14	0	0	0	1	0	0	15	0	0	0	0
0	0	0	0	0	0	10	60	3	1	0	1	0	0	65	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	2	1	1	0	0	0	0	0	2	0	0	0	0
2	0	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	5	2	0	0	0	0	0	0	2	0	0	0	0
3	0	0	0	0	0	16	4	1	0	0	0	0	0	5	0	0	0	0
2	0	0	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	14	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	12	2	0	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	17	0	0	0	0	0	0	0	0	0	0	0	0
5	0	0	0	0	0	53	2	0	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	21	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	11	2	0	0	0	0	0	0	2	1	0	0	0
0	0	0	0	0	0	8	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	21	2	0	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	61	6	0	0	0	0	0	0	6	1	0	0	0
0	0	0	0	0	0	16	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	13	1	1	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	19	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	23	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	71	3	1	0	0	0	0	0	4	0	0	0	0
0	0	0	0	0	0	20	1	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	12	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	7	2	0	0	0	0	0	0	2	0	0	0	0
0	0	0	0	0	0	14	0	1	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	53	3	1	0	0	0	0	0	4	0	0	0	0
15	0	0	0	0	0	430	343	16	5	0	3	0	0	367	3	0	0	0

PSV	M/C	P/C	тот	B => C							тот	$\mathrm{C}=>\mathrm{A}$						
				CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGv	OGV1	OGV2	PSV	M/C	P/C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	9	1	0	0	0	0	0	10	2	0	0	0	0	0	0
0	0	0	0	3	1	0	0	0	0	0	4	3	0	0	0	0	0	0
0	0	0	0	10	0	0	0	0	0	0	10	1	0	0	0	0	0	0
0	0	0	0	22	2	0	0	0	0	0	24	6	0	0	0	0	0	0
0	0	0	0	19	0	1	0	0	0	0	20	5	0	1	0	0	0	0
0	0	0	0	16	0	0	0	0	0	0	16	7	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	35	0	1	0	0	0	0	36	12	0	1	0	0	0	0
0	0	0	1	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0
0	0	0	0	25	3	0	0	0	0	0	28	1	0	0	0	0	0	0
0	0	0	0	40	2	1	0	0	0	0	43	5	0	0	0	0	0	0
0	0	0	0	17	1	0	0	0	0	0	18	4	0	0	0	0	0	0
0	0	0	1	85	6	1	0	0	0	0	92	10	0	0	0	0	0	0
0	0	0	0	14	0	0	0	0	0	0	14	10	0	0	0	0	0	0
0	0	0	0	8	1	0	0	0	0	0	9	4	0	0	0	0	0	0
0	0	0	0	18	2	0	0	0	0	0	20	6	0	0	0	0	0	0
0	0	0	0	13	1	0	1	0	0	0	15	8	1	0	0	0	0	0
0	0	0	0	53	4	0	1	0	0	0	58	28	1	0	0	0	0	0
0	0	0	0	9	2	0	0	0	0	0	11	10	0	0	0	0	0	0
0	0	0	0	20	3	0	0	0	0	0	23	4	0	0	0	0	0	0
0	0	0	1	11	2	0	0	0	0	0	13	2	0	1	0	0	0	0
0	0	0	0	14	1	0	0	0	0	0	15	3	0	0	0	0	0	0
0	0	0	1	54	8	0	0	0	0	0	62	19	0	1	0	0	0	0
0	0	0	0	16	2	0	0	0	0	0	18	9	1	0	0	0	0	0
0	0	0	0	14	0	0	0	0	0	0	14	5	0	0	0	0	0	0
0	0	0	0	26	4	0	0	0	0	1	31	5	0	0	0	0	0	0
0	0	0	0	14	2	0	0	0	0	0	16	1	0	0	0	0	0	0
0	0	0	0	70	8	0	0	0	0	1	79	20	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	1	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	28	2	0	0	0	0	0	30	7	0	0	0	0	0	0
0	0	0	0	28	2	0	0	0	0	0	30	7	0	0	0	0	0	0
0	0	0	0	18	2	0	0	0	0	0	20	4	0	0	0	0	0	0
0	0	0	0	24	1	0	0	0	0	0	25	5	0	0	0	0	0	0
0	0	0	0	19	1	0	0	0	0	0	20	9	2	0	0	0	0	0
0	0	0	0	35	2	0	0	0	0	0	37	9	1	0	0	0	0	0
0	0	0	0	96	6	0	0	0	0	0	102	27	3	0	0	0	0	0
0	0	0	0	28	3	0	0	0	0	0	31	15	0	0	0	0	0	0
0	0	0	0	17	2	0	0	0	0	0	19	14	0	0	0	0	0	0
0	0	0	0	22	4	0	0	0	0	0	26	7	0	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	12	8	2	0	0	0	0	0
0	0	0	0	79	9	0	0	0	0	0	88	44	2	0	0	0	0	0
0	0	0	0	8	0	0	0	0	0	0	8	8	0	0	0	0	0	0
0	0	0	1	12	0	0	0	0	0	0	12	11	0	0	0	0	0	0
0	0	0	0	12	0	0	0	0	0	0	12	8	0	0	0	0	0	0
0	0	0	0	15	0	0	0	0	0	0	15	12	0	0	0	0	0	0
0	0	0	1	47	0	0	0	0	0	0	47	39	0	0	0	0	0	0
0	0	0	0	22	1	0	0	0	1	0	24	18	0	0	0	0	0	0
0	0	0	0	18	0	0	0	0	0	0	18	6	0	0	0	0	0	0
0	0	0	0	11	0	0	0	0	0	0	11	7	0	0	0	0	0	0
0	0	0	0	9	0	0	0	0	0	0	9	7	0	0	0	0	0	0
0	0	0	0	60	1	0	0	0	1	0	62	38	0	0	0	0	0	0
0	0	0	0	21	0	0	0	0	0	0	21	8	0	0	0	0	0	0
0	0	0	0	43	3	0	0	0	0	0	46	4	0	0	0	0	0	0
0	0	0	0	16	0	0	0	0	0	0	16	7	0	0	0	0	0	0
0	0	0	0	7	0	0	0	0	0	0	7	3	0	0	0	0	0	0
0	0	0	0	87	3	0	0	0	0	0	90	22	0	0	0	0	0	0
0	0	0	3	717	49	2	1	0	1	1	771	272	8	2	0	0	0	0

тот	C => B							тот	$\mathrm{C}=>\mathrm{C}$							тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	
0	3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
2	6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
3	6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
1	4	4	0	0	0	0	0	8	0	0	0	0	0	0	0	0
6	19	5	0	0	0	0	0	24	0	0	0	0	0	0	0	0
6	11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
7	14	0	0	0	0	0	0	14	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13	25	0	0	0	0	0	0	25	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	9	0	1	0	0	0	0	10	1	0	0	0	0	0	0	1
5	8	0	1	0	0	0	0	9	0	0	0	0	0	0	0	0
4	9	1	1	0	0	0	0	11	0	0	0	0	0	0	0	0
10	26	1	3	0	0	0	0	30	1	0	0	0	0	0	0	1
10	7	3	0	0	0	0	0	10	0	0	0	0	0	0	0	0
4	6	0	0	0	0	0	0	6	1	0	0	0	0	0	0	1
6	10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
9	8	2	1	0	0	0	0	11	0	0	0	0	0	0	0	0
29	31	7	1	0	0	0	0	39	1	0	0	0	0	0	0	1
10	11	1	0	1	0	0	0	13	0	0	0	0	0	0	0	0
4	10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
3	9	1	0	0	0	0	0	10	1	1	0	0	0	0	0	2
3	12	2	0	0	0	0	0	14	0	0	0	0	0	0	0	0
20	42	5	0	1	0	0	0	48	1	1	0	0	0	0	0	2
10	10	1	1	0	0	0	0	12	1	0	0	0	0	0	0	1
5	12	3	1	0	0	0	0	16	0	0	0	0	0	0	0	0
5	6	2	0	0	0	0	0	8	0	0	0	0	0	0	0	0
1	6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
21	34	6	2	0	0	0	0	42	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7	6	0	1	0	0	0	0	7	0	0	0	0	0	0	0	0
7	6	0	1	0	0	0	0	7	0	0	0	0	0	0	0	0
4	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
5	13	0	0	0	0	1	1	15	0	0	0	0	0	0	0	0
11	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
10	8	2	0	0	0	0	0	10	0	0	0	0	0	0	0	0
30	41	3	0	0	0	1	1	46	0	0	0	0	0	0	0	0
15	19	0	0	0	0	0	0	19	0	0	0	0	0	0	0	0
14	16	2	1	0	0	0	0	19	0	0	0	0	0	0	0	0
7	16	3	0	0	0	0	1	20	0	0	0	0	0	0	0	0
10	11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
46	62	6	1	0	0	0	1	70	0	0	0	0	0	0	0	0
8	22	1	0	0	0	0	0	23	1	0	0	0	0	0	0	1
11	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
8	16	2	0	0	0	0	0	18	1	0	0	0	0	0	0	1
12	15	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
39	63	3	0	0	0	0	0	66	2	0	0	0	0	0	0	2
18	24	3	0	0	0	0	0	27	0	0	0	0	0	0	0	0
6	10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
7	15	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
7	12	0	0	0	0	0	0	12	1	0	0	0	0	0	0	1
38	61	3	0	0	0	0	0	64	1	0	0	0	0	0	0	1
8	11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
4	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
7	7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
3	9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
22	36	0	0	0	0	0	0	36	1	0	0	0	0	0	0	1
282	446	39	8	1	0	1	2	497	8	1	0	0	0	0	0	9

Survey Name:	ITS J-372 Malahide
Site:	Site 3
Date:	12.12 .2019
Time:	$07: 00-20: 00$
Location:	$53.4510366,-6.1537031$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys

TIME	A => A							тот	CAR	LGv	OGV1	A => B		M/C	P/C	тот	CAR
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C					OGV2	PSV				
07:00	0	0	0	0	0	0	0	0	17	2	1	0	0	0	0	20	5
07:15	0	0	0	-	0	0	0	0	16	0	0	0	0	0	0	16	6
07:30	0	0	0	0	0	0	0	0	24	0	0	0	0	0	0	24	10
07:45	0	0	0	0	0	0	0	0	28	1	0	0	0	0	0	29	14
H/TOT	0	0	0	0	0	0	0	0	85	3	1	0	0	0	0	89	35
08:00	0	0	0	0	0	0	0	0	37	3	0	0	0	0	1	41	23
08:15	0	0	0	0	0	0	0	0	52	2	1	0	0	0	0	55	23
08:30	0	0	0	0	0	0	0	0	54	0	0	0	0	0	0	54	23
08:45	0	0	0	0	0	0	0	0	54	2	0	0	0	0	0	56	23
H/TOT	0	0	0	0	0	0	0	0	197	7	1	0	0	0	1	206	92
09:00	0	0	0	0	0	0	0	0	49	0	0	0	0	0	0	49	33
09:15	0	0	0	0	0	0	0	0	45	3	0	0	0	0	0	48	33
09:30	0	0	0	0	0	0	0	0	36	4	1	0	0	0	0	41	35
09:45	0	0	0	0	0	0	0	0	33	6	1	0	0	0	0	40	30
H/TOT	0	0	0	0	0	0	0	0	163	13	2	0	0	0	0	178	131
10:00	0	0	0	0	0	0	0	0	41	8	1	0	0	0	0	50	30
10:15	0	0	0	0	0	0	0	0	38	8	0	0	0	0	0	46	24
10:30	0	0	0	0	0	0	0	0	27	4	1	0	0	0	0	32	26
10:45	0	0	0	0	0	0	0	0	35	8	0	0	0	0	0	43	27
H/TOT	0	0	0	0	0	0	0	0	141	28	2	0	0	0	0	171	107
11:00	0	0	0	0	0	0	0	0	24	7	2	0	0	0	0	33	23
11:15	0	0	0	0	0	0	0	0	26	6	1	0	0	0	0	33	34
11:30	0	0	0	0	0	0	0	0	34	7	0	0	0	0	0	41	34
11:45	0	0	0	0	0	0	0	0	32	9	0	1	0	0	0	42	34
H/TOT	0	0	0	0	0	0	0	0	116	29	3	1	0	0	0	149	125
12:00	0	0	0	0	0	0	0	0	45	9	1	0	0	0	0	55	31
12:15	0	0	0	0	0	0	0	0	31	1	2	0	0	0	0	34	44
12:30	0	0	0	0	0	0	0	0	24	7	0	0	0	0	0	31	42
12:45	0	0	0	0	0	0	0	0	38	6	0	0	0	0	0	44	39
H/TOT	0	0	0	0	0	0	0	0	138	23	3	0	0	0	0	164	156
13:00	0	0	0	0	0	0	0	0	37	11	0	0	0	0	0	48	33
13:15	0	0	0	0	0	0	0	0	32	7	0	0	0	0	0	39	32
13:30	0	0	0	0	0	0	0	0	31	2	0	0	0	0	0	33	25
13:45	0	0	0	0	0	0	0	0	36	3	1	0	0	0	0	40	32
H/TOT	0	0	0	0	0	0	0	0	136	23	1	0	0	0	0	160	122
14:00	0	0	0	0	0	0	0	0	25	5	0	0	0	0	0	30	31
14:15	0	0	0	0	0	0	0	0	36	3	1	0	0	0	0	40	26
14:30	0	0	0	0	0	0	0	0	45	5	1	0	0	0	0	51	26
14:45	0	0	0	0	0	0	0	0	36	6	0	0	0	0	0	42	29
H/TOT	0	0	0	0	0	0	0	0	142	19	2	0	0	0	0	163	112
15:00	0	0	0	0	0	0	0	0	28	4	1	1	0	0	0	34	34
15:15	0	0	0	0	0	0	0	0	46	3	1	0	0	0	0	50	27
15:30	0	0	0	0	0	0	0	0	47	5	0	0	0	0	0	52	27
15:45	0	0	0	0	0	0	0	0	36	5	2	0	0	0	0	43	33
H/TOT	0	0	0	0	0	0	0	0	157	17	4	1	0	0	0	179	121
16:00	0	0	0	0	0	0	0	0	42	3	0	0	0	0	0	45	39
16:15	0	0	0	0	0	0	0	0	38	4	0	0	0	0	0	42	38
16:30	0	0	0	0	0	0	0	0	25	1	0	0	0	0	0	26	37
16:45	0	0	0	0	0	0	0	0	40	4	1	0	0	0	0	45	33
H/TOT	0	0	0	0	0	0	0	0	145	12	1	0	0	0	0	158	147
17:00	0	0	0	0	0	0	0	0	49	1	1	0	0	0	0	51	36
17:15	0	0	0	0	0	0	0	0	40	1	1	0	0	0	0	42	34
17:30	0	0	0	0	0	0	0	0	45	2	1	0	0	0	0	48	45
17:45	0	0	0	0	0	0	0	0	56	2	0	0	0	0	0	58	36
H/TOT	0	0	0	0	0	0	0	0	190	6	3	0	0	0	0	199	151
18:00	0	0	0	0	0	0	0	0	45	1	0	0	0	0	0	46	45
18:15	0	0	0	0	0	0	0	0	52	0	0	0	0	0	0	52	61
18:30	0	0	0	0	0	0	0	0	59	1	0	0	0	0	0	60	43
18:45	0	0	0	0	0	0	0	0	37	2	0	0	0	0	0	39	58
H/TOT	0	0	0	0	0	0	0	0	193	4	0	0	0	0	0	197	207
19:00	0	0	0	0	0	0	0	0	56	0	0	0	0	0	0	56	51
19:15	1	0	0	0	0	0	0	1	53	1	0	0	0	0	0	54	38
19:30	0	0	0	0	0	0	0	0	60	1	0	0	0	0	0	61	53
19:45	0	0	0	0	0	0	0	0	47	2	0	0	0	0	0	49	54
H/TOT	1	0	0	0	0	0	0	1	216	4	0	0	0	0	0	220	196
13 HR TOT	1	0	0	0	0	0	0	1	2019	188	23	2	0	0	1	2233	1702

LGv	OGV1	$\begin{gathered} \text { B }=>A \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { B => B } \\ \text { OGV2 } \\ \hline \end{gathered}$	PSV	M/C	P/C	тот
1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
1	0	0	2	0	0	9	0	0	0	0	0	0	0	0
3	3	0	1	0	0	17	0	0	0	0	0	0	0	0
1	1	0	0	0	0	16	0	0	0	0	0	0	0	0
6	4	0	3	0	0	48	0	0	0	0	0	0	0	0
1	0	0	1	0	0	25	0	0	0	0	0	0	0	0
1	0	0	1	0	0	25	0	0	0	0	0	0	0	0
0	0	0	1	0	0	24	0	0	0	0	0	0	0	0
1	0	0	0	0	0	24	0	0	0	0	0	0	0	0
3	0	0	3	0	0	98	0	0	0	0	0	0	0	0
2	0	0	0	0	0	35	0	0	0	0	0	0	0	0
1	1	0	0	0	0	35	0	0	0	0	0	0	0	0
3	0	0	1	0	0	39	0	0	0	0	0	0	0	0
3	1	0	0	0	0	34	0	0	0	0	0	0	0	0
9	2	0	1	0	0	143	0	0	0	0	0	0	0	0
3	0	0	1	0	0	34	0	0	0	0	0	0	0	0
3	1	0	0	0	0	28	0	0	0	0	0	0	0	0
1	0	0	0	0	0	27	0	0	0	0	0	0	0	0
3	0	0	0	0	0	30	0	0	0	0	0	0	0	0
10	1	0	1	0	0	119	0	0	0	0	0	0	0	0
4	1	0	1	0	0	29	0	0	0	0	0	0	0	0
2	0	0	0	0	1	37	0	0	0	0	0	0	0	0
3	2	1	0	0	0	40	0	0	0	0	0	0	0	0
4	1	0	0	0	0	39	0	0	0	0	0	0	0	0
13	4	1	1	0	1	145	0	0	0	0	0	0	0	0
2	2	0	1	0	1	37	0	0	0	0	0	0	0	0
0	0	0	0	0	0	44	0	0	0	0	0	0	0	0
1	1	0	0	0	1	45	0	0	0	0	0	0	0	0
2	1	0	0	0	0	42	0	0	0	0	0	0	0	0
5	4	0	1	0	2	168	0	0	0	0	0	0	0	0
5	0	0	1	0	0	39	0	0	0	0	0	0	0	0
0	1	0	0	0	0	33	0	0	0	0	0	0	0	0
1	0	0	0	0	0	26	0	0	0	0	0	0	0	0
2	0	0	0	0	0	34	0	0	0	0	0	0	0	0
8	1	0	1	0	0	132	0	0	0	0	0	0	0	0
2	0	0	1	0	0	34	0	0	0	0	0	0	0	0
3	1	0	1	0	0	31	0	0	0	0	0	0	0	0
2	0	0	0	0	0	28	0	0	0	0	0	0	0	0
3	0	1	0	1	0	34	0	0	0	0	0	0	0	0
10	1	1	2	1	0	127	0	0	0	0	0	0	0	0
4	0	0	0	0	0	38	0	0	0	0	0	0	0	0
5	0	0	1	1	1	35	0	0	0	0	0	0	0	0
2	2	0	0	0	0	31	0	0	0	0	0	0	0	0
1	0	0	0	0	0	34	0	0	0	0	0	0	0	0
12	2	0	1	1	1	138	0	0	0	0	0	0	0	0
0	0	0	1	0	0	40	0	0	0	0	0	0	0	0
2	1	0	0	0	0	41	0	0	0	0	0	0	0	0
2	2	0	0	0	0	41	0	0	0	0	0	0	0	0
4	0	0	1	0	0	38	0	0	0	0	0	0	0	0
8	3	0	2	0	0	160	0	0	0	0	0	0	0	0
4	0	0	0	0	0	40	0	0	0	0	0	0	0	0
1	0	0	1	1	0	37	0	0	0	0	0	0	0	0
0	0	0	0	0	0	45	0	0	0	0	0	0	0	0
1	0	0	0	0	0	37	0	0	0	0	0	0	0	0
6	0	0	1	1	0	159	0	0	0	0	0	0	0	0
2	0	0	1	0	1	49	0	0	0	0	0	0	0	0
1	0	0	2	0	0	64	0	0	0	0	0	0	0	0
2	0	0	1	0	0	46	1	0	0	0	0	0	0	1
3	0	0	0	0	0	61	0	0	0	0	0	0	0	0
8	0	0	4	0	1	220	1	0	0	0	0	0	0	1
0	0	0	0	0	0	51	0	0	0	0	0	0	0	0
0	0	0	0	0	0	38	0	0	0	0	0	0	0	0
0	0	0	0	0	0	53	0	0	0	0	0	0	0	0
0	0	0	0	0	0	54	0	0	0	0	0	0	0	0
0	0	0	0	0	0	196	0	0	0	0	0	0	0	0
98	22	2	21	3	5	1853	1	0	0	0	0	0	0	1

Survey Name:	ITS J-410 Malahide
Site:	1
Date:	15.07 .2020
Time:	07:00-19:00
Location:	$53.451441,-6.153758$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey Name :	ITS J-410 Malahide		
Site:	1		
Date:	15.07.2020		A
Time:	07:00-19:00		
Location:	53.451441, -6.153758	Irish Traffic Surveys	- De
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C		

time	A => A							тот	A => B							тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 тот	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1

			A => C								B => A				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	1	1	0	0	3	0	0	5
0	0	0	0	0	0	0	0	4	0	0	0	0	0	1	5
0	0	0	0	0	0	0	0	11	2	0	0	1	0	1	15
0	0	0	0	0	0	0	0	18	3	0	0	4	0	2	27
0	0	0	0	0	0	1	1	10	0	0	0	0	0	1	11
0	0	0	0	0	0	0	0	13	2	1	0	0	0	0	16
0	0	0	0	0	0	0	0	12	1	0	0	1	0	0	14
0	0	0	0	0	0	0	0	13	0	1	0	0	0	0	14
0	0	0	0	0	0	1	1	48	3	2	0	1	0	1	55
0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7
0	0	0	0	0	0	0	0	11	0	0	0	1	0	1	13
0	0	0	0	0	0	0	0	11	0	0	0	0	0	1	12
0	0	0	0	0	0	0	0	8	3	0	0	1	0	0	12
0	0	0	0	0	0	0	0	36	4	0	0	2	0	2	44
0	0	0	0	0	0	0	0	17	2	0	0	0	0	0	19
0	0	0	0	0	0	0	0	11	0	1	0	0	0	0	12
0	0	0	0	0	0	0	0	12	1	1	0	0	0	0	14
0	0	0	0	0	0	0	0	15	2	2	0	1	0	0	20
0	0	0	0	0	0	0	0	55	5	4	0	1	0	0	65
0	0	0	0	0	0	0	0	11	2	0	0	0	0	0	13
0	0	0	0	0	0	0	0	13	1	2	0	0	0	0	16
0	0	0	0	0	0	1	1	21	1	0	0	0	0	0	22
0	0	1	0	0	0	0	1	10	0	0	0	1	0	0	11
0	0	1	0	0	0	1	2	55	4	2	0	1	0	0	62
0	0	0	0	0	0	0	0	10	3	0	0	0	0	0	13
0	0	0	0	0	0	1	1	13	2	0	0	0	0	0	15
0	0	0	0	0	0	1	1	16	0	0	0	0	0	0	16
0	0	0	0	0	0	0	0	18	1	0	0	0	0	0	19
0	0	0	0	0	0	2	2	57	6	0	0	0	0	0	63
0	0	0	0	0	0	0	0	9	2	0	0	1	0	1	13
0	0	0	0	0	0	0	0	17	4	0	0	0	0	1	22
0	0	0	0	0	0	0	0	25	1	0	0	0	0	1	27
0	0	0	0	0	0	0	0	24	1	0	0	0	0	0	25
0	0	0	0	0	0	0	0	75	8	0	0	1	0	3	87
0	0	0	0	0	0	1	1	9	3	0	0	1	0	0	13
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	16	0	0	0	0	0	0	16
0	0	0	0	0	0	2	2	14	0	1	0	0	0	0	15
0	0	0	0	0	0	3	3	48	3	1	0	1	0	0	53
0	0	0	0	0	0	0	0	11	4	0	0	1	0	0	16
0	0	0	0	0	0	0	0	16	3	0	0	0	0	1	20
0	0	0	0	0	0	1	1	13	1	0	0	1	0	0	15
0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	16
0	0	0	0	0	0	1	1	55	9	0	0	2	0	1	67
0	0	0	0	0	0	0	0	15	1	0	0	2	0	0	18
0	0	0	0	0	0	0	0	7	3	0	0	0	0	0	10
0	0	0	0	0	0	0	0	17	1	0	0	1	0	0	19
0	1	0	0	0	0	0	1	18	2	0	0	0	1	0	21
0	1	0	0	0	0	0	1	57	7	0	0	3	1	0	68
0	0	0	0	0	0	1	1	18	3	0	0	0	0	0	21
0	0	0	0	0	0	0	0	24	1	0	0	0	0	3	28
0	0	0	0	0	0	1	1	18	3	0	0	1	0	0	22
0	0	0	0	0	0	1	1	21	1	0	0	0	0	0	22
0	0	0	0	0	0	3	3	81	8	0	0	1	0	3	93
0	0	0	0	0	0	0	0	14	1	0	0	1	0	0	16
0	0	0	0	0	0	0	0	12	2	0	0	0	0	0	14
0	0	0	0	0	0	0	0	23	1	0	0	0	0	0	24
0	0	0	0	0	0	0	0	26	1	0	0	0	0	0	27
0	0	0	0	0	0	0	0	75	5	0	0	1	0	0	81
0	1	1	0	0	0	11	13	660	65	9	0	18	1	12	765

			$B=>B$								B => C				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	36	2	0	0	2	0	1	41
0	0	0	0	0	0	0	0	37	6	1	0	2	0	1	47
0	0	0	0	0	0	0	0	46	4	1	1	2	0	4	58
0	0	0	0	0	0	0	0	40	6	1	0	1	1	3	52
0	0	0	0	0	0	0	0	159	18	3	1	7	1	9	198
0	0	0	0	0	0	0	0	60	4	0	0	3	0	9	76
0	0	0	0	0	0	0	0	59	7	2	0	1	0	5	74
0	0	0	0	0	0	0	0	81	8	3	1	1	0	1	95
1	0	0	0	0	0	0	1	71	2	0	2	1	0	2	78
1	0	0	0	0	0	0	1	271	21	5	3	6	0	17	323
0	0	0	0	0	0	0	0	69	13	3	0	2	0	1	88
0	0	0	0	0	0	0	0	57	7	3	2	2	0	0	71
0	0	0	0	0	0	0	0	64	10	3	0	0	0	0	77
0	0	0	0	0	0	0	0	81	12	0	1	2	0	2	98
0	0	0	0	0	0	0	0	271	42	9	3	6	0	3	334
0	0	0	0	0	0	0	0	71	10	5	0	1	0	0	87
0	0	0	0	0	0	0	0	73	8	3	0	1	0	2	87
0	0	0	0	0	0	0	0	89	13	2	1	1	1	3	110
0	0	0	0	0	0	0	0	98	10	0	0	1	1	2	112
0	0	0	0	0	0	0	0	331	41	10	1	4	2	7	396
0	0	0	0	0	0	0	0	82	13	1	4	1	0	1	102
0	0	0	0	0	0	0	0	79	12	4	1	1	0	1	98
0	0	0	0	0	0	0	0	91	16	0	0	1	1	2	111
0	0	0	0	0	0	0	0	92	9	5	0	1	0	6	113
0	0	0	0	0	0	0	0	344	50	10	5	4	1	10	424
0	0	0	0	0	0	0	0	101	3	3	1	1	0	5	114
0	0	0	0	0	0	0	0	90	9	0	1	1	0	4	105
0	0	0	0	0	0	0	0	77	17	1	1	1	5	2	104
0	0	0	0	0	0	0	0	85	10	3	1	1	0	3	103
0	0	0	0	0	0	0	0	353	39	7	4	4	5	14	426
0	0	0	0	0	0	0	0	95	7	2	1	1	0	3	109
0	0	0	0	0	0	0	0	90	8	0	0	1	0	7	106
0	0	0	0	0	0	0	0	95	6	6	0	1	0	2	110
0	0	0	0	0	0	0	0	76	13	1	0	1	0	7	98
0	0	0	0	0	0	0	0	356	34	9	1	4	0	19	423
0	0	0	0	0	0	0	0	96	14	0	0	1	1	3	115
0	0	0	0	0	0	0	0	83	8	0	1	1	0	2	95
0	0	0	0	0	0	0	0	93	16	2	1	1	0	1	114
0	0	0	0	0	0	0	0	93	8	3	2	1	0	6	113
0	0	0	0	0	0	0	0	365	46	5	4	4	1	12	437
0	0	0	0	0	0	0	0	88	6	2	2	2	1	5	106
0	0	0	0	0	0	0	0	87	12	3	0	1	2	5	110
0	0	0	0	0	0	0	0	89	18	3	1	1	0	1	113
0	0	0	0	0	0	0	0	106	15	0	1	1	1	3	127
0	0	0	0	0	0	0	0	370	51	8	4	5	4	14	456
0	0	0	0	0	0	0	0	90	16	1	0	1	0	2	110
0	0	0	0	0	0	0	0	90	7	0	1	1	0	5	104
0	0	0	0	0	0	0	0	101	11	2	0	2	0	3	119
0	0	0	0	0	0	0	0	91	16	0	0	1	0	6	114
0	0	0	0	0	0	0	0	372	50	3	1	5	0	16	447
0	0	0	0	0	0	0	0	105	15	0	0	1	0	7	128
0	0	0	0	0	0	0	0	76	5	0	0	1	0	14	96
0	0	0	0	0	0	0	0	100	10	0	0	2	0	5	117
0	0	0	0	0	0	0	0	85	6	1	0	1	0	8	101
0	0	0	0	0	0	0	0	366	36	1	0	5	0	34	442
0	0	0	0	0	0	0	0	87	7	0	0	1	0	5	100
0	0	0	0	0	0	0	0	91	4	0	0	2	1	7	105
0	0	0	0	0	0	0	0	100	4	0	0	2	0	10	116
0	0	0	0	0	0	0	0	86	4	1	0	1	0	4	96
0	0	0	0	0	0	0	0	364	19	1	0	6	1	26	417
1	0	0	0	0	0	0	1	3922	447	71	27	60	15	181	4723

			$\mathrm{C}=>\mathrm{A}$								C => B				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
5	2	2	0	0	0	0	9	16	11	1	0	3	0	1	32
6	4	1	0	0	0	0	11	15	15	0	1	1	0	2	34
4	2	0	0	0	0	0	6	38	12	0	0	2	0	4	56
7	3	0	0	0	0	1	11	45	16	2	0	0	0	4	67
22	11	3	0	0	0	1	37	114	54	3	1	6	0	11	189
3	2	1	0	0	0	0	6	35	10	6	0	2	0	2	55
14	2	0	0	0	0	0	16	34	9	1	1	1	0	4	50
13	1	1	0	0	0	0	15	45	6	2	2	2	0	0	57
14	5	0	0	0	0	0	19	59	12	1	0	0	0	4	76
44	10	2	0	0	0	0	56	173	37	10	3	5	0	10	238
12	3	0	0	0	0	0	15	33	14	6	1	1	0	1	56
6	4	1	0	0	0	0	11	53	7	1	0	1	0	1	63
10	1	1	1	0	0	0	13	59	18	3	0	3	0	0	83
17	3	0	0	0	0	0	20	76	9	3	1	1	0	1	91
45	11	2	1	0	0	0	59	221	48	13	2	6	0	3	293
6	4	0	0	0	0	0	10	55	9	3	0	2	1	2	72
13	1	1	1	0	0	1	17	58	11	2	0	0	0	0	71
12	0	0	0	0	0	0	12	57	10	0	0	2	0	1	70
13	2	0	0	0	0	0	15	79	4	2	2	0	0	1	88
44	7	1	1	0	0	1	54	249	34	7	2	4	1	4	301
8	1	0	0	0	0	0	9	70	7	2	1	2	1	2	85
12	0	0	0	0	0	0	12	73	7	5	0	0	0	1	86
14	0	0	0	0	0	1	15	81	8	1	1	2	1	5	99
18	1	0	0	0	0	1	20	84	5	2	0	0	0	0	91
52	2	0	0	0	0	2	56	308	27	10	2	4	2	8	361
8	0	0	0	0	0	0	8	93	11	1	1	2	0	1	109
15	1	0	0	0	1	0	17	76	8	3	1	0	0	2	90
15	1	0	0	0	0	0	16	92	7	0	0	2	0	2	103
18	2	1	0	0	0	0	21	92	12	1	1	0	0	4	110
56	4	1	0	0	1	0	62	353	38	5	3	4	0	9	412
19	2	0	0	0	0	0	21	89	6	0	1	1	0	0	97
19	1	0	0	0	0	0	20	82	7	1	0	1	1	6	98
11	0	0	0	0	0	2	13	84	5	1	1	1	0	6	98
19	1	0	0	0	0	1	21	77	9	1	0	1	0	1	89
68	4	0	0	0	0	3	75	332	27	3	2	4	1	13	382
19	1	0	1	0	0	0	21	76	6	1	2	1	0	7	93
18	3	0	0	0	0	0	21	109	9	1	1	1	0	3	124
16	0	0	0	0	0	2	18	78	9	1	0	1	0	2	91
17	3	0	1	0	0	4	25	86	9	0	1	1	1	3	101
70	7	0	2	0	0	6	85	349	33	3	4	4	1	15	409
16	1	0	0	0	0	0	17	67	10	0	1	2	0	4	84
13	1	0	1	0	0	2	17	69	7	0	0	0	0	5	81
15	1	0	0	0	0	4	20	72	3	0	1	1	0	6	83
19	1	0	1	0	0	0	21	88	3	1	2	1	2	3	100
63	4	0	2	0	0	6	75	296	23	1	4	4	2	18	348
11	0	0	0	0	0	0	11	104	8	0	0	1	1	5	119
15	3	0	0	0	0	1	19	99	5	0	0	1	1	3	109
13	1	0	0	0	0	1	15	71	3	1	0	2	1	9	87
21	0	0	0	0	0	0	21	86	3	0	0	1	0	5	95
60	4	0	0	0	0	2	66	360	19	1	0	5	3	22	410
19	1	0	0	0	0	0	20	89	10	0	1	2	1	7	110
23	2	0	0	0	0	5	30	73	4	0	1	1	0	3	82
12	1	0	0	0	0	0	13	79	6	1	1	2	0	3	92
22	3	0	0	0	0	0	25	97	3	0	1	2	0	3	106
76	7	0	0	0	0	5	88	338	23	1	4	7	1	16	390
21	2	0	0	0	0	4	27	93	8	0	0	2	0	4	107
23	0	0	0	0	1	0	24	99	7	1	0	1	0	3	111
12	1	0	0	0	0	0	13	94	0	0	0	1	0	4	99
20	0	0	0	0	0	1	21	84	2	0	0	2	0	9	97
76	3	0	0	0	1	5	85	370	17	1	0	6	0	20	414
676	74	9	6	0	2	31	798	3463	380	58	27	59	11	149	4147

CAR	LGV	$\mathrm{C}=>\mathrm{C}$			M/C	P/C	тот
		OGV1	OGV2	PSV			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1

Survey Name:	ITS J-410 Malahide
Site:	2
Date:	03.07.2020
Time:	07:00-19:00
Location:	53.451441, -6.153758
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey Name :	ITS J-410 Malahide		
Site:	2		B
Date:	15.07.2020		-
Time:	07:00-19:00		4
Location:	53.451441, -6.153758	Irish Traffic Surveys	\square
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C		

TIME	A => A								A => B							
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
н/тот	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
08:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/тот	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
14:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
H/TOT	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
15:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
15:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
15:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
15:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	1	3	0	0	0	0	0	4
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 TOT	0	0	0	0	0	0	0	0	8	5	0	0	0	0	0	13

			A => C								A => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	11	1	0	0	0	0	1	13

CAR	LGV	OGV1B =>A OGV2		PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { B => B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	1	0	0	0	0	0	2
0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4	2	0	0	0	0	0	6	5	3	0	0	0	0	0	8

B => C								B => D							тот
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	
0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	3
0	0	0	0	0	0	0	0	5	2	0	0	0	0	2	9
0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6
0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
0	0	0	0	0	0	0	0	20	4	0	0	0	0	4	28
0	0	0	0	0	0	1	1	9	1	0	0	0	0	1	11
0	0	0	0	0	0	1	1	12	5	0	0	0	0	0	17
0	0	0	0	0	0	0	0	10	4	0	0	0	0	0	14
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	2	2	40	10	0	0	0	0	1	51
0	0	0	0	0	0	0	0	11	1	0	0	0	0	1	13
0	0	0	0	0	0	0	0	14	3	0	0	0	0	2	19
0	0	0	0	0	0	0	0	10	3	1	0	0	0	2	16
0	0	0	0	0	0	0	0	12	2	0	0	0	0	0	14
0	0	0	0	0	0	0	0	47	9	1	0	0	0	5	62
0	0	0	0	0	0	0	0	15	7	0	0	0	0	0	22
0	0	0	0	0	0	0	0	17	0	0	0	0	0	2	19
0	0	0	0	0	0	0	0	25	3	0	0	0	0	0	28
0	0	0	0	0	0	0	0	31	2	0	0	0	0	1	34
0	0	0	0	0	0	0	0	88	12	0	0	0	0	3	103
0	0	0	0	0	0	0	0	28	1	0	0	0	0	2	31
0	0	0	0	0	0	0	0	24	0	0	0	0	0	1	25
0	0	0	0	0	0	1	1	26	3	0	0	0	0	1	30
0	0	0	0	0	0	0	0	18	5	0	0	0	0	2	25
0	0	0	0	0	0	1	1	96	9	0	0	0	0	6	111
0	0	0	0	0	0	0	0	22	1	0	0	0	0	1	24
0	0	0	0	0	0	0	0	33	5	0	0	0	0	2	40
0	0	0	0	0	0	0	0	33	4	0	0	0	0	1	38
0	0	0	0	0	0	0	0	32	4	0	0	0	0	2	38
0	0	0	0	0	0	0	0	120	14	0	0	0	0	6	140
0	0	0	0	0	0	0	0	33	6	0	0	0	0	1	40
0	0	0	0	0	0	0	0	27	2	0	0	0	0	3	32
0	0	0	0	0	0	4	4	26	2	0	0	0	0	1	29
0	0	0	0	0	0	2	2	23	1	0	0	0	0	1	25
0	0	0	0	0	0	6	6	109	11	0	0	0	0	6	126
0	0	0	0	0	0	0	0	32	3	0	0	0	0	0	35
0	0	0	0	0	0	0	0	19	2	0	0	0	0	1	22
0	0	0	0	0	0	0	0	21	2	0	0	0	0	0	23
0	0	0	0	0	0	2	2	20	2	0	0	0	0	1	23
0	0	0	0	0	0	2	2	92	9	0	0	0	0	2	103
0	0	0	0	0	0	0	0	28	1	0	0	0	0	0	29
0	0	0	0	0	0	0	0	32	5	1	0	0	0	1	39
0	0	0	0	0	0	0	0	26	2	0	0	0	0	4	32
0	0	0	0	0	0	0	0	33	2	0	0	0	0	0	35
0	0	0	0	0	0	0	0	119	10	1	0	0	0	5	135
0	0	0	0	0	0	0	0	30	5	0	0	0	0	2	37
0	0	0	0	0	0	2	2	34	3	0	0	0	0	1	38
0	0	0	0	0	0	0	0	36	3	0	0	0	0	1	40
0	0	0	0	0	0	0	0	38	3	0	0	0	0	4	45
0	0	0	0	0	0	2	2	138	14	0	0	0	0	8	160
0	0	0	0	0	0	1	1	45	1	0	0	0	1	4	51
0	0	0	0	0	0	5	5	23	4	0	0	0	0	4	31
0	0	0	0	0	0	1	1	33	2	0	0	0	0	6	41
0	0	0	0	0	0	0	0	21	1	1	0	0	0	5	28
0	0	0	0	0	0	7	7	122	8	1	0	0	1	19	151
0	0	0	0	0	0	4	4	26	1	0	0	0	0	2	29
0	0	0	0	0	0	0	0	21	0	0	0	0	0	2	23
0	0	0	0	0	0	1	1	29	3	0	0	0	0	2	34
0	0	0	0	0	0	1	1	22	1	0	0	0	0	9	32
0	0	0	0	0	0	6	6	98	5	0	0	0	0	15	118
0	0	0	0	0	0	26	26	1089	115	3	0	0	1	80	1288

			$\mathrm{C}=>\mathrm{A}$								C => B				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	4	1	2	0	0	0	0	7
0	0	0	0	0	0	0	0	4	4	1	0	3	0	0	12
0	0	0	0	0	0	0	0	10	2	0	0	0	0	0	12
0	0	0	0	0	0	0	0	14	4	0	0	1	0	1	20
0	0	0	0	0	0	0	0	32	11	3	0	4	0	1	51
0	0	0	0	0	0	0	0	10	1	1	0	0	0	0	12
0	0	0	0	0	0	0	0	13	2	0	0	0	0	0	15
0	0	0	0	0	0	0	0	19	1	0	0	0	0	1	21
0	0	0	0	0	0	0	0	13	5	1	0	0	0	0	19
0	0	0	0	0	0	0	0	55	9	2	0	0	0	1	67
0	0	0	0	0	0	0	0	14	0	1	0	0	0	0	15
0	0	0	0	0	0	0	0	10	3	1	0	1	0	0	15
0	0	0	0	0	0	0	0	14	1	2	0	0	0	0	17
0	0	0	0	0	0	0	0	15	3	1	0	1	0	0	20
0	0	0	0	0	0	0	0	53	7	5	0	2	0	0	67
0	0	0	0	0	0	0	0	23	4	0	0	0	0	0	27
0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	16
0	0	0	0	0	0	0	0	16	1	2	0	0	0	0	19
1	1	0	0	0	0	0	2	24	2	2	0	1	0	0	29
1	1	0	0	0	0	0	2	78	8	4	0	1	0	0	91
0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	14
0	0	0	0	0	0	0	0	18	2	1	0	0	0	0	21
0	0	0	0	0	0	0	0	25	1	0	0	0	0	0	26
0	0	0	0	0	0	0	0	22	1	0	0	1	0	1	25
0	0	0	0	0	0	0	0	76	7	1	0	1	0	1	86
0	0	0	0	0	0	0	0	18	2	0	0	0	0	0	20
0	0	0	0	0	0	0	0	22	2	0	0	0	1	0	25
0	0	0	0	0	0	0	0	20	1	0	0	0	0	0	21
0	0	0	0	0	0	0	0	29	4	1	0	0	0	0	34
0	0	0	0	0	0	0	0	89	9	1	0	0	1	0	100
1	0	0	0	0	0	0	1	29	5	0	0	1	0	1	36
0	0	0	0	0	0	0	0	22	4	0	0	0	0	0	26
0	0	0	0	0	0	0	0	24	3	0	0	0	0	0	27
1	0	0	0	0	0	0	1	29	1	1	0	0	0	0	31
2	0	0	0	0	0	0	2	104	13	1	0	1	0	1	120
0	1	0	0	0	0	0	1	20	2	0	1	1	0	0	24
0	0	0	0	0	0	0	0	23	3	0	0	0	0	0	26
0	0	0	0	0	0	0	0	22	0	0	0	0	0	2	24
0	0	0	0	0	0	0	0	23	2	0	1	0	0	1	27
0	1	0	0	0	0	0	1	88	7	0	2	1	0	3	101
1	1	0	0	0	0	0	2	19	3	0	0	1	0	0	23
0	0	0	0	0	0	0	0	16	1	1	1	0	0	3	22
0	0	0	0	0	0	0	0	17	3	0	0	1	0	2	23
0	0	0	0	0	0	0	0	26	1	0	0	0	0	0	27
1	1	0	0	0	0	0	2	78	8	1	1	2	0	5	95
0	0	0	0	0	0	0	0	20	1	0	0	2	0	0	23
0	0	0	0	0	0	0	0	20	3	1	0	0	0	1	25
0	0	0	0	0	0	0	0	18	0	0	0	1	0	1	20
2	0	0	0	0	0	0	2	23	5	0	0	0	0	0	28
2	0	0	0	0	0	0	2	81	9	1	0	3	0	2	96
1	0	0	0	0	0	0	1	25	2	0	0	0	0	0	27
0	0	0	0	0	0	0	0	27	2	0	0	0	0	4	33
1	1	0	0	0	0	0	2	20	0	0	0	1	0	0	21
0	0	0	0	0	0	0	0	26	3	1	0	0	0	0	30
2	1	0	0	0	0	0	3	98	7	1	0	1	0	4	111
1	0	0	0	0	0	0	1	21	1	0	0	1	0	4	27
1	0	0	0	0	0	0	1	29	4	0	0	0	1	0	34
0	0	0	0	0	0	0	0	22	1	0	0	0	0	0	23
0	0	0	0	0	0	0	0	38	3	0	0	0	0	1	42
2	0	0	0	0	0	0	2	110	9	0	0	1	1	5	126
10	4	0	0	0	0	0	14	942	104	20	3	17	2	23	1111

			$\mathrm{C}=>\mathrm{C}$								C => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
0	0	0	0	0	0	0	0	2	0	0	0	0	0	2	4
0	0	0	0	0	0	0	0	4	1	0	0	0	0	1	6
0	0	0	0	0	0	0	0	11	3	0	0	0	0	3	17
0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0	9	2	1	0	0	0	0	12
0	0	0	0	0	0	0	0	6	2	1	0	0	0	0	9
0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
0	0	0	0	0	0	0	0	26	4	2	0	0	0	0	32
0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10
0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	6
0	0	0	0	0	0	0	0	9	0	0	0	0	0	2	11
0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10
0	0	0	0	0	0	0	0	30	4	0	0	0	0	3	37
0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	6
0	0	0	0	0	0	0	0	4	0	0	1	0	0	0	5
0	0	0	0	0	0	0	0	11	1	1	0	0	0	0	13
0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
0	0	0	0	0	0	0	0	27	3	1	1	0	0	0	32
0	0	0	0	0	0	0	0	11	0	0	0	0	0	1	12
0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	39	0	0	0	0	0	1	40
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	9	2	0	0	0	0	0	11
0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
0	0	0	0	0	0	0	0	34	2	0	0	0	0	0	36
0	0	0	0	0	0	0	0	10	1	0	0	0	0	0	11
0	0	0	0	0	0	0	0	9	0	0	0	0	0	1	10
0	0	0	0	0	0	0	0	16	0	0	0	0	0	3	19
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	44	1	0	0	0	0	4	49
0	0	0	0	0	0	0	0	11	1	0	0	0	0	0	12
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	12	0	1	0	0	0	0	13
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	41	1	1	0	0	0	0	43
0	0	0	0	0	0	0	0	7	1	0	0	0	0	1	9
0	0	0	0	0	0	0	0	14	1	0	0	0	0	0	15
0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11
0	0	0	0	0	0	0	0	11	1	1	0	0	0	0	13
0	0	0	0	0	0	0	0	43	3	1	0	0	0	1	48
0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0	15	2	0	0	0	0	0	17
0	0	0	0	0	0	0	0	13	0	0	0	0	1	0	14
0	0	0	0	0	0	0	0	42	3	0	0	0	1	0	46
0	0	0	0	0	0	0	0	10	2	0	0	0	0	0	12
0	0	0	0	0	0	0	0	17	1	0	0	0	0	1	19
0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14
0	0	0	0	0	0	0	0	61	4	0	0	0	0	1	66
0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	15
0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13
0	0	0	0	0	0	0	0	11	0	0	0	0	0	0	11
0	0	0	0	0	0	0	0	11	1	0	0	0	0	0	12
0	0	0	0	0	0	0	0	50	1	0	0	0	0	0	51
0	0	0	0	0	0	0	0	448	29	5	1	0	1	13	497

CAR	LGV	OGV1	$\begin{gathered} \mathrm{D}=>\mathrm{A} \\ \mathrm{OGV2} \end{gathered}$	PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \text { D => B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	6	1	0	0	0	0	2	9
0	0	0	0	0	0	0	0	4	2	0	0	0	0	0	6
0	0	0	0	0	0	0	0	7	3	0	0	0	0	2	12
0	0	0	0	0	0	0	0	18	5	0	0	0	0	2	25
0	0	0	0	0	0	0	0	35	11	0	0	0	0	6	52
0	0	0	0	0	0	0	0	12	2	0	0	0	0	2	16
0	0	0	0	0	0	0	0	15	2	0	0	0	0	2	19
0	0	0	0	0	0	0	0	21	3	1	0	0	0	1	26
0	0	0	0	0	0	0	0	30	2	0	0	0	0	3	35
0	0	0	0	0	0	0	0	78	9	1	0	0	0	8	96
0	0	0	0	0	0	0	0	25	1	0	0	0	0	1	27
0	0	0	0	0	0	0	0	25	4	1	0	0	0	0	30
0	0	0	0	0	0	0	0	23	2	1	0	0	0	0	26
0	1	0	0	0	0	0	1	27	4	0	0	0	0	2	33
0	1	0	0	0	0	0	1	100	11	2	0	0	0	3	116
0	0	0	0	0	0	0	0	24	7	0	0	0	0	0	31
0	0	0	0	0	0	0	0	33	4	0	0	0	0	1	38
1	0	0	0	0	0	0	1	25	0	0	1	0	0	1	27
1	0	0	0	0	0	0	1	31	3	0	0	0	0	1	35
2	0	0	0	0	0	0	2	113	14	0	1	0	0	3	131
0	0	0	0	0	0	0	0	20	1	0	0	0	0	3	24
0	0	0	0	0	0	0	0	32	2	0	0	0	0	1	35
0	0	0	0	0	0	0	0	23	5	0	0	0	0	3	31
0	0	0	0	0	0	0	0	27	0	0	0	0	0	2	29
0	0	0	0	0	0	0	0	102	8	0	0	0	0	9	119
0	0	0	0	0	0	1	1	18	1	0	0	0	0	0	19
0	0	0	0	0	0	0	0	24	4	0	0	0	0	5	33
0	0	0	0	0	0	0	0	41	4	0	0	0	0	3	48
0	0	0	0	0	0	0	0	42	6	0	0	0	0	3	51
0	0	0	0	0	0	1	1	125	15	0	0	0	0	11	151
0	0	0	0	0	0	0	0	34	3	0	0	0	0	6	43
0	0	0	0	0	0	0	0	28	3	0	0	0	0	1	32
0	0	0	0	0	0	0	0	40	2	0	0	0	0	6	48
0	0	0	0	0	0	0	0	46	2	0	0	0	0	4	52
0	0	0	0	0	0	0	0	148	10	0	0	0	0	17	175
0	0	0	0	0	0	0	0	46	3	0	0	0	0	1	50
1	0	0	0	0	0	0	1	38	5	0	0	0	0	0	43
0	0	0	0	0	0	0	0	41	4	0	0	0	0	3	48
0	0	0	0	0	0	0	0	36	3	0	0	0	0	2	41
1	0	0	0	0	0	0	1	161	15	0	0	0	0	6	182
0	0	0	0	0	0	0	0	34	1	0	0	0	0	1	36
1	0	0	0	0	0	0	1	32	2	1	0	0	0	3	38
0	0	0	0	0	0	0	0	37	2	0	0	0	0	1	40
0	0	0	0	0	0	0	0	34	6	0	0	0	0	2	42
1	0	0	0	0	0	0	1	137	11	1	0	0	0	7	156
0	0	0	0	0	0	0	0	38	3	0	0	0	0	2	43
1	0	0	0	0	0	0	1	33	6	0	0	0	0	5	44
0	0	0	0	0	0	0	0	36	2	0	0	0	1	4	43
0	0	0	0	0	0	0	0	44	2	0	0	0	0	5	51
1	0	0	0	0	0	0	1	151	13	0	0	0	1	16	181
0	0	0	0	0	0	0	0	35	1	0	0	0	0	4	40
0	0	0	0	0	0	0	0	56	4	0	0	0	0	3	63
0	0	0	0	0	0	0	0	48	2	0	0	0	0	2	52
0	0	0	0	0	0	0	0	53	3	0	0	0	0	4	60
0	0	0	0	0	0	0	0	192	10	0	0	0	0	13	215
0	0	0	0	0	0	0	0	49	1	0	0	0	0	2	52
0	0	0	0	0	0	0	0	50	1	0	0	0	0	5	56
0	0	0	0	0	0	0	0	50	1	0	0	0	0	9	60
0	0	0	0	0	0	0	0	34	0	1	0	0	0	13	48
0	0	0	0	0	0	0	0	183	3	1	0	0	0	29	216
5	1	0	0	0	0	1	7	1525	130	5	1	0	1	128	1790

			D => C								D => D				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	3	6	0	0	0	0	0	0	0	0

Survey Name :	ITS J-410 Malahide		[1]- \square^{8}
Site:	3		E [-reter
Date:	15.07.2020		man $\quad \square$
Time:	07:00-19:00		$5 \cdot \underline{10} 5$
Location:	53.451441, -6.153758	Irish Traffic Surveys	gatitamer
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C		merybit mivaris

TIME	A => A								A => B							
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
07:00	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
07:15	0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5
07:30	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
07:45	0	0	0	0	0	0	0	0	9	1	0	0	0	1	0	11
H/TOT	0	0	0	0	0	0	0	0	28	3	0	0	0	1	0	32
08:00	0	0	0	0	0	0	0	0	14	1	1	0	0	1	0	17
08:15	0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
08:30	0	0	0	0	0	0	0	0	17	1	0	0	0	0	0	18
08:45	0	0	0	0	0	0	0	0	15	1	0	0	0	0	0	16
H/TOT	0	0	0	0	0	0	0	0	54	3	1	0	0	1	0	59
09:00	0	0	0	0	0	0	0	0	8	4	1	0	0	0	0	13
09:15	0	0	0	0	0	0	0	0	10	2	2	0	0	0	0	14
09:30	0	0	0	0	0	0	0	0	14	0	0	0	0	0	0	14
09:45	0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13
H/TOT	0	0	0	0	0	0	0	0	45	6	3	0	0	0	0	54
10:00	0	0	0	0	0	0	0	0	8	3	0	0	0	0	0	11
10:15	0	0	0	0	0	0	0	0	13	2	0	0	0	0	1	16
10:30	0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
10:45	0	0	0	0	0	0	0	0	14	1	0	0	0	0	0	15
H/TOT	0	0	0	0	0	0	0	0	44	7	0	0	0	0	1	52
11:00	0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14
11:15	0	0	0	0	0	0	0	0	7	2	0	0	0	0	0	9
11:30	0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10
11:45	0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	15
H/TOT	0	0	0	0	0	0	0	0	42	6	0	0	0	0	0	48
12:00	0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	15
12:15	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
12:30	0	1	0	0	0	0	0	1	8	1	0	0	0	0	0	9
12:45	0	0	0	0	0	0	0	0	17	1	0	0	0	0	2	20
H/TOT	0	1	0	0	0	0	0	1	46	2	0	0	0	0	2	50
13:00	0	0	0	0	0	0	0	0	16	1	0	0	0	0	0	17
13:15	0	0	0	0	0	0	0	0	14	3	0	0	0	0	0	17
13:30	0	0	0	0	0	0	0	0	14	1	0	0	0	0	4	19
13:45	0	0	0	0	0	0	0	0	14	2	0	0	0	0	4	20
H/TOT	0	0	0	0	0	0	0	0	58	7	0	0	0	0	8	73
14:00	0	0	0	0	0	0	0	0	19	2	0	0	0	0	0	21
14:15	0	0	0	0	0	0	0	0	13	2	0	0	0	0	2	17
14:30	0	0	0	0	0	0	0	0	20	2	0	0	0	0	0	22
14:45	0	0	0	0	0	0	1	1	12	0	0	0	0	0	1	13
H/TOT	0	0	0	0	0	0	1	1	64	6	0	0	0	0	3	73
15:00	0	0	0	0	0	0	0	0	11	2	1	0	0	0	0	14
15:15	0	0	0	0	0	0	0	0	16	1	0	0	0	0	1	18
15:30	0	0	0	0	0	0	0	0	9	1	1	0	0	0	2	13
15:45	0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9
H/TOT	0	0	0	0	0	0	0	0	44	5	2	0	0	0	3	54
16:00	0	0	0	0	0	0	0	0	18	3	0	0	0	0	0	21
16:15	0	0	0	0	0	0	0	0	18	1	0	0	0	0	2	21
16:30	1	0	0	0	0	0	0	1	19	2	0	0	0	0	0	21
16:45	0	0	0	0	0	0	0	0	16	1	0	0	0	1	9	27
H/TOT	1	0	0	0	0	0	0	1	71	7	0	0	0	1	11	90
17:00	0	0	0	0	0	0	0	0	20	2	0	0	0	0	0	22
17:15	0	0	0	0	0	0	0	0	10	0	0	0	0	1	5	16
17:30	0	0	0	0	0	0	0	0	20	1	0	0	0	0	0	21
17:45	0	0	0	0	0	0	0	0	15	1	0	0	0	0	2	18
H/TOT	0	0	0	0	0	0	0	0	65	4	0	0	0	1	7	77
18:00	0	0	0	0	0	0	0	0	12	2	0	0	0	0	0	14
18:15	0	0	0	0	0	0	0	0	20	1	0	0	0	0	0	21
18:30	0	0	0	0	0	0	0	0	20	1	0	0	0	0	2	23
18:45	0	0	0	0	0	0	0	0	26	2	0	0	0	0	1	29
H/TOT	0	0	0	0	0	0	0	0	78	6	0	0	0	0	3	87
12 TOT	1	1	0	0	0	0	1	3	639	62	6	0	0	4	38	749

A => C								A $=>\mathrm{D}$							тот
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
0	0	0	0	0	0	0	0	10	1	0	0	0	0	0	11
0	0	0	0	0	0	1	1	5	0	0	0	0	0	2	7
1	0	0	0	0	0	0	1	10	2	0	0	0	0	0	12
0	0	0	0	0	0	0	0	5	2	0	0	0	0	0	7
0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
1	0	0	0	0	0	1	2	26	4	0	0	0	0	2	32
0	1	0	0	0	0	1	2	4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6
0	0	0	0	0	0	0	0	4	2	1	0	0	0	0	7
0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
0	1	0	0	0	0	1	2	16	4	1	0	0	0	0	21
0	0	0	0	0	0	0	0	3	1	0	0	0	0	0	4
0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0	5	3	0	0	0	0	0	8
0	0	0	0	0	0	0	0	15	0	0	0	0	0	0	15
0	0	0	0	0	0	0	0	27	4	0	0	0	0	0	31
0	0	0	0	0	0	1	1	12	0	0	0	0	0	0	12
0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7
0	0	0	0	0	0	0	0	10	1	0	0	0	0	1	12
0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9
0	0	0	0	0	0	1	1	37	2	0	0	0	0	1	40
0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	9
0	0	0	0	0	0	0	0	13	1	0	0	0	0	0	14
0	0	0	0	0	0	0	0	9	5	1	0	0	0	0	15
0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9
0	0	0	0	0	0	0	0	39	7	1	0	0	0	0	47
0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	14
0	0	0	0	0	0	0	0	11	1	0	0	0	0	1	13
0	0	0	0	0	0	0	0	7	1	0	0	0	0	4	12
0	0	0	0	0	0	3	3	8	2	0	0	0	0	0	10
0	0	0	0	0	0	3	3	37	7	0	0	0	0	5	49
0	0	0	0	0	0	0	0	11	1	0	0	0	0	0	12
0	0	0	0	0	0	0	0	5	0	0	0	0	0	1	6
0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6
0	0	0	0	0	0	2	2	6	0	0	0	0	0	2	8
0	0	0	0	0	0	2	2	27	2	0	0	0	0	3	32
0	0	0	0	0	0	1	1	9	0	0	0	0	0	1	10
0	0	0	0	0	0	1	1	15	2	0	0	0	0	0	17
0	0	0	0	0	0	0	0	8	2	0	0	0	0	0	10
0	0	0	0	0	0	1	1	12	0	0	0	0	0	0	12
0	0	0	0	0	0	3	3	44	4	0	0	0	0	1	49
0	0	0	0	0	0	0	0	11	1	0	0	0	0	1	13
0	0	0	0	0	0	0	0	11	3	0	0	0	0	0	14
0	0	0	0	0	0	1	1	13	2	0	0	0	0	2	17
0	0	0	0	0	0	1	1	16	1	0	0	0	0	1	18
0	0	0	0	0	0	2	2	51	7	0	0	0	0	4	62
0	0	0	0	0	0	2	2	16	0	0	0	0	0	3	19
0	0	0	0	0	0	0	0	6	1	0	0	0	0	2	9
0	0	0	0	0	0	1	1	14	0	0	0	0	0	4	18
0	0	0	0	0	0	0	0	10	1	0	0	0	0	3	14
0	0	0	0	0	0	3	3	46	2	0	0	0	0	12	60
0	0	0	0	0	0	0	0	8	0	0	0	0	0	3	11
0	0	0	0	0	0	0	0	8	0	0	0	0	0	0	8
0	0	0	0	0	0	1	1	6	2	0	0	0	0	3	11
0	0	0	0	0	0	2	2	14	0	0	0	0	0	5	19
0	0	0	0	0	0	3	3	36	2	0	0	0	0	11	49
1	1	0	0	0	0	19	21	396	46	2	0	0	0	39	483

			B => A								B => B				
CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	1	0	7	0	0	0	0	0	0	0	0
5	0	1	0	0	0	0	6	0	0	0	0	0	0	0	0
13	0	1	0	0	1	0	15	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
6	1	0	0	0	1	0	8	0	0	0	0	0	0	0	0
5	2	0	0	0	0	0	7	0	0	0	0	0	0	0	0
3	3	0	0	0	0	0	6	0	0	0	0	0	0	0	0
18	6	0	0	0	1	0	25	0	0	0	0	0	0	0	0
9	1	2	0	0	0	0	12	0	0	0	0	0	0	0	0
3	0	0	0	0	1	0	4	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
2	2	0	0	0	0	0	4	0	0	0	0	0	0	0	0
19	3	2	0	0	1	0	25	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
4	3	0	0	0	0	1	8	1	0	0	0	0	0	0	1
4	2	0	0	0	0	0	6	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
20	6	0	0	0	0	1	27	1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
24	2	0	0	0	0	0	26	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
9	2	0	0	0	0	0	11	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
28	3	0	0	0	0	0	31	2	0	0	0	0	0	0	2
10	1	0	0	0	1	0	12	0	0	0	0	0	0	0	0
17	1	0	0	0	0	0	18	1	0	0	0	0	0	0	1
14	3	0	0	0	0	0	17	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
52	5	0	0	0	1	0	58	1	0	0	0	0	0	0	1
9	0	0	0	0	0	2	11	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
11	1	0	0	0	0	0	12	0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
32	2	0	0	0	0	2	36	0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
11	2	0	0	0	0	0	13	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
26	5	0	0	0	0	0	31	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
12	0	0	0	0	0	2	14	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
10	0	0	0	0	0	2	12	0	1	0	0	0	0	0	1
38	0	0	0	0	0	4	42	0	1	0	0	0	0	0	1
10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
6	0	0	0	0	0	4	10	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	10	0	0	0	0	0	0	0	0
11	0	0	0	0	0	2	13	0	0	0	0	0	0	0	0
36	1	0	0	0	0	6	43	0	0	0	0	0	0	0	0
10	0	0	0	0	0	1	11	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	10	0	0	0	0	0	0	0	0
13	0	0	0	0	0	4	17	0	0	0	0	0	0	0	0
13	0	0	0	0	0	3	16	0	0	0	0	0	0	0	0
45	1	0	0	0	0	8	54	0	0	0	0	0	0	0	0
351	34	3	0	0	4	21	413	4	1	0	0	0	0	0	5

			$B=>C$								B => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	1	0	0	0	0	1	0	0	0	0	0	0	2	2
0	0	1	0	0	0	0	1	2	2	0	0	0	0	0	4
0	0	0	0	0	0	0	0	2	1	0	0	0	0	2	5
0	1	0	0	0	0	0	1	5	1	0	0	0	0	0	6
0	1	2	0	0	0	0	3	9	4	0	0	0	0	4	17
0	0	0	0	0	0	0	0	4	1	0	0	0	0	0	5
1	0	0	0	0	0	0	1	5	3	0	0	0	0	0	8
0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7
0	0	0	0	0	0	0	0	2	3	0	0	0	0	0	5
1	0	0	0	0	0	0	1	17	8	0	0	0	0	0	25
0	1	0	0	0	0	1	2	6	1	0	0	0	0	1	8
0	1	1	0	0	0	0	2	12	3	0	0	0	0	1	16
0	0	1	0	0	0	0	1	7	0	0	0	0	0	2	9
1	0	0	0	0	0	0	1	9	1	0	0	0	0	0	10
1	2	2	0	0	0	1	6	34	5	0	0	0	0	4	43
0	1	0	0	0	0	0	1	11	5	0	0	0	0	0	16
0	1	0	0	0	0	0	1	10	0	0	0	0	0	2	12
0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	15	2	0	0	0	0	1	18
0	2	0	0	0	0	0	2	57	7	0	0	0	0	3	67
0	0	0	0	0	0	0	0	14	1	0	0	0	0	2	17
0	0	0	0	0	0	0	0	16	0	0	0	0	0	1	17
0	0	0	0	0	0	0	0	19	2	0	0	0	0	0	21
1	0	0	0	0	0	0	1	8	3	0	0	0	0	0	11
1	0	0	0	0	0	0	1	57	6	0	0	0	0	3	66
0	0	0	0	0	0	0	0	14	1	0	0	0	0	3	18
0	0	0	0	0	0	0	0	20	3	0	0	0	0	2	25
0	0	0	0	0	0	0	0	24	4	0	0	0	0	0	28
0	0	0	0	0	0	0	0	23	1	0	0	0	0	2	26
0	0	0	0	0	0	0	0	81	9	0	0	0	0	7	97
0	0	0	0	0	0	0	0	19	4	0	0	0	0	1	24
1	0	0	0	0	0	0	1	15	2	0	0	0	0	1	18
0	0	0	0	0	0	2	2	20	1	0	0	0	0	1	22
0	0	0	0	0	0	0	0	14	0	0	0	0	0	2	16
1	0	0	0	0	0	2	3	68	7	0	0	0	0	5	80
1	0	0	0	0	0	0	1	21	2	0	0	0	0	0	23
1	0	0	0	0	0	0	1	14	3	0	0	0	0	1	18
1	0	0	0	0	0	0	1	16	1	0	0	0	0	0	17
0	1	0	0	0	0	0	1	12	1	0	0	0	0	1	14
3	1	0	0	0	0	0	4	63	7	0	0	0	0	2	72
0	0	0	0	0	0	0	0	18	2	0	0	0	0	0	20
0	0	0	0	0	0	2	2	18	5	1	0	0	0	2	26
0	0	0	0	0	0	0	0	22	0	0	0	0	0	2	24
0	0	0	0	0	0	2	2	23	2	0	0	0	0	0	25
0	0	0	0	0	0	4	4	81	9	1	0	0	0	4	95
0	0	0	0	0	0	0	0	18	3	0	0	0	0	1	22
0	0	0	0	0	0	0	0	19	0	0	0	0	0	1	20
0	0	0	0	0	0	0	0	21	1	0	0	0	0	2	24
1	0	0	0	0	0	0	1	20	2	0	0	0	0	1	23
1	0	0	0	0	0	0	1	78	6	0	0	0	0	5	89
0	0	0	0	0	0	0	0	29	1	0	0	0	1	2	33
0	0	0	0	0	0	0	0	14	3	0	0	0	0	1	18
0	0	0	0	0	0	0	0	13	1	0	0	0	0	5	19
0	0	0	0	0	0	0	0	11	0	1	0	0	0	2	14
0	0	0	0	0	0	0	0	67	5	1	0	0	1	10	84
0	0	0	0	0	0	0	0	15	1	0	0	0	0	2	18
1	0	0	0	0	0	0	1	10	0	0	0	0	0	2	12
0	0	0	0	0	0	0	0	21	2	0	0	0	0	0	23
0	0	0	0	0	0	0	0	7	1	0	0	0	1	2	11
1	0	0	0	0	0	0	1	53	4	0	0	0	1	6	64
9	6	4	0	0	0	7	26	665	77	2	0	0	2	53	799

CAR	LGV	$\mathrm{C}=>\mathrm{A}$			M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { C => B } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
		OGV1	OGV2	PSV											
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	3
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	3	1	1	0	0	0	1	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	3
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	1	0	1	0	0	0	0	2
0	0	0	0	0	0	0	0	0	4	1	0	0	0	0	5
0	1	0	0	0	0	1	2	1	4	2	0	0	0	0	7
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	2	3	0	0	0	0	1	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	2	3
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	3	1	0	0	0	0	0	2	3
0	0	0	0	0	0	2	2	0	0	0	0	0	0	2	2
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
0	0	0	0	0	0	5	5	0	0	0	0	0	0	0	0
0	0	0	0	0	0	8	8	0	0	0	0	0	0	4	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	5	5	1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	8	8	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	7	7	1	0	0	0	0	0	3	4
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	8	8	2	0	0	0	0	0	3	5
0	0	0	0	0	0	2	2	1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	6	6	1	0	0	0	0	0	2	3
0	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
0	1	0	0	0	0	1	2	1	0	0	0	0	0	3	4
0	2	0	0	0	0	36	38	13	10	3	0	0	0	18	44

CAR	LGV	OGV1C=> C OGV2		PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \text { C => D } \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	3
0	0	0	0	0	0	0	0	1	0	0	0	0	0	3	4
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	5	6
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
0	0	0	0	0	0	0	0	3	1	0	0	0	0	4	8
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1	10	2	0	0	0	0	15	27

			D => A								D => B				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
5	1	0	0	0	0	0	6	6	1	1	0	0	0	2	10
3	3	1	0	0	0	0	7	5	2	0	0	3	0	0	10
3	3	0	0	0	0	0	6	10	3	0	0	0	0	2	15
17	5	0	0	0	0	1	23	15	3	0	0	1	0	2	21
28	12	1	0	0	0	1	42	36	9	1	0	4	0	6	56
10	1	0	0	0	0	0	11	11	3	0	0	0	0	2	16
13	2	0	0	0	0	0	15	16	2	1	0	0	0	2	21
12	1	0	0	0	0	1	14	26	1	1	0	1	0	0	29
12	3	0	0	0	0	0	15	30	7	1	0	0	0	4	42
47	7	0	0	0	0	1	55	83	13	3	0	1	0	8	108
8	1	0	0	0	0	0	9	22	1	0	0	0	0	1	24
12	2	1	0	0	0	0	15	21	5	1	0	1	0	0	28
14	0	0	0	0	0	0	14	20	1	1	0	0	0	0	22
8	2	0	0	0	0	0	10	31	5	1	0	1	0	2	40
42	5	1	0	0	0	0	48	94	12	3	0	2	0	3	114
17	2	0	0	0	0	0	19	29	8	0	0	0	0	0	37
11	1	0	0	0	0	1	13	33	4	1	0	0	0	1	39
10	1	0	0	0	0	0	11	32	1	2	1	0	0	2	38
14	0	0	0	0	0	0	14	41	4	2	0	1	0	1	49
52	4	0	0	0	0	1	57	135	17	5	1	1	0	4	163
13	0	0	0	0	0	0	13	26	2	0	0	0	0	1	29
9	1	0	0	0	0	0	10	34	4	1	0	0	0	2	41
11	1	0	0	0	0	0	12	38	4	0	0	0	0	3	45
23	1	0	0	0	0	1	25	28	2	0	0	1	0	1	32
56	3	0	0	0	0	1	60	126	12	1	0	1	0	7	147
9	2	0	0	0	0	0	11	32	1	0	0	0	0	0	33
11	4	0	0	0	0	0	15	33	2	0	0	0	1	3	39
13	1	0	0	0	0	0	14	44	4	0	0	0	0	0	48
18	1	0	0	0	0	1	20	50	7	1	0	0	0	1	59
51	8	0	0	0	0	1	60	159	14	1	0	0	1	4	179
21	6	0	0	0	0	2	29	36	3	0	0	1	0	1	41
17	3	0	0	0	0	1	21	42	4	0	0	0	0	0	46
13	1	0	0	0	0	0	14	43	4	0	0	0	0	6	53
28	1	0	0	0	0	0	29	38	3	0	0	0	0	4	45
79	11	0	0	0	0	3	93	159	14	0	0	1	0	11	185
18	1	0	0	0	0	0	19	51	5	0	1	1	0	0	58
14	1	0	0	0	0	0	15	49	5	0	0	0	0	0	54
23	1	0	0	0	0	3	27	34	3	0	0	0	0	0	37
19	0	0	0	0	0	1	20	50	5	0	1	0	0	3	59
74	3	0	0	0	0	4	81	184	18	0	2	1	0	3	208
10	0	0	0	0	0	0	10	42	3	0	0	1	0	1	47
11	1	1	0	0	0	2	15	35	4	0	0	0	0	1	40
11	2	0	0	0	0	0	13	40	4	0	1	1	0	3	49
21	1	0	0	0	0	0	22	43	5	0	0	0	0	5	53
53	4	1	0	0	0	2	60	160	16	0	1	2	0	10	189
19	0	0	0	0	0	0	19	38	5	0	0	2	0	0	45
13	3	0	0	0	0	1	17	38	5	0	0	0	0	2	45
9	1	0	0	0	0	0	10	49	3	0	0	1	1	4	58
22	2	0	0	0	0	0	24	45	3	0	0	0	0	4	52
63	6	0	0	0	0	1	70	170	16	0	0	3	1	10	200
19	0	0	0	0	0	1	20	35	3	0	0	0	0	3	41
23	2	0	0	0	0	0	25	49	4	0	0	0	0	1	54
17	1	0	0	0	0	5	23	53	1	0	0	1	0	4	59
15	3	0	0	0	0	3	21	59	5	0	0	0	0	1	65
74	6	0	0	0	0	9	89	196	13	0	0	1	0	9	219
27	2	0	0	0	0	4	33	40	0	0	0	1	0	1	42
25	3	0	0	0	1	0	29	62	1	0	0	0	0	5	68
13	1	0	0	0	0	5	19	49	2	0	0	0	0	2	53
27	0	0	0	0	0	0	27	51	2	0	0	0	0	8	61
92	6	0	0	0	1	9	108	202	5	0	0	1	0	16	224
711	75	3	0	0	1	33	823	1704	159	14	4	18	2	91	1992

			D => C								D => D				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	0	0	0	0	0	3	0	0	0	0	0	0	0	0
1	2	0	1	0	0	0	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
1	1	0	1	0	0	0	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	0	1	0	0	0	6	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	1	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	7	9	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
1	1	0	0	0	0	2	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0
1	0	0	0	0	0	5	6	0	0	0	0	0	0	0	0
16	7	0	2	0	0	20	45	0	0	0	0	0	0	0	0

Survey Name:	ITS J-410 Malahide
Site:	4
Date:	15.07 .2020
Time:	07:00-19:00
Location:	$53.4141,-6.153758$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey Name :	ITS J-410 Malahide		
Site:			
Date:	15.07.2020		
Time:	07:00-19:00		
Location: Classification:	$53.451441,-6.153758$ Car, LGV, OGV1, OGV2, PSV, P/C, M/C	Irish Traffic Surveys	D

TIME	A => A							тот	$A=>B$							тот
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	
07:00	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
07:15	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2
08:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	3
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
н/тот	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	1
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	2
12 TOT	0	0	0	0	0	0	1	1	2	4	1	0	0	0	8	15

			A => C								A => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	3
0	0	1	0	0	0	0	1	0	3	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	2
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	2	0	0	0	0	1	3
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	1	1	0	0	0	0	2
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	4	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	3	3
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
1	2	1	0	0	0	12	16	0	6	1	0	0	0	5	12

			B => A								B => B				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	1	0	0	0	1	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	2	2	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	5	5	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	1	0	0	0	0	3	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	3	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	6	6	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	7	7	0	0	0	0	0	0	0	0
0	2	1	0	0	0	24	27	0	0	0	0	0	0	0	0

			B => C								B => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
4	1	1	0	0	0	0	6	33	2	0	0	1	0	1	37
0	0	0	0	0	0	0	0	31	4	1	0	3	0	1	40
5	0	0	0	0	0	0	5	41	5	1	1	1	0	4	53
5	0	0	0	0	0	0	5	40	4	1	0	1	1	2	49
14	1	1	0	0	0	0	16	145	15	3	1	6	1	8	179
13	2	0	0	0	0	0	15	55	2	0	0	1	0	9	67
8	0	0	0	0	0	0	8	59	7	3	0	0	0	5	74
12	0	1	0	0	0	0	13	77	8	3	1	2	0	1	92
20	1	0	0	0	0	1	22	60	2	0	1	0	0	2	65
53	3	1	0	0	0	1	58	251	19	6	2	3	0	17	298
10	1	0	0	0	0	0	11	61	11	3	0	1	0	0	76
9	0	0	0	0	0	0	9	57	7	3	2	2	0	0	71
6	0	1	0	0	0	2	9	57	7	3	0	0	0	0	67
14	4	1	0	0	0	1	20	61	10	0	1	2	0	2	76
39	5	2	0	0	0	3	49	236	35	9	3	5	0	2	290
13	3	0	0	0	0	0	16	71	9	5	0	1	0	0	86
13	0	0	0	0	0	0	13	64	6	3	0	0	0	1	74
17	2	0	0	0	0	0	19	81	10	2	1	1	1	0	96
12	1	1	0	0	0	0	14	88	9	1	0	1	1	2	102
55	6	1	0	0	0	0	62	304	34	11	1	3	2	3	358
14	1	0	0	0	0	0	15	82	12	2	2	1	0	1	100
15	0	0	0	0	0	1	16	70	10	4	0	0	0	0	84
17	1	0	0	0	0	0	18	76	12	0	0	1	1	1	91
14	3	0	0	0	0	0	17	84	4	4	0	1	1	4	98
60	5	0	0	0	0	1	66	312	38	10	2	3	2	6	373
18	2	0	0	0	1	0	21	95	5	2	0	1	0	5	108
15	2	0	0	0	0	0	17	89	8	1	1	0	0	3	102
8	0	0	0	0	0	0	8	67	13	1	1	1	4	2	89
19	2	0	0	0	0	1	22	76	8	3	1	0	0	2	90
60	6	0	0	0	1	1	68	327	34	7	3	2	4	12	389
18	2	0	0	0	0	0	20	78	8	2	1	2	0	2	93
13	2	0	0	0	0	0	15	78	8	1	0	0	0	6	93
10	2	0	0	0	0	0	12	98	6	4	1	1	0	2	112
16	1	0	0	0	0	1	18	77	13	0	1	0	0	5	96
57	7	0	0	0	0	1	65	331	35	7	3	3	0	15	394
22	0	0	0	1	0	2	25	83	11	0	0	2	1	3	100
21	5	0	0	0	0	0	26	71	7	0	1	0	0	1	80
15	2	0	0	0	0	1	18	81	14	2	1	1	0	1	100
13	1	0	0	0	0	0	14	83	6	4	2	0	0	3	98
71	8	0	0	1	0	3	83	318	38	6	4	3	1	8	378
13	2	0	0	0	0	0	15	81	7	2	2	3	1	5	101
16	4	0	0	0	0	2	22	79	12	3	0	0	2	3	99
13	1	0	0	0	0	0	14	88	12	3	1	2	0	0	106
18	1	0	0	0	0	0	19	98	12	0	1	0	1	1	113
60	8	0	0	0	0	2	70	346	43	8	4	5	4	9	419
13	0	0	0	0	0	0	13	83	12	1	0	3	0	2	101
6	1	0	0	0	0	0	7	81	8	1	0	0	0	4	94
12	1	0	0	0	0	0	13	89	9	1	0	2	0	3	104
8	1	0	0	0	0	0	9	93	12	0	0	0	1	3	109
39	3	0	0	0	0	0	42	346	41	3	0	5	1	12	408
12	0	0	0	1	0	1	14	90	14	0	0	1	0	3	108
19	3	0	0	0	1	2	25	67	6	0	0	0	0	6	79
12	0	0	0	0	0	0	12	92	9	0	0	2	0	2	105
15	1	0	0	0	0	0	16	85	6	1	0	0	0	7	99
58	4	0	0	1	1	3	67	334	35	1	0	3	0	18	391
19	1	0	0	0	0	0	20	80	8	0	0	2	0	1	91
12	1	0	0	0	0	0	13	73	5	0	0	1	1	7	87
18	1	0	0	0	1	0	20	92	6	1	0	1	0	6	106
16	1	0	0	0	1	1	19	89	3	1	0	2	0	1	96
65	4	0	0	0	2	1	72	334	22	2	0	6	1	15	380
631	60	5	0	2	4	16	718	3584	389	73	23	47	16	125	4257

CAR	LGV	$C=>A$ OGV1 OGV2		PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} \hline \mathrm{C}=>\mathrm{B} \\ \mathrm{OGV2} \end{gathered}$	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	2
0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1	4	1	0	0	0	0	0	5
0	0	0	0	0	0	0	0	10	1	0	0	0	0	0	11
1	0	0	0	0	0	0	1	17	3	1	0	0	0	0	21
0	0	0	0	0	0	0	0	9	0	1	0	0	0	0	10
0	0	0	0	0	0	0	0	11	0	0	0	0	1	1	13
0	0	0	0	0	0	0	0	10	1	0	0	0	0	0	11
0	0	0	0	0	0	0	0	18	1	0	0	0	0	0	19
0	0	0	0	0	0	0	0	48	2	1	0	0	1	1	53
0	0	0	0	0	0	0	0	9	0	0	0	0	0	1	10
0	0	0	0	0	0	0	0	9	2	1	0	0	1	0	13
0	0	0	0	0	0	0	0	8	2	1	0	0	0	0	11
0	0	0	0	0	0	0	0	14	2	0	0	0	0	0	16
0	0	0	0	0	0	0	0	40	6	2	0	0	1	1	50
1	0	0	0	0	0	0	1	16	2	0	0	0	0	0	18
0	0	0	0	0	0	1	1	20	1	0	0	0	0	0	21
0	0	0	0	0	0	0	0	19	1	0	0	0	0	0	20
0	0	0	0	0	0	0	0	19	1	1	0	0	0	0	21
1	0	0	0	0	0	1	2	74	5	1	0	0	0	0	80
0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
0	0	0	0	0	0	0	0	9	2	0	0	0	0	0	11
0	0	0	0	0	0	0	0	15	0	0	0	0	1	1	17
0	0	0	0	0	0	0	0	14	1	0	0	0	0	0	15
0	0	0	0	0	0	0	0	47	4	0	0	0	1	1	53
0	0	0	0	0	0	0	0	25	1	0	0	0	0	0	26
0	0	0	0	0	0	0	0	21	3	0	0	0	0	0	24
0	0	0	0	0	0	1	1	14	2	0	0	0	0	0	16
0	0	0	0	0	0	0	0	22	2	0	0	0	0	0	24
0	0	0	0	0	0	1	1	82	8	0	0	0	0	0	90
0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	19
0	0	0	0	0	0	1	1	21	2	0	0	0	0	2	25
0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	18	0	0	0	0	0	0	18
0	0	0	0	0	0	1	1	76	5	0	0	0	0	2	83
0	0	0	0	0	0	0	0	23	2	0	0	0	0	0	25
0	0	0	0	0	0	0	0	26	1	0	0	0	0	0	27
0	0	0	0	0	0	0	0	20	2	0	0	0	0	0	22
0	0	0	0	0	0	0	0	25	2	0	0	0	0	1	28
0	0	0	0	0	0	0	0	94	7	0	0	0	0	1	102
0	0	0	0	0	0	0	0	13	2	0	0	0	0	1	16
0	0	0	0	0	0	0	0	21	2	1	0	0	0	0	24
0	0	0	0	0	0	0	0	21	2	0	0	0	0	0	23
0	0	0	0	0	0	0	0	18	1	0	0	0	0	1	20
0	0	0	0	0	0	0	0	73	7	1	0	0	0	2	83
0	0	0	0	0	0	0	0	21	1	0	0	0	0	0	22
0	0	0	0	0	0	0	0	27	3	0	0	0	0	0	30
0	0	0	0	0	0	1	1	25	0	0	0	0	0	0	25
0	0	0	0	0	0	0	0	13	0	0	0	0	0	2	15
0	0	0	0	0	0	1	1	86	4	0	0	0	0	2	92
0	0	0	0	0	0	0	0	16	2	0	0	0	0	1	19
0	0	0	0	0	0	1	1	19	1	0	0	0	0	0	20
0	0	0	0	0	0	0	0	17	2	0	0	0	0	0	19
0	0	0	0	0	0	0	0	13	0	0	0	0	0	0	13
0	0	0	0	0	0	1	1	65	5	0	0	0	0	1	71
0	0	0	0	0	0	0	0	21	1	0	0	0	0	0	22
0	0	0	0	0	0	0	0	26	2	0	0	0	0	0	28
0	0	0	0	0	0	0	0	18	0	0	0	0	0	0	18
0	0	0	0	0	0	0	0	21	0	0	0	0	0	1	22
0	0	0	0	0	0	0	0	86	3	0	0	0	0	1	90
2	0	0	0	0	0	5	7	788	59	6	0	0	3	12	868

			$\mathrm{C}=>\mathrm{C}$								C => D				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	4	0	0	0	1	0	0	5
0	0	0	0	0	0	0	0	6	4	0	0	2	0	0	12
0	0	0	0	0	0	0	0	7	0	0	0	1	1	0	9
0	0	0	0	0	0	0	0	12	0	0	0	1	0	2	15
0	0	0	0	0	0	0	0	29	4	0	0	5	1	2	41
0	0	0	0	0	0	0	0	17	2	0	0	2	0	0	21
0	0	0	0	0	0	0	0	13	2	0	0	1	0	0	16
0	0	0	0	0	0	0	0	14	2	0	0	0	0	0	16
0	0	0	0	0	0	0	0	23	0	1	0	1	0	0	25
0	0	0	0	0	0	0	0	67	6	1	0	4	0	0	78
0	0	0	0	0	0	0	0	12	2	0	0	1	0	0	15
0	0	0	0	0	0	0	0	16	0	0	0	1	0	1	18
0	0	0	0	0	0	0	0	17	3	0	0	0	0	1	21
0	0	0	0	0	0	0	0	27	6	0	0	1	0	1	35
0	0	0	0	0	0	0	0	72	11	0	0	3	0	3	89
0	0	0	0	0	0	0	0	18	1	0	0	0	0	0	19
0	0	0	0	0	0	0	0	18	1	1	0	1	0	2	23
0	0	0	0	0	0	0	0	21	3	0	0	0	0	0	24
0	0	0	0	0	0	0	0	22	4	1	0	1	0	0	28
0	0	0	0	0	0	0	0	79	9	2	0	2	0	2	94
0	0	0	0	0	0	0	0	17	2	1	0	0	0	0	20
1	0	0	0	0	0	0	1	20	4	2	1	1	0	0	28
0	0	0	0	0	0	0	0	31	5	0	0	0	0	0	36
0	0	0	0	0	0	0	0	16	6	1	0	1	0	0	24
1	0	0	0	0	0	0	1	84	17	4	1	2	0	0	108
0	0	0	0	0	0	0	0	16	1	0	1	0	0	0	18
0	0	0	0	0	0	0	0	15	2	0	0	1	0	0	18
0	0	0	0	0	0	0	0	27	4	0	0	0	0	0	31
0	0	0	0	0	0	0	0	27	1	0	0	1	0	0	29
0	0	0	0	0	0	0	0	85	8	0	1	2	0	0	96
0	0	0	0	0	0	0	0	28	3	0	0	0	0	0	31
0	0	0	0	0	0	0	0	28	3	0	0	1	0	0	32
0	0	0	0	0	0	0	0	22	1	0	0	0	0	1	24
0	0	0	0	0	0	0	0	28	1	0	0	1	0	0	30
0	0	0	0	0	0	0	0	106	8	0	0	2	0	1	117
0	0	0	0	0	0	0	0	23	4	0	0	0	0	0	27
0	0	0	0	0	0	0	0	20	2	0	0	1	0	1	24
0	0	0	0	0	0	0	0	27	3	0	0	0	0	0	30
0	0	0	0	0	0	0	0	20	3	0	0	1	0	0	24
0	0	0	0	0	0	0	0	90	12	0	0	2	0	1	105
0	0	0	0	0	0	0	0	19	3	0	0	0	0	0	22
0	0	0	0	0	0	0	0	19	4	1	0	1	0	0	25
0	0	0	0	0	0	0	0	24	4	0	0	0	0	0	28
0	0	0	0	0	0	0	0	17	2	0	0	1	0	0	20
0	0	0	0	0	0	0	0	79	13	1	0	2	0	0	95
0	0	0	0	0	0	0	0	27	1	0	0	0	0	0	28
0	0	0	0	0	0	0	0	16	0	0	0	1	0	0	17
0	0	0	0	0	0	0	0	31	3	1	0	1	0	0	36
0	0	0	0	0	0	0	0	18	6	0	0	1	0	0	25
0	0	0	0	0	0	0	0	92	10	1	0	3	0	0	106
0	0	0	0	0	0	0	0	30	2	0	0	0	0	0	32
0	0	0	0	0	0	0	0	36	0	0	0	1	0	2	39
0	0	0	0	0	0	0	0	27	4	0	0	1	0	0	32
0	0	0	0	0	0	0	0	24	0	0	0	1	0	0	25
0	0	0	0	0	0	0	0	117	6	0	0	3	0	2	128
0	0	0	0	0	0	0	0	22	1	0	0	0	0	3	26
0	0	0	0	0	0	0	0	27	3	0	0	1	0	0	31
0	0	0	0	0	0	0	0	30	2	0	0	1	0	0	33
0	0	0	0	0	0	0	0	21	3	0	0	0	0	0	24
0	0	0	0	0	0	0	0	100	9	0	0	2	0	3	114
1	0	0	0	0	0	0	1	1000	113	9	2	32	1	14	1171

			D => A								D => B				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	1	0	0	0	0	1	12	8	0	0	3	0	1	24
0	0	0	0	0	0	0	0	14	9	1	1	0	0	2	27
0	0	0	0	0	0	1	1	43	7	0	0	1	0	0	51
1	0	0	0	0	0	0	1	41	12	2	0	0	0	2	57
1	0	1	0	0	0	1	3	110	36	3	1	4	0	5	159
0	0	0	0	0	0	1	1	29	9	5	0	1	0	2	46
0	0	0	0	0	0	0	0	27	8	1	1	0	0	3	40
0	1	0	0	0	0	0	1	41	5	1	1	1	0	0	49
0	0	0	0	0	0	0	0	52	10	2	0	0	0	4	68
0	1	0	0	0	0	1	2	149	32	9	2	2	0	9	203
0	0	0	0	0	0	0	0	30	10	5	1	1	0	0	47
0	0	0	0	0	0	0	0	51	8	1	0	0	0	0	60
0	4	0	0	0	0	0	4	48	14	3	0	1	0	1	67
0	0	0	0	0	0	0	0	61	7	2	1	0	0	0	71
0	4	0	0	0	0	0	4	190	39	11	2	2	0	1	245
0	1	0	0	0	0	0	1	53	4	4	0	2	1	1	65
0	0	0	0	0	0	0	0	50	10	0	0	0	0	0	60
0	0	0	0	0	0	0	0	49	8	0	0	0	0	1	58
0	0	0	0	0	0	0	0	66	6	3	1	0	0	1	77
0	1	0	0	0	0	0	1	218	28	7	1	2	1	3	260
0	0	0	0	0	0	0	0	56	6	2	1	1	1	1	68
0	0	0	0	0	0	1	1	71	8	4	0	0	0	0	83
0	0	0	0	0	0	2	2	72	6	1	0	1	0	3	83
0	0	0	0	0	0	0	0	75	4	1	0	0	0	0	80
0	0	0	0	0	0	3	3	274	24	8	1	2	1	4	314
0	0	0	0	0	0	0	0	84	9	1	1	1	0	0	96
0	0	0	0	0	0	0	0	64	8	4	1	0	0	4	81
0	0	0	0	0	0	0	0	72	6	0	0	1	0	2	81
0	0	0	0	0	0	2	2	79	9	1	1	0	0	1	91
0	0	0	0	0	0	2	2	299	32	6	3	2	0	7	349
0	0	0	0	0	0	0	0	66	6	0	1	1	0	2	76
0	0	0	0	0	0	1	1	76	5	0	0	0	0	2	83
0	0	0	0	0	0	0	0	74	5	0	2	1	1	1	84
0	0	0	0	0	0	0	0	73	6	1	0	0	0	1	81
0	0	0	0	0	0	1	1	289	22	1	3	2	1	6	324
0	1	0	0	0	0	0	1	63	7	0	1	0	0	6	77
0	1	0	0	0	0	0	1	91	5	0	1	1	0	1	99
0	0	0	0	0	0	1	1	66	11	1	0	1	0	1	80
0	0	0	0	0	0	0	0	73	7	0	1	0	1	3	85
0	2	0	0	0	0	1	3	293	30	1	3	2	1	11	341
0	0	0	0	0	0	0	0	60	9	0	1	1	0	2	73
0	0	0	0	0	0	0	0	62	5	0	0	0	0	1	68
0	0	0	0	0	0	0	0	63	5	0	1	1	0	4	74
0	0	0	0	0	0	0	0	76	4	0	1	0	2	1	84
0	0	0	0	0	0	0	0	261	23	0	3	2	2	8	299
0	0	0	0	0	0	2	2	82	8	0	0	1	1	3	95
0	0	0	0	0	0	1	1	87	7	0	0	0	1	3	98
0	0	0	0	0	0	5	5	63	1	1	0	1	1	2	69
0	0	0	0	0	0	1	1	75	2	0	0	0	0	4	81
0	0	0	0	0	0	9	9	307	18	1	0	2	3	12	343
0	0	0	0	0	0	0	0	81	8	0	0	1	1	5	96
0	0	0	0	0	0	1	1	64	3	0	1	0	0	3	71
0	0	1	0	0	0	0	1	71	6	0	1	0	0	3	81
1	0	0	0	0	0	0	1	81	3	0	1	1	0	3	89
1	0	1	0	0	0	1	3	297	20	0	3	2	1	14	337
0	1	0	0	0	0	0	1	78	5	0	1	1	0	2	87
0	0	0	0	0	0	0	0	72	7	0	0	0	0	1	80
1	0	0	0	0	0	0	1	82	3	0	0	1	0	3	89
0	0	0	0	0	0	0	0	84	2	0	0	0	0	7	93
1	1	0	0	0	0	0	2	316	17	0	1	2	0	13	349
3	9	2	0	0	0	19	33	3003	321	47	23	26	10	93	3523

			D => C								D => D				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C	тот
4	2	0	0	0	0	0	6	0	0	0	0	0	0	0	0
3	3	0	0	1	0	0	7	1	0	0	0	0	0	0	1
8	2	0	0	1	1	0	12	0	0	0	0	0	0	0	0
4	4	0	0	0	0	1	9	0	0	0	0	0	0	0	0
19	11	0	0	2	1	1	34	1	0	0	0	0	0	0	1
6	0	1	0	1	0	0	8	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	8	0	0	0	0	0	0	0	0
3	0	0	0	0	0	1	4	0	0	0	0	0	0	0	0
5	2	0	0	0	0	0	7	0	0	0	0	0	0	0	0
21	2	1	0	2	0	1	27	0	0	0	0	0	0	0	0
3	2	0	0	0	0	0	5	0	0	0	0	0	0	0	0
5	2	0	0	1	0	0	8	0	0	0	0	0	0	0	0
9	0	0	0	0	0	2	11	0	0	0	0	0	0	0	0
9	2	1	0	0	0	0	12	1	0	0	0	0	0	0	1
26	6	1	0	1	0	2	36	1	0	0	0	0	0	0	1
8	3	1	0	1	0	0	13	0	0	0	0	0	0	0	0
4	0	1	0	0	0	0	5	0	0	0	0	0	0	0	0
7	0	0	0	0	0	1	8	0	0	0	0	0	0	0	0
13	1	0	1	0	0	0	15	0	0	0	0	0	0	0	0
32	4	2	1	1	0	1	41	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
3	0	1	0	1	0	0	5	0	0	0	0	0	0	0	0
8	2	0	1	1	0	0	12	0	0	0	0	0	0	0	0
6	3	0	0	0	0	0	9	0	0	1	0	0	0	0	1
29	6	1	1	2	0	0	39	0	0	1	0	0	0	0	1
9	2	0	0	1	0	0	12	0	0	0	0	0	0	0	0
10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
18	3	0	0	0	0	0	21	0	0	0	0	0	0	0	0
47	9	0	0	1	0	0	57	0	0	0	0	0	0	0	0
18	0	0	0	0	0	0	18	0	0	0	0	0	0	0	0
8	2	1	0	1	0	0	12	0	0	0	0	0	0	0	0
12	0	0	0	0	0	1	13	0	0	0	0	0	0	0	0
6	2	0	0	1	0	0	9	1	0	0	0	0	0	0	1
44	4	1	0	2	0	1	52	1	0	0	0	0	0	0	1
10	0	0	1	0	0	0	11	0	1	0	0	0	0	0	1
16	0	1	0	1	0	0	18	0	0	0	0	0	0	0	0
12	2	0	0	0	0	0	14	1	0	0	0	0	0	0	1
9	1	0	0	1	0	0	11	0	0	0	0	0	0	0	0
47	3	1	1	2	0	0	54	1	1	0	0	0	0	0	2
9	2	0	0	1	0	2	14	0	0	0	0	0	0	0	0
7	3	0	0	0	0	0	10	0	0	0	0	0	0	0	0
5	0	0	0	0	0	2	7	0	0	0	0	0	0	0	0
16	0	0	1	1	0	1	19	0	1	0	0	0	0	0	1
37	5	0	1	2	0	5	50	0	1	0	0	0	0	0	1
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
11	1	0	0	1	0	0	13	0	0	0	0	0	0	0	0
12	1	0	0	1	0	0	14	0	0	0	0	0	0	0	0
9	0	0	0	1	0	0	10	0	0	0	0	0	0	0	0
44	3	0	0	3	0	0	50	0	0	0	0	0	0	0	0
8	0	1	0	0	0	3	12	0	0	0	0	0	0	0	0
5	0	0	0	0	0	2	7	0	0	0	0	0	0	0	0
8	1	0	0	2	0	0	11	0	0	0	0	0	0	0	0
17	0	0	0	1	0	0	18	1	0	0	0	0	0	0	1
38	1	1	0	3	0	5	48	1	0	0	0	0	0	0	1
16	0	1	0	1	0	1	19	0	0	0	0	0	0	0	0
24	1	0	0	1	0	1	27	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
4	0	0	0	2	0	1	7	0	0	0	0	0	0	0	0
49	1	1	0	4	0	3	58	0	0	0	0	0	0	0	0
433	55	9	4	25	1	19	546	5	2	1	0	0	0	0	8

Survey Name:	ITS J-410 Malahide
Site:	5
Date:	O3.07.2020
Time:	o7:00-19:00
Location:	53.451441,-6.153758
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey duration:	12 h
Time Period:	o7:00-19:00
Junction Type:	3Arm Junction
Reporting Interval:	15min
Classification scheme:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C
Queues Required:	Yes
Pedestrian required:	No

Site 5, Card S1

Site 5, Card A14

time	A => A							тот	A => B							тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
07:00	0	0	0	0	0	0	0	0	4	1	0	0	0	0	2	7
07:15	0	0	0	0	0	0	0	0	4	3	0	0	0	0	0	7
07:30	0	0	0	0	0	0	0	0	7	4	1	0	2	0	3	17
07:45	0	0	0	0	0	0	0	0	18	3	0	0	1	0	1	23
H/TOT	0	0	0	0	0	0	0	0	33	11	1	0	3	0	6	54
08:00	0	0	0	0	0	0	0	0	12	4	1	0	0	1	2	20
08:15	0	0	0	0	0	0	0	0	14	1	0	0	1	0	2	18
08:30	0	0	0	0	0	0	0	0	25	3	0	0	0	0	0	28
08:45	0	0	0	0	0	0	0	0	29	4	2	1	0	0	0	36
H/TOT	0	0	0	0	0	0	0	0	80	12	3	1	1	1	4	102
09:00	0	0	0	0	0	0	0	0	17	2	0	0	0	0	0	19
09:15	0	0	0	0	0	0	0	0	25	4	1	0	0	0	2	32
09:30	0	0	0	0	0	0	0	0	21	2	0	0	1	0	0	24
09:45	0	0	0	0	0	0	0	0	25	6	3	0	0	0	0	34
H/TOT	0	0	0	0	0	0	0	0	88	14	4	0	1	0	2	109
10:00	0	0	0	0	0	0	0	0	36	6	0	0	1	0	0	43
10:15	0	0	0	0	0	0	0	0	42	5	1	0	0	0	0	48
10:30	0	0	0	0	0	0	0	0	33	3	1	0	0	0	0	37
10:45	0	0	0	0	0	0	0	0	44	3	1	0	0	0	0	48
H/TOT	0	0	0	0	0	0	0	0	155	17	3	0	1	0	0	176
11:00	0	0	0	0	0	0	0	0	33	3	0	0	1	0	0	37
11:15	0	0	0	0	0	0	0	0	32	2	0	0	0	0	0	34
11:30	0	0	0	0	0	0	0	0	38	3	0	0	0	0	2	43
11:45	0	0	0	0	0	0	0	0	29	1	0	0	0	0	1	31
H/TOT	0	0	0	0	0	0	0	0	132	9	0	0	1	0	3	145
12:00	0	0	0	0	0	0	0	0	39	0	0	0	1	0	0	40
12:15	0	0	0	0	0	0	0	0	34	2	0	0	0	1	3	40
12:30	0	0	0	0	0	0	0	0	48	4	0	0	0	0	0	52
12:45	0	0	0	0	0	0	0	0	47	2	1	0	0	0	4	54
H/TOT	0	0	0	0	0	0	0	0	168	8	1	0	1	1	7	186
13:00	0	0	0	0	0	0	0	0	50	1	0	0	1	0	0	52
13:15	0	0	0	0	0	0	0	0	36	4	0	0	0	0	0	40
13:30	0	0	0	0	0	0	0	0	47	5	0	0	0	0	0	52
13:45	0	0	0	0	0	0	0	0	37	4	0	0	0	0	2	43
H/TOT	0	0	0	0	0	0	0	0	170	14	0	0	1	0	2	187
14:00	0	0	0	0	0	0	0	0	51	6	0	0	1	0	0	58
14:15	0	0	0	0	0	0	0	0	50	4	0	1	0	0	0	55
14:30	0	0	0	0	0	0	0	0	49	2	0	0	0	0	0	51
14:45	0	0	0	0	0	0	0	0	51	1	0	0	0	0	2	54
H/TOT	0	0	0	0	0	0	0	0	201	13	0	1	1	0	2	218
15:00	0	0	0	0	0	0	0	0	54	1	0	0	1	0	0	56
15:15	0	0	0	0	0	0	0	0	38	4	0	0	0	0	2	44
15:30	0	0	0	0	0	0	0	0	45	2	1	0	0	0	0	48
15:45	0	0	0	0	0	0	0	0	37	4	1	0	1	0	1	44
H/TOT	0	0	0	0	0	0	0	0	174	11	2	0	2	0	3	192
16:00	0	0	0	0	0	0	0	0	50	6	0	0	1	0	0	57
16:15	0	0	0	0	0	0	0	0	44	4	0	0	0	0	2	50
16:30	0	0	0	0	0	0	0	0	68	2	0	0	1	1	6	78
16:45	0	0	0	0	0	0	0	0	56	2	0	0	0	1	1	60
H/TOT	0	0	0	0	0	0	0	0	218	14	0	0	2	2	9	245
17:00	0	0	0	0	0	0	0	0	53	3	0	0	1	0	4	61
17:15	0	0	0	0	0	0	0	0	64	2	0	0	0	0	2	68
17:30	0	0	0	0	0	0	0	0	59	2	0	0	0	0	3	64
17:45	0	0	0	0	0	0	0	0	63	4	0	0	1	0	1	69
H/TOT	0	0	0	0	0	0	0	0	239	11	0	0	2	0	10	262
18:00	0	0	0	0	0	0	0	0	49	2	0	0	0	0	0	51
18:15	0	0	0	0	0	0	0	0	58	1	0	0	0	0	2	61
18:30	0	0	0	0	0	0	0	0	42	2	0	0	1	0	2	47
18:45	0	0	0	0	0	0	0	0	62	2	0	0	0	0	2	66
H/TOT	0	0	0	0	0	0	0	0	211	7	0	0	1	0	6	225
12 тот	0	0	0	0	0	0	0	0	1869	141	14	2	17	4	54	2101

A => C								B => A							тот
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
8	1	2	0	0	0	0	11	0	0	0	0	0	0	0	0
4	1	1	0	0	0	0	6	0	0	0	0	0	0	0	0
14	2	0	1	0	0	0	17	0	0	0	0	0	0	0	0
7	0	0	0	1	0	0	8	0	0	0	0	0	0	0	0
33	4	3	1	1	0	0	42	0	0	0	0	0	0	0	0
19	1	0	0	0	0	0	20	0	0	0	0	0	0	0	0
13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
26	1	2	1	0	0	0	30	0	0	0	0	0	0	0	0
22	2	0	0	0	0	0	24	0	0	0	0	0	0	0	0
80	5	2	1	0	0	0	88	0	0	0	0	0	0	0	0
13	3	2	0	0	0	0	18	0	0	0	0	0	0	0	0
18	2	2	1	0	0	0	23	0	0	0	0	0	0	0	0
16	3	2	0	0	0	0	21	0	0	0	0	0	0	0	0
19	6	1	1	0	0	0	27	0	0	0	0	0	0	0	0
66	14	7	2	0	0	0	89	0	0	0	0	0	0	0	0
16	7	1	0	0	0	0	24	0	0	0	0	0	0	0	0
17	3	0	0	0	0	1	21	0	0	0	0	0	0	0	0
29	6	0	1	0	0	0	36	0	0	0	0	0	0	0	0
24	1	2	0	0	0	0	27	0	0	0	0	0	0	0	0
86	17	3	1	0	0	1	108	0	0	0	0	0	0	0	0
19	3	1	2	0	0	0	25	0	0	0	0	0	0	0	0
19	4	0	0	0	0	0	23	0	0	0	0	0	0	0	0
21	3	0	0	0	0	0	24	0	0	0	0	0	0	0	0
20	4	2	0	0	0	0	26	0	0	0	0	0	0	0	0
79	14	3	2	0	0	0	98	0	0	0	0	0	0	0	0
21	1	0	2	0	0	0	24	0	0	0	0	0	0	0	0
22	4	0	0	0	0	0	26	0	0	0	0	0	0	0	0
16	5	0	1	0	0	0	22	0	0	0	0	0	0	0	0
32	3	0	1	0	0	0	36	0	0	0	0	0	0	0	0
91	13	0	4	0	0	0	108	0	0	0	0	0	0	0	0
25	5	0	1	0	0	0	31	0	0	0	0	0	0	0	0
24	5	0	1	0	0	0	30	0	0	0	0	0	0	0	0
22	2	0	1	0	0	0	25	0	0	0	0	0	0	0	0
29	3	0	1	0	0	0	33	0	0	0	0	0	0	0	0
100	15	0	4	0	0	0	119	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	27	0	0	0	0	0	0	0	0
28	4	0	1	0	0	0	33	0	0	0	0	0	0	0	0
19	4	0	1	0	0	0	24	0	0	0	0	0	0	0	0
20	4	0	2	0	0	0	26	0	0	0	0	0	0	1	1
94	12	0	4	0	0	0	110	0	0	0	0	0	0	1	1
24	6	0	0	0	0	0	30	0	0	0	0	0	0	0	0
21	4	0	0	0	0	0	25	0	0	0	0	0	0	0	0
18	2	0	1	0	0	0	21	0	0	0	0	0	0	0	0
25	4	0	1	0	0	0	30	0	0	0	0	0	0	1	1
88	16	0	2	0	0	0	106	0	0	0	0	0	0	1	1
24	7	0	1	0	0	1	33	0	0	0	0	0	0	0	0
21	2	0	0	0	0	0	23	0	0	0	0	0	0	0	0
24	4	1	0	0	0	1	30	0	0	0	0	0	0	0	0
17	1	0	0	0	0	0	18	0	0	0	0	0	0	0	0
86	14	1	1	0	0	2	104	0	0	0	0	0	0	0	0
35	4	0	0	0	0	0	39	1	0	0	0	0	0	0	1
25	1	0	0	0	1	0	27	1	0	0	0	0	0	0	1
20	1	0	0	0	0	0	21	1	0	0	0	0	0	0	1
25	1	0	0	0	0	0	26	0	0	0	0	0	0	0	0
105	7	0	0	0	1	0	113	3	0	0	0	0	0	0	3
26	1	0	0	0	0	0	27	0	0	0	0	0	0	0	0
27	1	0	0	0	0	0	28	0	0	0	0	0	0	0	0
47	2	0	0	0	0	0	49	0	0	0	0	0	0	0	0
33	3	0	0	0	0	0	36	0	0	0	0	0	0	0	0
133	7	0	0	0	0	0	140	0	0	0	0	0	0	0	0
1041	138	19	22	1	1	3	1225	3	0	0	0	0	0	2	5

			B => B								B => C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	30	3	0	0	1	0	2	36
0	0	0	0	0	0	0	0	31	4	0	0	3	0	3	41
0	0	0	0	0	0	0	0	37	5	0	1	1	1	4	49
0	0	0	0	0	0	0	0	44	5	1	0	1	0	3	54
0	0	0	0	0	0	0	0	142	17	1	1	6	1	12	180
0	0	0	0	0	0	0	0	51	4	0	0	1	0	9	65
0	0	0	0	0	0	0	0	69	7	3	0	0	0	6	85
0	0	0	0	0	0	0	0	87	10	3	0	2	0	2	104
0	0	0	0	0	0	0	0	66	8	2	1	0	0	2	79
0	0	0	0	0	0	0	0	273	29	8	1	3	0	19	333
0	0	0	0	0	0	0	0	74	7	2	0	1	0	1	85
0	0	0	0	0	0	0	0	56	8	1	1	2	0	1	69
0	0	0	0	0	0	0	0	72	8	1	0	0	0	4	85
1	0	0	0	0	0	0	1	70	10	0	0	2	0	4	86
1	0	0	0	0	0	0	1	272	33	4	1	5	0	10	325
0	0	0	0	0	0	0	0	88	8	4	0	1	0	0	101
0	0	0	0	0	0	0	0	74	6	3	0	1	0	2	86
0	0	0	0	0	0	0	0	89	9	4	0	1	1	0	104
0	0	0	0	0	0	0	0	94	11	0	0	1	1	3	110
0	0	0	0	0	0	0	0	345	34	11	0	4	2	5	401
0	0	0	0	0	0	0	0	102	6	1	0	1	0	2	112
0	0	0	0	0	0	0	0	86	10	5	0	1	0	1	103
0	0	0	0	0	0	0	0	87	8	2	0	0	0	1	98
0	0	0	0	0	0	0	0	96	5	4	0	1	1	5	112
0	0	0	0	0	0	0	0	371	29	12	0	3	1	9	425
0	0	0	0	0	0	0	0	100	2	1	0	1	0	6	110
0	0	0	0	0	0	0	0	100	12	1	0	0	1	3	117
0	0	0	0	0	0	0	0	94	8	2	1	1	2	5	113
0	0	0	0	0	0	0	0	98	9	2	0	0	0	3	112
0	0	0	0	0	0	0	0	392	31	6	1	2	3	17	452
0	0	0	0	0	0	0	0	98	8	2	0	2	1	1	112
0	0	0	0	0	0	0	0	81	12	3	0	0	0	6	102
0	0	0	0	0	0	0	0	112	6	3	0	1	0	3	125
0	0	0	0	0	0	0	0	93	10	0	0	0	0	6	109
0	0	0	0	0	0	0	0	384	36	8	0	3	1	16	448
0	0	0	0	0	0	0	0	93	10	0	0	3	1	5	112
0	0	0	0	0	0	0	0	87	6	0	0	0	0	2	95
0	0	0	0	0	0	0	0	95	16	3	0	1	0	3	118
0	0	0	0	0	0	0	0	96	2	1	2	0	0	5	106
0	0	0	0	0	0	0	0	371	34	4	2	4	1	15	431
0	0	0	0	0	0	0	0	91	8	2	1	3	1	7	113
0	0	0	0	0	0	0	0	87	11	2	1	0	1	3	105
0	0	0	0	0	0	0	0	107	15	5	1	2	0	5	135
0	0	0	0	0	0	0	0	104	10	1	0	0	1	0	116
0	0	0	0	0	0	0	0	389	44	10	3	5	3	15	469
0	0	0	0	0	0	0	0	88	7	1	0	3	0	5	104
0	0	0	0	0	0	0	0	85	7	2	0	0	0	4	98
0	0	0	0	0	0	0	0	90	7	0	0	2	0	4	103
0	0	0	0	0	0	0	0	107	14	0	0	1	1	9	132
0	0	0	0	0	0	0	0	370	35	3	0	6	1	22	437
0	0	0	0	0	0	0	0	93	10	2	0	1	1	5	112
0	0	0	0	0	0	0	0	81	5	0	0	0	0	8	94
0	0	0	0	0	0	0	0	90	9	0	0	2	0	5	106
0	0	0	0	0	0	0	0	89	5	1	0	2	0	6	103
0	0	0	0	0	0	0	0	353	29	3	0	5	1	24	415
0	0	0	0	0	0	0	0	79	8	0	0	2	0	5	94
0	0	0	0	0	0	0	0	85	6	0	0	2	1	5	99
0	0	0	0	0	0	0	0	81	2	1	0	1	0	8	93
0	0	0	0	0	0	0	0	86	3	0	0	2	2	6	99
0	0	0	0	0	0	0	0	331	19	1	0	7	3	24	385
1	0	0	0	0	0	0	1	3993	370	71	9	53	17	188	4701

			$\mathrm{C}=>\mathrm{A}$								C => B				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	13	2	1	0	3	0	1	20
0	0	0	0	0	0	0	0	12	9	1	1	0	0	2	25
0	0	0	0	0	0	0	0	28	6	1	0	1	0	2	38
0	0	0	0	0	0	0	0	41	11	1	0	0	0	2	55
0	0	0	0	0	0	0	0	94	28	4	1	4	0	7	138
0	0	0	0	0	0	0	0	29	9	6	0	1	0	0	45
0	0	0	0	0	0	0	0	27	6	1	2	0	0	3	39
0	0	0	0	0	0	0	0	40	5	1	0	1	0	3	50
0	0	0	0	0	0	0	0	40	10	2	0	0	0	2	54
0	0	0	0	0	0	0	0	136	30	10	2	2	0	8	188
0	0	0	0	0	0	0	0	30	4	4	0	1	0	1	40
0	0	0	0	0	0	0	0	44	8	2	0	0	0	1	55
0	0	0	0	0	0	0	0	41	9	4	0	1	0	1	56
0	0	0	0	0	0	0	0	55	5	2	0	0	0	0	62
0	0	0	0	0	0	0	0	170	26	12	0	2	0	3	213
0	0	0	0	0	0	0	0	50	2	3	0	2	1	0	58
0	0	0	0	0	0	0	0	59	7	0	0	0	0	0	66
0	0	0	0	0	0	0	0	38	8	1	0	1	0	2	50
0	0	0	0	0	0	0	0	54	3	4	0	0	0	1	62
0	0	0	0	0	0	0	0	201	20	8	0	3	1	3	236
0	0	0	0	0	0	0	0	49	5	0	0	1	0	0	55
0	0	0	0	0	0	0	0	64	4	5	0	0	0	0	73
0	0	0	0	0	0	0	0	66	5	0	0	1	0	1	73
0	0	0	0	0	0	0	0	67	2	2	0	0	0	0	71
0	0	0	0	0	0	0	0	246	16	7	0	2	0	1	272
0	0	0	0	0	0	0	0	80	5	1	0	1	0	0	87
0	0	0	0	0	0	0	0	69	7	2	0	1	0	2	81
0	0	0	0	0	0	0	0	68	5	1	0	1	0	2	77
0	0	0	0	0	0	0	0	73	8	1	0	0	0	4	86
0	0	0	0	0	0	0	0	290	25	5	0	3	0	8	331
0	0	0	0	0	0	0	0	69	9	1	0	1	0	2	82
0	0	0	0	0	0	0	0	72	2	0	0	0	0	4	78
0	0	0	0	0	0	0	0	70	2	2	0	1	1	1	77
0	0	0	0	0	0	0	0	68	4	1	0	0	0	1	74
0	0	0	0	0	0	0	0	279	17	4	0	2	1	8	311
0	0	0	0	0	0	0	0	71	4	1	0	0	0	5	81
0	0	0	0	0	0	0	0	76	4	0	0	1	0	1	82
0	0	0	0	0	0	0	0	73	9	2	0	1	0	2	87
0	0	0	0	0	0	0	0	76	5	0	0	0	0	5	86
0	0	0	0	0	0	0	0	296	22	3	0	2	0	13	336
0	0	0	0	0	0	0	0	52	5	0	0	1	0	3	61
0	0	0	0	0	0	0	0	64	4	0	0	0	0	3	71
0	0	0	0	0	0	0	0	67	5	0	0	0	0	2	74
0	0	0	0	0	0	0	0	66	3	0	1	1	1	2	74
0	0	0	0	0	0	0	0	249	17	0	1	2	1	10	280
0	0	0	0	0	0	0	0	82	5	0	0	1	2	1	91
0	0	0	0	0	0	0	0	94	7	0	0	0	1	2	104
0	0	0	0	0	0	0	0	60	1	1	0	1	1	5	69
0	0	0	0	0	0	0	0	71	2	0	0	1	1	7	82
0	0	0	0	0	0	0	0	307	15	1	0	3	5	15	346
0	0	0	0	0	0	0	0	76	6	0	0	2	0	6	90
0	0	0	0	0	0	0	0	59	3	0	1	0	0	3	66
0	0	0	0	0	0	0	0	63	9	0	1	0	0	2	75
0	0	0	0	0	0	0	0	73	2	0	1	1	0	4	81
0	0	0	0	0	0	0	0	271	20	0	3	3	0	15	312
0	0	0	0	0	0	0	0	73	1	0	1	1	0	2	78
0	0	0	0	0	0	0	0	70	6	0	0	0	0	2	78
0	0	0	0	0	0	0	0	79	1	0	0	1	0	5	86
0	0	0	0	0	0	0	0	80	1	0	0	1	0	9	91
0	0	0	0	0	0	0	0	302	9	0	1	3	0	18	333
0	0	0	0	0	0	0	0	2841	245	54	8	31	8	109	3296

CAR	LGV	$\mathrm{C}=>\mathrm{C}$			M/C	P/C	тот
		OGV1	OGV2	PSV			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5

Survey Name:	ITS J-410 Malahide
Site:	6
Date:	03.07.2020
Time:	07:00-19:00
Location:	53.451441,-6.153758
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey duration:	12h
Time Period:	07:00-19:00
Junction Type:	3 Arm Junction
Reporting Interval:	15min
Classification scheme:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C
Queues Required:	Yes
Pedestrian required:	No

Site 6, Card S1

time	A => A							тот	A => B							тот
	CAR	Lgv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1	3
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	0	2	1	0	0	0	1	4
08:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
H/TOT	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
09:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
10:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
10:15	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
10:30	0	0	0	0	0	0	0	0	4	0	0	0	0	0	0	4
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
н/тот	0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	6
11:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
12:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	2	0	0	0	0	0	1	3
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
13:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
13:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
н/тот	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5
14:00	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
14:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
14:30	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	5
15:00	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
15:15	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
15:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
15:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	6	1	0	0	0	0	0	7
16:00	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
16:15	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
16:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	5	1	0	0	0	0	0	6
17:00	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	3	0	0	0	0	0	0	3
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	2
18:45	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
H/TOT	0	0	0	0	0	0	0	0	2	1	0	0	0	0	0	3
12 тот	0	0	0	0	0	0	0	0	39	7	1	0	0	0	2	49

			A => C								B => A				
CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	1	0	0	0	0	0	1	2
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2	3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	6	0	0	0	0	0	0	6
1	0	0	0	0	0	0	1	1	0	0	0	0	0	1	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	2	0	0	0	0	0	1	3
1	1	0	0	0	0	0	2	1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
6	1	0	0	0	0	0	7	3	0	0	0	0	0	0	3
1	1	0	0	0	0	0	2	1	1	0	0	0	0	0	2
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
4	1	0	0	0	0	0	5	3	1	0	0	0	0	0	4
2	0	0	0	0	0	0	2	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	8	4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	2	1	0	0	0	0	0	3
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2	0	1	0	0	0	0	0	1
4	1	0	0	0	0	0	5	2	2	0	0	0	0	0	4
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
2	0	0	0	0	0	1	3	1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	2	0	0	0	0	0	0	2
9	0	0	0	0	0	1	10	3	0	0	0	0	0	0	3
57	4	0	0	0	0	1	62	30	4	0	0	0	0	2	36

			B => B								B => C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	30	3	0	0	1	0	2	36
0	0	0	0	0	0	0	0	31	4	0	0	3	0	3	41
0	0	0	0	0	0	0	0	37	5	0	1	1	1	4	49
0	0	0	0	0	0	0	0	44	5	1	0	1	0	3	54
0	0	0	0	0	0	0	0	142	17	1	1	6	1	12	180
0	0	0	0	0	0	0	0	51	4	0	0	1	0	9	65
0	0	0	0	0	0	0	0	69	7	3	0	0	0	6	85
0	0	0	0	0	0	0	0	87	10	3	0	2	0	2	104
0	0	0	0	0	0	0	0	66	8	2	1	0	0	2	79
0	0	0	0	0	0	0	0	273	29	8	1	3	0	19	333
0	0	0	0	0	0	0	0	74	7	2	0	1	0	1	85
0	0	0	0	0	0	0	0	56	8	1	1	2	0	1	69
0	0	0	0	0	0	0	0	72	8	1	0	0	0	4	85
1	0	0	0	0	0	0	1	70	10	0	0	2	0	4	86
1	0	0	0	0	0	0	1	272	33	4	1	5	0	10	325
0	0	0	0	0	0	0	0	88	8	4	0	1	0	0	101
0	0	0	0	0	0	0	0	74	6	3	0	1	0	2	86
0	0	0	0	0	0	0	0	89	9	4	0	1	1	0	104
0	0	0	0	0	0	0	0	94	11	0	0	1	1	3	110
0	0	0	0	0	0	0	0	345	34	11	0	4	2	5	401
0	0	0	0	0	0	0	0	102	6	1	0	1	0	2	112
0	0	0	0	0	0	0	0	86	10	5	0	1	0	1	103
0	0	0	0	0	0	0	0	87	8	2	0	0	0	1	98
0	0	0	0	0	0	0	0	96	5	4	0	1	1	5	112
0	0	0	0	0	0	0	0	371	29	12	0	3	1	9	425
0	0	0	0	0	0	0	0	100	2	1	0	1	0	6	110
0	0	0	0	0	0	0	0	100	12	1	0	0	1	3	117
0	0	0	0	0	0	0	0	94	8	2	1	1	2	5	113
0	0	0	0	0	0	0	0	98	9	2	0	0	0	3	112
0	0	0	0	0	0	0	0	392	31	6	1	2	3	17	452
0	0	0	0	0	0	0	0	98	8	2	0	2	1	1	112
0	0	0	0	0	0	0	0	81	12	3	0	0	0	6	102
0	0	0	0	0	0	0	0	112	6	3	0	1	0	3	125
0	0	0	0	0	0	0	0	93	10	0	0	0	0	6	109
0	0	0	0	0	0	0	0	384	36	8	0	3	1	16	448
0	0	0	0	0	0	0	0	93	10	0	0	3	1	5	112
0	0	0	0	0	0	0	0	87	6	0	0	0	0	2	95
0	0	0	0	0	0	0	0	95	16	3	0	1	0	3	118
0	0	0	0	0	0	0	0	96	2	1	2	2	0	5	108
0	0	0	0	0	0	0	0	371	34	4	2	6	1	15	433
0	0	0	0	0	0	0	0	91	8	2	1	3	1	7	113
0	0	0	0	0	0	0	0	87	11	2	1	0	1	3	105
0	0	0	0	0	0	0	0	107	15	5	1	2	0	5	135
0	0	0	0	0	0	0	0	104	10	1	0	0	1	0	116
0	0	0	0	0	0	0	0	389	44	10	3	5	3	15	469
0	0	0	0	0	0	0	0	88	7	1	0	3	0	5	104
0	0	0	0	0	0	0	0	85	7	2	0	0	0	4	98
0	0	0	0	0	0	0	0	90	7	0	0	0	0	4	101
0	0	0	0	0	0	0	0	107	14	0	0	1	1	9	132
0	0	0	0	0	0	0	0	370	35	3	0	4	1	22	435
0	0	0	0	0	0	0	0	93	10	2	0	1	1	5	112
0	0	0	0	0	0	0	0	81	5	0	0	0	0	8	94
0	0	0	0	0	0	0	0	90	9	0	0	2	0	5	106
0	0	0	0	0	0	0	0	89	5	1	0	2	0	6	103
0	0	0	0	0	0	0	0	353	29	3	0	5	1	24	415
0	0	0	0	0	0	0	0	79	8	0	0	2	0	5	94
0	0	0	0	0	0	0	0	85	6	0	0	2	1	5	99
0	0	0	0	0	0	0	0	81	2	1	0	1	0	8	93
0	0	0	0	0	0	0	0	86	3	0	0	2	2	6	99
0	0	0	0	0	0	0	0	331	19	1	0	7	3	24	385
1	0	0	0	0	0	0	1	3993	370	71	9	53	17	188	4701

CAR	LGV	OGV1C=>A OGV2		PSV	M/C	P/C	тот	CAR	LGV	OGV1	$\begin{gathered} C=>B \\ \text { OGV2 } \end{gathered}$	PSV	M/C	P/C	тот
0	1	0	0	0	0	0	1	13	2	1	0	3	0	1	20
0	1	1	0	0	0	0	2	12	9	1	1	0	0	2	25
0	0	0	0	0	0	0	0	28	6	1	0	1	0	2	38
2	0	0	0	0	0	0	2	41	11	1	0	0	0	2	55
2	2	1	0	0	0	0	5	94	28	4	1	4	0	7	138
0	0	0	0	0	0	0	0	29	9	6	0	1	0	0	45
2	0	0	0	0	0	0	2	27	6	1	2	0	0	3	39
2	0	0	0	0	0	0	2	40	5	1	0	1	0	3	50
2	0	0	0	0	0	0	2	40	10	2	0	0	0	2	54
6	0	0	0	0	0	0	6	136	30	10	2	2	0	8	188
0	0	0	0	0	0	0	0	30	4	4	0	1	0	1	40
0	0	0	0	0	0	0	0	44	8	2	0	0	0	1	55
3	0	0	0	0	0	0	3	41	9	4	0	1	0	1	56
4	0	0	0	0	0	0	4	55	5	2	0	0	0	0	62
7	0	0	0	0	0	0	7	170	26	12	0	2	0	3	213
1	0	0	0	0	0	0	1	50	2	3	0	2	1	0	58
2	0	0	0	0	0	0	2	59	7	0	0	0	0	0	66
3	0	0	0	0	0	0	3	38	8	1	0	1	0	2	50
1	0	0	0	0	0	0	1	54	3	4	0	0	0	1	62
7	0	0	0	0	0	0	7	201	20	8	0	3	1	3	236
0	0	0	0	0	0	0	0	49	5	0	0	1	0	0	55
0	0	0	0	0	0	0	0	64	4	5	0	0	0	0	73
0	0	0	0	0	0	1	1	66	5	0	0	1	0	1	73
1	0	0	0	0	0	0	1	67	2	2	0	0	0	0	71
1	0	0	0	0	0	1	2	246	16	7	0	2	0	1	272
4	0	0	0	0	0	0	4	80	5	1	0	1	0	0	87
1	0	0	0	0	0	0	1	69	7	2	0	1	0	2	81
0	0	0	0	0	0	0	0	68	5	1	0	1	0	2	77
1	0	0	0	0	0	0	1	73	8	1	0	0	0	4	86
6	0	0	0	0	0	0	6	290	25	5	0	3	0	8	331
0	0	0	0	0	0	0	0	69	9	1	0	1	0	2	82
0	0	0	0	0	0	0	0	72	2	0	0	0	0	4	78
2	0	0	0	0	0	0	2	70	2	2	0	1	1	1	77
1	0	0	0	0	0	0	1	68	4	1	0	0	0	1	74
3	0	0	0	0	0	0	3	279	17	4	0	2	1	8	311
2	0	0	0	0	0	0	2	71	4	1	0	0	0	5	81
3	0	0	0	0	0	0	3	76	4	0	0	1	0	1	82
0	0	0	0	0	0	0	0	73	9	2	0	1	0	2	87
1	0	0	0	0	0	0	1	76	5	0	0	0	0	5	86
6	0	0	0	0	0	0	6	296	22	3	0	2	0	13	336
0	0	0	0	0	0	0	0	52	5	0	0	1	0	3	61
0	0	0	0	0	0	0	0	64	4	0	0	0	0	3	71
1	0	0	0	0	0	0	1	67	5	0	0	0	0	2	74
2	0	0	0	0	0	0	2	66	3	0	1	1	1	2	74
3	0	0	0	0	0	0	3	249	17	0	1	2	1	10	280
0	0	0	0	0	0	0	0	82	5	0	0	1	2	1	91
1	0	0	0	0	0	0	1	94	7	0	0	0	1	2	104
0	0	0	0	0	0	1	1	60	1	1	0	1	1	5	69
0	0	0	0	0	0	0	0	71	2	0	0	1	1	7	82
1	0	0	0	0	0	1	2	307	15	1	0	3	5	15	346
1	0	0	0	0	0	0	1	76	6	0	0	2	0	6	90
2	0	0	0	0	0	0	2	59	3	0	1	0	0	3	66
0	0	0	0	0	0	0	0	63	9	0	1	0	0	2	75
2	0	0	0	0	0	0	2	73	2	0	1	1	0	4	81
5	0	0	0	0	0	0	5	271	20	0	3	3	0	15	312
2	0	0	0	0	0	0	2	73	1	0	1	1	0	2	78
3	0	0	0	0	0	0	3	70	6	0	0	0	0	2	78
2	0	0	0	0	0	0	2	79	1	0	0	1	0	5	86
2	0	0	0	0	0	0	2	80	1	0	0	1	0	9	91
9	0	0	0	0	0	0	9	302	9	0	1	3	0	18	333
56	2	1	0	0	0	2	61	2841	245	54	8	31	8	109	3296

CAR	LGV	$\mathrm{C}=>\mathrm{C}$			M/C	P/C	тот
		OGV1	OGV2	PSV			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5

Survey Name:	ITS J-410 Malahide
Site:	7
Date:	03.07 .2020
Time:	o7:00-19:00
Location:	$53.451441,-6.153758$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

Irish Traffic Surveys

Survey duration:	12 h
Time Period:	07:00-19:00
Junction Type:	3 Arm Junction
Reporting Interval:	15min
Classification scheme:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C
Queues Required:	Yes
Pedestrian required:	No

Survey Name :	ITS J-410 Malahide
Site:	Site 7
Date:	15-07-2020
Time:	07:00-19:00
Location:	53.451441, -6.153758
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C

time	A => A							тот	A => B							тот
	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C		CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	
07:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
09:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
16:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
17:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
12 тот	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

			A => C								B => A				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGv	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	3	2	1	0	0	0	1	7
0	0	0	0	0	0	0	0	5	1	0	0	0	0	2	8
0	0	0	0	0	0	0	0	6	0	0	0	0	1	0	7
0	0	0	0	0	0	0	0	9	2	0	0	0	0	0	11
0	0	0	0	0	0	0	0	23	5	1	0	0	1	3	33
0	0	0	0	0	0	0	0	12	0	0	0	0	0	0	12
0	0	0	0	0	0	0	0	11	2	0	0	0	0	0	13
0	0	0	0	0	0	0	0	15	6	1	0	0	0	0	22
0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	16
0	0	0	0	0	0	0	0	51	11	1	0	0	0	0	63
0	0	0	0	0	0	0	0	18	1	2	0	0	0	0	21
0	0	0	0	0	0	0	0	12	3	0	0	0	0	0	15
0	0	0	0	0	0	0	0	20	1	0	0	0	0	2	23
0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	19
0	0	0	0	0	0	0	0	66	8	2	0	0	0	2	78
0	0	0	0	0	0	0	0	23	4	0	0	0	0	0	27
0	0	0	0	0	0	0	0	17	3	0	0	0	0	1	21
0	0	0	0	0	0	0	0	29	3	1	0	0	0	0	33
0	0	0	0	0	0	0	0	16	2	0	0	0	0	2	20
0	0	0	0	0	0	0	0	85	12	1	0	0	0	3	101
0	0	0	0	0	0	0	0	27	0	0	0	0	0	0	27
0	0	0	0	0	0	0	0	19	3	0	0	0	0	1	23
0	0	0	0	0	0	0	0	21	1	1	0	0	0	0	23
0	0	0	0	0	0	0	0	22	0	0	0	0	0	2	24
0	0	0	0	0	0	0	0	89	4	1	0	0	0	3	97
0	0	0	0	0	0	0	0	19	1	0	0	0	0	0	20
0	0	0	0	0	0	0	0	25	5	0	0	0	0	1	31
0	0	0	0	0	0	0	0	33	2	0	0	0	0	0	35
0	0	0	0	0	0	0	0	31	6	0	0	0	0	1	38
0	0	0	0	0	0	0	0	108	14	0	0	0	0	2	124
0	0	0	0	0	0	0	0	29	4	0	0	0	1	0	34
0	0	0	0	0	0	0	0	27	4	0	0	0	0	0	31
0	0	0	0	0	0	0	0	32	0	0	0	0	0	1	33
0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	109	8	0	0	0	1	1	119
0	0	0	0	0	0	0	0	30	1	0	0	0	0	0	31
0	0	0	0	0	0	0	0	27	1	0	0	0	0	0	28
0	0	0	0	0	0	0	0	22	2	0	0	0	0	0	24
0	0	0	0	0	0	0	0	22	3	0	0	0	0	0	25
0	0	0	0	0	0	0	0	101	7	0	0	0	0	0	108
0	0	0	0	0	0	0	0	31	2	0	0	0	0	0	33
0	0	0	0	0	0	0	0	16	3	0	0	0	0	0	19
0	0	0	0	0	0	0	0	29	2	0	0	0	0	0	31
0	0	0	0	0	0	0	0	23	3	0	0	0	0	0	26
0	0	0	0	0	0	0	0	99	10	0	0	0	0	0	109
0	0	0	0	0	0	0	0	19	4	0	0	0	0	0	23
0	0	0	0	0	0	0	0	32	1	0	0	0	0	2	35
0	0	0	0	0	0	0	0	27	1	0	0	0	0	1	29
0	0	0	0	0	0	0	0	33	3	0	0	0	0	5	41
0	0	0	0	0	0	0	0	111	9	0	0	0	0	8	128
0	0	0	0	0	0	0	0	31	3	0	0	0	0	0	34
0	0	0	0	0	0	0	0	23	1	0	0	0	0	0	24
0	0	0	0	0	0	0	0	25	1	0	0	0	0	1	27
0	0	0	0	0	0	0	0	26	0	0	0	0	0	3	29
0	0	0	0	0	0	0	0	105	5	0	0	0	0	4	114
0	0	0	0	0	0	0	0	21	1	0	0	0	0	2	24
0	0	0	0	0	0	0	0	29	2	0	0	0	0	1	32
0	0	0	0	0	0	0	0	37	0	0	0	0	0	0	37
0	0	0	0	0	0	0	0	23	0	0	0	0	1	3	27
0	0	0	0	0	0	0	0	110	3	0	0	0	1	6	120
0	0	0	0	0	0	0	0	1057	96	6	0	0	3	32	1194

			B => B								B => C				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	0	0	0	0	0	0	0	34	3	0	0	1	0	1	39
0	0	0	0	0	0	0	0	32	4	1	0	3	0	1	41
0	0	0	0	0	0	0	0	47	5	0	2	1	0	4	59
0	0	0	0	0	0	0	0	47	4	1	0	1	1	3	57
0	0	0	0	0	0	0	0	160	16	2	2	6	1	9	196
0	0	0	0	0	0	0	0	63	3	0	0	1	0	9	76
0	0	0	0	0	0	0	0	73	4	3	0	0	0	6	86
0	0	0	0	0	0	0	0	94	8	4	1	2	0	1	110
0	0	0	0	0	0	0	0	76	6	0	1	0	0	3	86
0	0	0	0	0	0	0	0	306	21	7	2	3	0	19	358
0	0	0	0	0	0	0	0	75	9	3	0	1	0	1	89
0	0	0	0	0	0	0	0	65	7	3	2	2	0	1	80
0	0	0	0	0	0	0	0	66	8	4	0	0	0	2	80
0	0	0	0	0	0	0	0	75	13	1	1	3	0	4	97
0	0	0	0	0	0	0	0	281	37	11	3	6	0	8	346
0	0	0	0	0	0	0	0	81	11	5	0	1	0	0	98
0	0	0	0	0	0	0	0	81	8	3	0	0	0	1	93
0	0	0	0	0	0	0	0	93	12	3	0	1	1	1	111
0	0	0	0	0	0	0	0	100	10	2	0	1	1	0	114
0	0	0	0	0	0	0	0	355	41	13	0	3	2	2	416
0	0	0	0	0	0	0	0	98	12	3	2	0	0	1	116
0	0	0	0	0	0	0	0	83	9	5	2	0	0	1	100
0	0	0	0	0	0	0	0	98	13	1	0	1	0	1	114
0	0	0	0	0	0	0	0	95	7	5	0	1	0	3	111
0	0	0	0	0	0	0	0	374	41	14	4	2	0	6	441
0	0	0	0	0	0	0	0	119	3	1	2	1	0	5	131
0	0	0	0	0	0	0	0	102	10	1	1	1	1	2	118
0	0	0	0	0	0	0	0	85	10	2	2	0	3	4	106
0	0	0	0	0	0	0	0	98	11	2	1	0	0	2	114
0	0	0	0	0	0	0	0	404	34	6	6	2	4	13	469
0	0	0	0	0	0	0	0	99	10	2	1	2	0	2	116
0	0	0	0	0	0	0	0	90	9	2	0	0	0	5	106
0	0	0	0	0	0	0	0	115	7	3	1	1	0	2	129
0	0	0	0	0	0	0	0	98	13	0	1	0	0	5	117
0	0	0	0	0	0	0	0	402	39	7	3	3	0	14	468
0	0	0	0	0	0	0	0	112	9	0	0	3	1	5	130
0	0	0	0	0	0	0	0	104	10	0	1	0	0	2	117
0	0	0	0	0	0	0	0	100	15	3	1	1	0	1	121
0	0	0	0	0	0	0	0	113	6	2	2	0	0	6	129
0	0	0	0	0	0	0	0	429	40	5	4	4	1	14	497
0	0	0	0	0	0	0	0	105	11	2	2	3	1	7	131
0	0	0	0	0	0	0	0	95	14	2	1	0	2	3	117
0	0	0	0	0	0	0	0	118	13	4	2	2	0	3	142
0	0	0	0	0	0	0	0	109	8	0	1	0	1	1	120
0	0	0	0	0	0	0	0	427	46	8	6	5	4	14	510
0	0	0	0	0	0	0	0	119	12	2	0	3	0	3	139
0	0	0	0	0	0	0	0	91	8	2	0	0	0	3	104
0	0	0	0	0	0	0	0	97	10	1	0	2	0	4	114
0	0	0	0	0	0	0	0	101	12	0	0	1	1	2	117
0	0	0	0	0	0	0	0	408	42	5	0	6	1	12	474
0	0	0	0	0	0	0	0	101	13	1	0	1	0	5	121
0	0	0	0	0	0	0	0	90	7	0	0	0	1	8	106
0	0	0	0	0	0	0	0	99	9	0	0	2	1	3	114
0	0	0	0	0	0	0	0	98	8	1	0	0	0	7	114
0	0	0	0	0	0	0	0	388	37	2	0	3	2	23	455
0	0	0	0	0	0	0	0	100	7	0	0	2	0	3	112
0	0	0	0	0	0	0	0	90	5	0	0	2	1	5	98
0	0	0	0	0	0	0	0	108	6	1	0	1	0	8	124
0	0	0	0	0	0	0	0	117	5	0	0	2	1	3	128
0	0	0	0	0	0	0	0	415	23	1	0	7	2	14	462
0	0	0	0	0	0	0	0	4349	417	81	30	50	17	148	5092

			$\mathrm{C}=>\mathrm{A}$								C => B				
CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	PSV	M/C	P/C	тот
0	3	0	0	0	0	0	3	13	5	0	0	0	0	1	19
1	2	1	0	0	0	0	4	15	10	3	0	0	0	2	30
4	3	0	0	0	0	0	7	29	5	1	0	1	0	2	38
4	0	1	0	0	0	0	5	47	14	1	0	0	0	2	64
9	8	2	0	0	0	0	19	104	34	5	0	1	0	7	151
7	0	0	0	0	0	0	7	29	8	5	0	1	0	0	43
8	1	0	0	0	0	0	9	28	6	1	2	0	0	0	37
10	0	0	1	0	0	0	11	41	5	1	0	1	0	2	50
17	3	0	0	0	0	0	20	47	8	2	0	0	0	3	60
42	4	0	1	0	0	0	47	145	27	9	2	2	0	5	190
8	3	2	1	0	0	0	14	32	7	3	0	1	0	1	44
9	0	1	0	0	1	0	11	49	7	3	0	1	0	0	60
8	1	2	0	0	0	0	11	41	15	4	0	1	0	1	62
15	4	1	1	0	0	0	21	67	5	2	0	0	0	0	74
40	8	6	2	0	1	0	57	189	34	12	0	3	0	2	240
17	2	0	0	0	0	0	19	50	3	3	0	2	1	0	59
14	4	0	0	0	0	0	18	58	8	0	0	0	0	0	66
20	2	0	0	0	0	0	22	45	8	0	0	1	0	1	55
27	3	0	1	0	0	0	31	58	4	4	0	0	0	1	67
78	11	0	1	0	0	0	90	211	23	7	0	3	1	2	247
13	1	0	1	0	0	0	15	50	6	2	0	1	0	1	60
17	2	0	0	0	0	0	19	66	5	3	1	0	0	0	75
11	0	1	0	0	0	1	13	74	5	1	0	1	0	2	83
12	1	0	0	0	0	0	13	77	3	1	0	0	0	0	81
53	4	1	1	0	0	1	60	267	19	7	1	2	0	3	299
26	2	0	1	0	0	0	29	84	5	1	0	1	0	0	91
12	2	0	1	0	0	0	15	73	7	2	0	0	0	2	84
23	3	1	0	0	0	0	27	68	6	1	0	1	0	1	77
21	2	0	1	0	0	0	24	81	8	1	0	0	0	4	94
82	9	1	3	0	0	0	95	306	26	5	0	2	0	7	346
13	1	0	1	0	0	0	15	69	10	1	0	1	0	2	83
20	3	0	1	0	0	0	24	77	3	0	0	0	1	4	85
21	0	0	2	0	0	1	24	69	3	0	0	1	0	1	74
17	3	0	0	0	0	0	20	79	4	1	0	1	0	1	86
71	7	0	4	0	0	1	83	294	20	2	0	3	1	8	328
13	0	0	1	0	0	0	14	75	5	1	0	0	0	5	86
31	0	0	1	0	0	1	33	84	8	0	0	1	0	1	94
18	3	0	0	0	0	0	21	80	9	1	0	1	0	2	93
21	0	0	1	0	0	0	22	77	6	0	0	0	1	4	88
83	3	0	3	0	0	1	90	316	28	2	0	2	1	12	361
20	4	0	1	0	0	0	25	55	7	0	0	1	0	3	66
18	0	1	0	0	0	0	19	67	5	0	0	0	0	1	73
20	0	0	1	0	0	1	22	66	5	0	0	1	0	3	75
18	1	1	1	0	1	1	23	80	3	0	1	0	0	2	86
76	5	2	3	0	1	2	89	268	20	0	1	2	0	9	300
22	1	0	0	0	0	0	23	77	6	0	0	1	2	1	87
18	0	0	0	0	0	0	18	100	8	0	0	1	1	2	112
18	0	0	0	0	0	0	18	66	1	1	0	2	0	5	75
18	0	0	0	0	0	0	18	69	2	0	0	0	0	7	78
76	1	0	0	0	0	0	77	312	17	1	0	4	3	15	352
18	0	0	0	0	0	0	18	80	6	0	0	1	1	6	94
14	0	0	0	0	0	0	14	74	3	0	1	0	0	3	81
17	2	0	0	0	0	0	19	69	9	0	1	0	0	2	81
12	1	0	0	0	0	0	13	78	2	0	1	1	0	4	86
61	3	0	0	0	0	0	64	301	20	0	3	2	1	15	342
24	1	0	0	0	0	0	25	84	3	0	1	1	0	2	91
23	2	0	0	0	0	0	25	71	8	0	0	0	0	2	81
16	0	0	0	0	0	0	16	87	0	0	0	1	0	5	93
17	1	0	0	0	0	0	18	82	0	0	0	0	0	9	91
80	4	0	0	0	0	0	84	324	11	0	1	2	0	18	356
751	67	12	18	0	2	5	855	3037	279	50	8	28	7	103	3512

CAR	LGV	$\mathrm{C}=>\mathrm{C}$			M/C	P/C	тот
		OGV1	OGV2	PSV			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1

Irish Traffic Surveys

Survey Name :	ITS J-347 Malahide
Site:	
Date:	09.10 .2019
Time:	$07: 00-12: 00$
Location:	$53.4449143,-6.1781695,5326$
Classification:	Car, LGV, OGV1, OGV2, PSV, P/C, M/C, Peds

Irish Traffic Surveys \begin{tabular}{|l|l|}

\hline | Survey Name: |
| :--- |
| Site: |
| Date: | \& | ITS J-347 Malahide |
| :--- |
| Sime: |
| Site 1 |
| Location: |
| Classification: |

\hline 09.10.2019

07:00-12:00

$53.450726, \quad-6.15363$

Car, LGV, OGV1, OGV2, Bus, P/C, M/C

\hline
\end{tabular}

TIME	A => A							тот	CAR	LGV
	CAR	Lgv	OGV1	OGV2	Bus	M/C	P/C			
07:00	0	0	0	0	0	0	0	0	1	0
07:15	0	0	0	0	0	0	0	0	4	1
07:30	0	0	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0	3	1
H/TOT	0	0	0	0	0	0	0	0	8	2
08:00	0	0	0	0	0	0	0	0	4	2
08:15	0	0	0	0	0	0	0	0	3	0
08:30	0	0	0	0	0	0	0	0	4	0
08:45	0	0	0	0	0	0	0	0	5	0
H/TOT	0	0	0	0	0	0	0	0	16	2
09:00	0	0	0	0	0	0	0	0	5	1
09:15	0	0	0	0	0	0	0	0	2	0
09:30	0	0	0	0	0	0	0	0	4	0
09:45	0	0	0	0	0	0	0	0	5	0
H/TOT	0	0	0	0	0	0	0	0	16	1
10:00	0	0	0	0	0	0	0	0	6	0
10:15	0	0	0	0	0	0	0	0	4	0
10:30	0	0	0	0	0	0	0	0	4	0
10:45	0	0	0	0	0	0	0	0	3	2
H/TOT	0	0	0	0	0	0	0	0	17	2
11:00	0	0	0	0	0	0	0	0	6	3
11:15	0	0	0	0	0	0	0	0	7	2
11:30	0	0	0	0	0	0	0	0	3	1
11:45	0	0	0	0	0	0	0	0	4	0
H/TOT	0	0	0	0	0	0	0	0	20	6
4 hr TOT	0	0	0	0	0	0	0	0	77	13

A => D								$B=>A$							тот
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
11	1	0	0	0	0	0	3	4	1	0	0	0	0	0	5
14	1	1	0	0	0	0	7	1	0	0	0	2	0	0	3
11	2	0	0	0	0	1	8	1	0	1	0	1	0	0	3
8	2	1	0	0	0	0	7	4	0	0	0	0	0	0	4
44	6	2	0	0	0	1	25	10	1	1	0	3	0	0	15
10	1	1	0	0	0	0	26	5	0	0	0	1	0	0	6
15	2	0	0	0	0	0	46	5	0	1	0	0	1	0	7
17	2	2	0	0	0	0	31	2	0	0	0	0	0	0	2
14	0	0	0	0	0	0	41	9	1	0	0	1	0	0	11
56	5	3	0	0	0	0	144	21	1	1	0	2	1	0	26
13	0	0	0	0	0	0	19	8	0	1	0	0	0	0	9
10	3	0	0	0	0	0	9	4	2	0	0	0	0	0	6
12	3	1	0	0	0	0	15	9	1	0	0	1	0	0	11
7	2	0	0	0	0	0	9	5	2	0	0	1	0	0	8
42	8	1	0	0	0	0	52	26	5	1	0	2	0	0	34
22	0	0	0	0	0	0	9	8	1	0	0	0	0	2	11
14	4	1	0	0	0	0	10	10	0	0	0	0	0	0	10
16	3	0	0	0	0	0	17	12	2	0	0	0	0	0	14
14	4	0	0	0	0	0	10	9	1	0	0	0	0	1	11
66	11	1	0	0	0	0	46	39	4	0	0	0	0	3	46
14	3	0	0	0	0	0	18	7	0	0	0	1	0	0	8
2	2	1	0	0	0	0	15	8	2	1	0	0	0	0	11
12	0	1	0	0	0	0	14	2	0	0	0	0	0	0	2
8	4	0	0	0	0	0	20	9	3	0	0	0	0	0	12
36	9	2	0	0	0	0	67	26	5	1	0	1	0	0	33
244	39	9	0	0	0	1	334	122	16	4	0	8	1	3	154

CAR	LGV	B => B			M/C	P/C	тот	CAR	LGV	B => C			M/C	P/C	TOT
		OGV1	OGV2	Bus						OGV1	OGV2	Bus			
0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7
0	0	0	0	0	0	0	0	5	0	1	0	0	0	0	6
0	0	0	0	0	0	0	0	9	3	0	0	0	0	0	12
0	0	0	0	0	0	0	0	5	1	0	0	0	0	1	7
0	0	0	0	0	0	0	0	26	4	1	0	0	0	1	32
0	0	0	0	0	0	0	0	5	3	1	0	0	0	0	9
0	0	0	0	0	0	0	0	7	2	0	0	0	0	0	9
0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10
0	0	0	0	0	0	0	0	21	0	0	0	0	0	0	21
0	0	0	0	0	0	0	0	43	5	1	0	0	0	0	49
0	0	0	0	0	0	0	0	18	1	0	0	0	0	0	19
0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	7	2	0	0	0	0	0	9
0	0	0	0	0	0	0	0	7	0	0	0	0	0	0	7
0	0	0	0	0	0	0	0	34	3	0	0	0	0	0	37
0	0	0	0	0	0	0	0	8	1	0	0	0	0	0	9
0	0	0	0	0	0	0	0	9	1	0	0	0	0	0	10
0	0	0	0	0	0	0	0	12	1	1	0	0	0	0	14
0	0	0	0	0	0	0	0	10	0	0	0	0	0	0	10
0	0	0	0	0	0	0	0	39	3	1	0	0	0	0	43
0	0	0	0	0	0	0	0	13	3	0	0	0	0	0	16
0	0	0	0	0	0	0	0	7	1	0	0	0	0	0	8
0	0	0	0	0	0	0	0	6	4	0	0	0	0	0	10
0	0	0	0	0	0	0	0	10	2	0	0	0	1	0	13
0	0	0	0	0	0	0	0	36	10	0	0	0	1	0	47
0	0	0	0	0	0	0	0	178	25	3	0	0	1	1	208

B => D								$\mathrm{C}=>\mathrm{A}$							тот
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
38	2	0	3	2	0	2	7	5	0	0	0	0	0	0	5
70	7	0	1	2	0	0	6	4	2	0	0	0	0	0	6
63	5	0	0	1	0	3	12	5	0	0	0	0	0	0	5
87	4	1	0	4	0	1	7	12	0	0	0	0	0	0	12
258	18	1	4	9	0	6	32	26	2	0	0	0	0	0	28
72	4	3	0	3	0	1	9	12	0	0	0	0	0	0	12
99	3	2	0	0	0	0	9	18	1	0	0	0	0	0	19
79	5	1	1	3	0	0	10	24	1	0	0	0	0	0	25
81	4	0	0	0	0	1	21	17	0	0	0	0	0	0	17
331	16	6	1	6	0	2	49	71	2	0	0	0	0	0	73
78	5	1	0	1	0	1	19	24	0	0	0	0	0	0	24
77	11	2	0	1	0	0	2	11	2	0	0	0	0	0	13
64	2	0	1	1	0	2	9	5	0	0	0	0	0	1	6
57	4	2	1	0	0	0	7	10	1	0	0	0	0	0	11
276	22	5	2	3	0	3	37	50	3	0	0	0	0	1	54
69	6	1	0	3	0	0	9	7	1	0	0	0	0	0	8
54	6	1	3	0	0	1	10	18	0	0	0	0	0	0	18
61	7	1	0	1	1	0	14	10	1	0	0	0	0	0	11
56	4	0	0	0	0	0	10	10	0	0	0	0	0	0	10
240	23	3	3	4	1	1	43	45	2	0	0	0	0	0	47
53	7	1	0	1	0	2	16	15	2	0	0	0	0	0	17
74	5	5	1	0	0	1	8	8	0	0	0	0	0	0	8
66	6	3	4	2	0	4	10	10	1	0	0	0	0	0	11
70	4	4	0	0	0	1	13	9	1	0	0	0	0	0	10
263	22	13	5	3	0	8	47	42	4	0	0	0	0	0	46
1368	101	28	15	25	1	20	208	234	13	0	0	0	0	1	248

C => B								C => C							тот
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
13	2	0	0	0	0	0	15	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
15	1	0	0	0	0	0	16	0	0	0	0	0	0	0	0
17	0	1	0	1	0	0	19	0	0	0	0	0	0	0	0
51	2	1	0	1	0	0	55	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
43	1	0	0	0	0	0	44	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	11	0	0	0	0	0	0	0	0
13	1	0	0	0	0	0	14	0	0	0	0	0	0	0	0
17	0	0	0	0	1	0	18	0	0	0	0	0	0	0	0
50	2	1	0	0	1	0	54	0	0	0	0	0	0	0	0
7	2	0	0	0	0	0	9	0	0	0	0	0	0	0	0
16	0	0	0	0	0	0	16	0	0	0	0	0	0	0	0
12	1	0	0	0	0	1	14	0	0	0	0	0	0	0	0
7	3	0	0	0	0	0	10	0	0	0	0	0	0	0	0
42	6	0	0	0	0	1	49	0	0	0	0	0	0	0	0
199	13	2	0	1	1	1	217	0	0	0	0	0	0	0	0

C => D								D => A							тот
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
5	1	1	0	1	0	0	8	12	2	0	0	0	1	0	15
21	1	0	0	2	0	2	26	2	1	0	0	0	0	0	3
14	2	0	0	1	0	0	17	2	0	2	0	0	0	0	4
14	2	1	0	3	0	1	21	5	1	1	1	0	0	0	8
54	6	2	0	7	0	3	72	21	4	3	1	0	1	0	30
19	0	0	0	5	0	0	24	4	0	0	0	0	0	0	4
22	0	1	0	0	0	0	23	4	0	1	0	0	0	0	5
23	0	0	0	1	0	0	24	5	0	2	0	0	0	0	7
17	0	0	0	1	0	0	18	14	0	0	0	0	0	0	14
81	0	1	0	7	0	0	89	27	0	3	0	0	0	0	30
23	0	0	0	1	0	0	24	7	1	0	0	0	0	0	8
18	2	2	0	1	0	0	23	6	1	0	0	0	0	0	7
12	1	1	1	0	0	0	15	8	0	0	0	0	0	0	8
11	3	0	0	0	0	0	14	7	1	1	0	0	1	0	10
64	6	3	1	2	0	0	76	28	3	1	0	0	1	0	33
8	1	0	0	0	0	0	9	7	0	0	0	0	0	0	7
16	2	1	0	1	0	0	20	5	2	0	0	0	0	0	7
16	2	0	0	0	0	0	18	11	2	0	0	0	0	0	13
19	2	3	0	1	0	0	25	9	3	1	0	0	0	0	13
59	7	4	0	2	0	0	72	32	7	1	0	0	0	0	40
17	2	1	0	0	0	0	20	10	1	0	0	0	0	0	11
16	3	0	0	1	0	0	20	9	0	2	0	0	0	0	11
21	3	0	1	0	0	0	25	5	1	1	0	0	0	0	7
10	3	0	0	1	0	0	14	8	2	1	0	0	0	0	11
64	11	1	1	2	0	0	79	32	4	4	0	0	0	0	40
322	30	11	2	20	0	3	388	140	18	12	1	0	2	0	173

D => B								D => C							TOT
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
22	5	0	0	3	0	0	30	2	4	0	0	0	0	0	6
38	10	0	0	3	0	0	51	9	1	0	0	0	0	0	10
48	6	1	0	1	0	0	56	8	3	0	0	2	0	0	13
57	9	2	1	4	0	0	73	13	2	0	0	2	0	0	17
165	30	3	1	11	0	0	210	32	10	0	0	4	0	0	46
41	11	1	0	5	0	1	59	22	2	0	0	1	0	1	26
49	8	2	2	0	1	1	63	41	0	0	0	1	0	0	42
41	3	1	0	1	0	1	47	28	1	0	1	3	0	0	33
56	2	5	0	2	0	1	66	16	1	1	1	0	0	0	19
187	24	9	2	8	1	4	235	107	4	1	2	5	0	1	120
54	5	0	2	2	0	1	64	17	0	0	0	1	0	1	19
49	6	3	0	3	0	1	62	5	4	0	0	1	0	1	11
46	6	1	1	1	0	0	55	6	0	0	0	0	0	0	6
64	8	2	0	1	0	0	75	5	0	0	0	1	0	0	6
213	25	6	3	7	0	2	256	33	4	0	0	3	0	2	42
65	8	2	2	1	0	0	78	9	1	0	0	0	0	0	10
53	7	1	1	0	0	0	62	9	3	1	0	1	0	0	14
49	9	0	0	1	0	0	59	4	0	2	0	1	0	0	7
56	6	2	0	0	0	1	65	5	0	0	0	1	0	0	6
223	30	5	3	2	0	1	264	27	4	3	0	3	0	0	37
45	11	4	2	1	0	0	63	8	1	1	0	0	0	0	10
60	4	3	0	0	0	0	67	9	1	1	0	1	0	0	12
42	7	1	1	2	0	2	55	3	2	0	0	1	0	0	6
60	4	1	0	0	0	2	67	6	3	0	0	0	0	0	9
207	26	9	3	3	0	4	252	26	7	2	0	2	0	0	37
995	135	32	12	31	1	11	1217	225	29	6	2	17	0	3	282

CAR	LGV	OGV1	D => D				
OGV2	Bus	M/C	P/C	TOT			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Irish Traffic Surveys	Survey Name :	ITS J-347 Malahide
	Site:	Site 2
	Date:	09.10.2019
	Time:	07:00-12:00
	Location:	53.450925, -6.1509
	Classification:	Car, LGV, OGV1, OGV2, Bus, P/C, M/C

TIME	A => A							TOT	CAR	LGV
	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C			
07:00	1	0	0	0	0	0	0	1	0	0
07:15	0	0	0	0	0	0	0	0	5	1
07:30	0	0	0	0	0	0	0	0	1	0
07:45	0	0	0	0	0	0	0	0	2	0
H/TOT	1	0	0	0	0	0	0	1	8	1
08:00	0	0	0	0	0	0	0	0	5	0
08:15	0	0	0	0	0	0	0	0	6	0
08:30	0	0	0	0	0	0	0	0	6	1
08:45	0	0	0	0	0	0	0	0	1	0
H/TOT	0	0	0	0	0	0	0	0	18	1
09:00	1	0	0	0	0	0	0	1	0	0
09:15	0	0	0	0	0	0	0	0	3	0
09:30	0	0	0	0	0	0	0	0	7	0
09:45	0	0	0	0	0	0	0	0	3	0
H/TOT	1	0	0	0	0	0	0	1	13	0
10:00	0	0	0	0	0	0	0	0	3	0
10:15	2	0	0	0	0	0	0	2	3	0
10:30	0	0	0	0	0	0	0	0	3	0
10:45	0	0	0	0	0	0	0	0	0	0
H/TOT	2	0	0	0	0	0	0	2	9	0
11:00	0	0	0	0	0	0	0	0	5	0
11:15	0	0	0	0	0	0	0	0	2	0
11:30	0	0	0	0	0	0	0	0	3	0
11:45	1	0	0	0	0	0	0	1	5	0
H/TOT	1	0	0	0	0	0	0	1	15	0
4hr TOT	5	0	0	0	0	0	0	5	63	2

A => B					TOT	A => C							тот
OGV1	OGV2	Bus	M/C	P/C		CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
0	0	0	0	0	0	47	1	2	0	2	0	1	53
0	0	0	0	0	6	72	3	2	0	5	0	0	82
0	0	0	0	0	1	79	7	0	0	4	0	4	94
0	0	0	0	0	2	104	6	2	0	3	0	1	116
0	0	0	0	0	9	302	17	6	0	14	0	6	345
0	0	0	0	0	5	91	9	3	0	0	0	0	103
0	0	0	0	0	6	145	9	1	0	0	0	1	156
0	0	0	0	0	7	98	6	1	1	3	0	0	109
0	0	0	0	0	1	86	7	0	0	1	0	1	95
0	0	0	0	0	19	420	31	5	1	4	0	2	463
0	0	0	0	0	0	95	6	1	0	1	0	1	104
0	0	0	0	0	3	94	14	2	0	1	0	2	113
0	0	0	0	0	7	90	5	0	1	2	0	3	101
0	0	0	0	0	3	86	6	3	1	1	0	2	99
0	0	0	0	0	13	365	31	6	2	5	0	8	417
0	0	0	0	0	3	87	5	2	0	3	0	4	101
0	1	0	0	0	4	102	9	2	2	0	0	2	117
0	0	0	0	0	3	92	11	1	0	1	1	5	111
0	0	0	0	0	0	80	3	1	0	0	0	1	85
0	1	0	0	0	10	361	28	6	2	4	1	12	414
0	0	0	0	0	5	83	12	2	0	2	0	2	101
0	0	0	0	0	2	67	8	4	0	0	1	4	84
0	0	0	0	0	3	77	12	3	1	2	0	3	98
0	0	0	0	0	5	104	4	4	0	0	0	1	113
0	0	0	0	0	15	331	36	13	1	4	1	10	396
0	1	0	0	0	66	1779	143	36	6	31	2	38	2035

B $=>$ A								$B=>B$							TOT
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
36	0	0	0	0	0	0	36	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
19	1	0	0	0	0	0	20	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
73	1	0	0	0	0	0	74	0	0	0	0	0	0	0	0

B $=>$ C								$\mathrm{C}=>\mathrm{A}$							TOT
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
2	0	0	0	0	0	0	2	23	5	0	0	4	0	0	32
4	0	0	0	0	0	0	4	70	8	1	0	4	0	1	84
4	0	0	0	0	0	1	5	75	5	1	0	2	0	1	84
2	1	0	0	0	0	0	3	98	10	1	1	6	0	2	118
12	1	0	0	0	0	1	14	266	28	3	1	16	0	4	318
4	0	0	0	0	0	0	4	86	10	1	0	3	0	1	101
6	0	0	0	0	0	0	6	126	11	2	2	3	0	0	144
17	0	0	0	0	0	0	17	109	7	3	0	2	0	1	122
50	2	0	0	0	0	0	52	111	2	5	0	3	0	0	121
77	2	0	0	0	0	0	79	432	30	11	2	11	0	2	488
29	0	0	0	0	0	0	29	109	8	2	1	4	0	1	125
5	1	0	0	0	0	0	6	80	8	4	0	3	0	0	95
1	0	0	0	0	0	0	1	72	11	1	0	2	0	0	86
5	0	0	0	0	0	0	5	81	8	2	0	2	0	1	94
40	1	0	0	0	0	0	41	342	35	9	1	11	0	2	400
5	0	0	0	0	0	0	5	95	4	1	1	2	0	2	105
2	0	1	1	0	0	0	4	69	6	4	1	0	0	1	81
5	1	0	0	0	0	0	6	68	7	0	0	1	0	1	77
2	0	0	0	0	0	0	2	89	7	5	0	1	0	4	106
14	1	1	1	0	0	0	17	321	24	10	2	4	0	8	369
4	0	0	0	0	0	0	4	89	13	4	1	2	0	1	110
3	0	0	0	0	0	0	3	93	8	2	0	0	0	1	104
0	1	0	0	0	0	0	1	78	8	0	0	2	0	2	90
4	0	0	0	0	0	0	4	93	5	1	0	0	0	1	100
11	1	0	0	0	0	0	12	353	34	7	1	4	0	5	404
154	6	1	1	0	0	1	163	1714	151	40	7	46	0	21	1979

C => B								$\mathrm{C}=>\mathrm{C}$							TOT
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
27	0	0	0	0	0	0	27	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
15	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3	0	0	0	0	0	0	0	0
20	1	0	0	0	0	0	21	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6	0	0	0	0	0	0	0	0
21	1	0	0	0	0	0	22	0	0	0	0	0	0	0	0
92	2	0	0	0	0	0	94	0	0	0	0	0	0	0	0

	Survey Name :	ITS J-347 Malahide
	Site:	Site 3
	Date:	09.10.2019
	Time:	07:00-12:00
irish Traffic Surveys	Location: Classification:	53.450911, -6.14919 Car, LGV, OGV1, OGV2, Bus, P/C, M/C

$A=A$								тот	CAR	LGv
time	CAR	Lev	OGv1	OGv2	Bus	M/C	P/C			
07:00	0	0	0	0	0	0	0	0	2	0
07:15	0	0	-	0	0	0	0	0	2	0
07:30	0	0	0	0	0	0	0	0	2	0
07:45	0	0	0	0	0	0	0	0	3	0
H/TOT	0	0	0	0	0	0	0	0	9	0
08:00	0	0	0	0	0	0	0	0	11	1
08:15	0	0	0	0	0	0	0	0	17	0
08:30	0	0	0	0	0	0	0	0	28	2
08:45	0	0	0	0	0	0	0	0	16	0
H/TOT	0	0	0	0	0	0	0	0	72	3
09:00	2	0	0	0	0	0	0	2	7	0
09:15	0	0	0	0	0	0	0	0	5	0
09:30	0	0	0	0	0	0	0	0	4	1
09:45	0	0	0	0	0	0	0	0	7	0
H/TOT	2	0	0	0	0	0	0	2	23	1
10:00	0	0	0	0	0	0	0	0	3	0
10:15	0	0	0	0	0	0	0	0	2	0
10:30	0	0	0	0	0	0	0	0	8	0
10:45	0	0	0	0	0	0	0	0	12	0
H/TOT	0	0	0	0	0	0	0	0	25	0
11:00	0	0	0	0	0	0	0	0	6	0
11:15	0	0	0	0	0	0	0	0	7	0
11:30	0	0	0	0	0	0	0	0	2	2
11:45	0	0	0	0	0	0	0	0	5	1
H/TOT	0	0	0	0	0	0	0	0	0	0
4 hr TOT	2	0	0	0	0	0	0	2	149	7

CAR	Lev	$B=A$			M/C	P/C	тот	CAR	Lev		$\begin{array}{r} \mathrm{B}=>\mathrm{B} \\ \text { OGv2 } \end{array}$	Bus	M/C	P/C	тот
		OGv1		Bus											
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
14	1	0	0	0	0	0	15	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	11	1	0	0	0	0	0	0	1
4	1	0	0	0	0	0	5	0	0	0	0	0	0	0	0
20	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0
42	1	0	0	0	0	0	43	1	0	0	0	0	0	0	1
18	1	0	0	0	0	0	19	1	0	0	0	0	0	0	1
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
41	1	0	0	0	0	0	42	1	0	0	0	0	0	0	1
8	3	1	0	0	0	0	12	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
35	3	1	0	0	0	0	39	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
9	1	0	0	0	0	0	10	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
166	9	1	0	0	0	0	176	2	0	0	0	0	0	0	2

CAR	Lgv	$\begin{array}{cc} & \\ & \\ \text { OGV1 } \quad \begin{array}{c} \text { OGV2 } \end{array} \\ \end{array}$		Bus	M/C	P/C	тот	CAR	Lev	ogvi	$\begin{array}{r} \mathrm{C}=>\mathrm{A} \\ \mathrm{OGv2} \end{array}$	Bus	M/C	P/C	тот
2	0	1	0	0	0	0	3	19	3	1	0	4	0	0	27
3	2	1	0	0	0	0	6	54	12	1	0	3	0	1	71
6	2	0	0	0	0	0	8	63	4	1	0	2	0	0	70
9	0	0	0	0	0	0	9	75	9	1	1	6	0	1	93
20	4	2	0	0	0	0	26	211	28	4	1	15	0	2	261
4	1	0	0	0	0	0	5	67	12	1	0	3	0	1	84
15	0	0	0	0	0	0	15	97	9	2	2	3	1	0	114
5	1	0	0	0	0	0	6	95	8	3	0	0	0	2	108
24	0	0	0	0	0	0	24	81	5	5	0	3	0	1	95
48	2	0	0	0	0	0	50	340	34	11	2	9	1	4	401
9	2	0	0	0	0	0	11	84	8	1	2	4	0	0	99
8	0	0	0	0	0	1	9	52	7	4	0	3	0	0	66
12	2	0	0	0	0	0	14	62	11	1	0	2	0	0	76
7	0	1	0	0	0	0	8	73	6	2	0	1	0	1	83
36	4	1	0	0	0	1	42	271	32	8	2	10	0	1	324
11	3	0	0	0	0	0	14	75	5	1	2	2	0	1	86
9	0	1	0	0	0	0	10	63	4	1	1	0	0	0	69
16	2	0	0	0	0	0	18	56	11	0	0	1	0	2	70
17	0	0	0	0	0	0	17	66	7	0	0	1	0	4	78
53	5	1	0	0	0	0	59	260	27	2	3	4	0	7	303
12	1	1	0	0	0	0	14	70	14	4	2	2	0	2	94
8	0	0	0	0	0	1	9	71	8	2	0	0	0	1	82
15	2	0	0	0	0	0	17	72	8	2	0	2	0	3	87
17	1	1	0	0	0	0	19	91	5	0	1	0	0	4	101
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
209	19	6	0	0	\bigcirc	2	236	1386	156	33	11	42	1	24	1653

CAR	Lgv	ogvi	$\begin{gathered} \mathrm{c}=>\mathrm{B} \\ \text { ogv2 } \end{gathered}$	Bus	M/C	P/C	тот	CAR	Lgv	ogvi	$\begin{array}{r} c=c \\ \text { ogv2 } \end{array}$	Bus	M/C	P/C	тот
6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
7	1	0	0	0	0	0	8	0	0	0	0	0	0	0	0
8	2	0	0	0	0	0	10	1	0	0	0	0	0	0	1
16	2	0	0	0	0	0	18	1	0	0	0	0	0	0	1
37	5	0	0	0	0	0	42	2	0	0	0	0	0	0	2
17	0	0	0	0	0	0	17	1	0	0	0	0	0	0	1
16	2	1	0	0	0	0	19	0	0	0	0	0	0	0	0
17	0	0	0	1	0	0	18	1	0	0	0	0	0	0	1
33	0	0	0	0	0	0	33	0	0	0	0	0	0	0	0
83	2	1	0	1	0	0	87	2	0	0	0	0	0	0	2
23	1	0	0	0	0	0	24	0	0	0	0	0	0	0	0
24	1	0	0	0	0	0	25	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7	1	0	0	0	0	0	0	1
10	3	0	0	0	0	0	13	0	0	0	0	0	0	0	0
63	6	0	0	0	0	0	69	1	0	0	0	0	0	0	1
15	0	0	0	0	0	0	15	0	0	0	0	0	0	0	0
6	4	2	0	0	0	0	12	2	0	0	0	0	0	0	2
12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
17	1	0	0	0	0	0	18	3	0	0	0	0	0	0	3
50	5	2	0	0	0	0	57	5	0	0	0	0	0	0	5
12	0	0	0	0	0	0	12	1	0	0	0	0	0	0	1
16	0	0	0	0	0	0	16	2	0	0	0	0	0	0	2
7	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0
7	1	1	0	0	0	0	9	2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
275	19	4	0	1	0	0	299	15	0	0	0	0	0	0	15

	Survey Name :	ITS J-347 Malahide
	Site:	Site 4
	Date:	09.10.2019
IrishTraffic Surve	Time:	07:00-12:00
irish Traffic Surveys	Location: Classification:	53.448917, -6.15321 Car, LGV, OGV1, OGV2, Bus, P/C, M/C

CAR	Lgv	$\text { B }=>B$			M/C	P/C	тот
		OGv1	OGV2	Bus			
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	\bigcirc	0

time	$\mathrm{A}=>\mathrm{A}$							тот	car	Lav
	car	Lev	ogvi	osv2	Bus	M/C	P/C			
07:00	0	0	0	0	0	0	0	0	1	0
07:15	0	0	0	0	0	0	0	0	1	0
07:30	0	0	0	0	0	0	0	0	2	2
07:45	0	0	0	0	0	0	0	0	2	1
H/TOT	0	0	0	0	0	0	0	0	6	3
08:00	0	0	0	0	0	0	0	0	3	3
08:15	0	0	0	0	0	0	0	0	3	3
08:30	0	0	0	0	0	0	0	0	12	1
08:45	0	0	0	0	0	0	0	0	19	1
H/TOT	0	0	0	0	0	0	0	0	37	8
09:00	0	0	0	0	0	0	0	0	11	0
09:15	0	0	0	0	0	0	0	0	1	0
09:30	0	0	0	0	0	0	0	0	2	1
09:45	0	0	0	0	0	0	0	0	1	0
H/TOT	0	0	0	0	0	0	0	0	15	1
10:00	0	0	0	0	0	0	0	0	1	0
10:15	0	0	0	0	0	0	0	0	3	0
10:30	0	0	0	0	0	0	0	0	2	0
10:45	0	0	0	0	0	0	0	0	1	0
H/Tot	0	0	0	0	0	0	0	0	7	0
11:00	0	0	0	0	0	0	0	0	3	0
11:15	0	0	0	0	0	0	0	0	3	1
11:30	0	0	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0	2	0
H/Tot	0	0	0	0	0	0	0	0	0	0
4 hr Tot	0	0	0	0	0	0	0	0	73	13

CAR	Lev	ogv1 $\mathrm{B}=>\mathrm{C}$ OGV 2		Bus	M/C	P/C	тот	car	Lgv	ogvi	ogv2	Bus	M/C	P/C	тот
1	0	0	0	0	0	0	1	12	3	0	0	1	0	0	16
10	0	0	0	0	0	0	10	28	1	0	0	2	0	2	33
5	0	0	0	0	0	0	5	21	3	0	0	0	0	0	24
12	1	1	0	0	0	0	14	35	1	1	0	1	0	2	40
28	1	1	0	0	0	0	30	96	8	1	0	4	0	4	${ }^{113}$
23	0	0	0	0	0	1	24	45	0	0	0	5	0	0	50
26	0	0	0	0	0	0	26	71	2	1	0	1	0	0	75
30	1	1	0	0	0	0	32	55	1	0	0	0	0	0	56
56	0	0	0	0	0	0	56	74	0	1	0	2	0	0	77
${ }^{135}$	1	1	0	0	0	1	${ }^{138}$	245	3	2	0	8	0	0	$\underline{258}$
49	1	0	0	1	0	0	51	48	0	1	0	1	0	0	50
24	0	0	0	0	0	0	24	38	4	1	0	1	0	0	44
23	0	0	0	0	0	0	23	27	1	1	1	0	1	1	32
3	1	0	0	0	0	0	4	29	3	0	0	1	0	0	33
9	2	0	0	1	0	0	102	142	8	3	1	3	1	1	159
4	0	0	0	0	0	0	4	30	3	0	0	0	0	0	33
15	0	0	0	0	0	0	15	51	2	2	0	1	0	0	56
11	1	0	0	0	0	0	12	36	1	0	0	0	0	0	37
16	1	0	0	0	0	0	17	48	5	3	0	2	0	0	58
46	2	0	0	0	0	0	48	165	${ }^{11}$	5	0	3	0	0	${ }^{184}$
11	0	1	0	0	0	0	12	31	3	1	0	0	0	0	35
18	0	0	0	0	0	0	18	32	1	0	1	1	0	0	35
13	0	0	0	0	0	0	13	39	2	0	0	0	1	0	42
14	2	0	0	0	1	0	17	20	9	0	0	1	0	0	30
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
364	8	3	0	1	1	1	378	770	45	12	2	20	2	5	856

	Survey Name :	ITS J-347 Malahide
	Site:	Site 6
	Date:	09.10.2019
	Time:	07:00-12:00
IrishTraffic Surveys	Location:	$53.447465,-6.15065$
	Classification:	Car, LGV, OGV1, OGV2, Bus, P/C, M/C

TIME	A => A							TOT	CAR	LGV
	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C			
07:00	0	0	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0	2	0
07:30	0	0	0	0	0	0	0	0	2	0
07:45	0	0	0	0	0	0	0	0	2	0
H/TOT	0	0	0	0	0	0	0	0	6	0
08:00	0	0	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0	0	1
08:30	0	0	0	0	0	0	0	0	1	0
08:45	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	1	1
09:00	0	0	0	0	0	0	0	0	1	0
09:15	0	0	0	0	0	0	0	0	0	0
09:30	0	0	0	0	0	0	0	0	2	0
09:45	0	0	0	0	0	0	0	0	2	0
H/TOT	0	0	0	0	0	0	0	0	5	0
10:00	0	0	0	0	0	0	0	0	0	3
10:15	0	0	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0	2	0
10:45	0	0	0	0	0	0	0	0	0	0
H/TOT	0	0	0	0	0	0	0	0	2	3
11:00	0	0	0	0	0	0	0	0	0	0
11:15	0	0	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0	1	0
11:45	0	0	0	0	0	0	0	0	1	0
H/TOT	0	0	0	0	0	0	0	0	0	0
4 hr TOT	0	0	0	0	0	0	0	0	16	4

B => A								B => B							TOT
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
17	1	0	0	0	0	0	18	0	0	0	0	0	0	0	0
35	0	0	0	0	0	0	35	0	0	0	0	0	0	0	0
54	1	0	0	0	0	0	55	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	4	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
72	3	0	0	0	0	0	75	0	0	0	0	0	0	0	0

CAR	LGV	B => C			M/C	P/C	тот	CAR	LGV	C => A			M/C	P/C	тот
		OGV1	OGV2	Bus						OGV1	OGV2	Bus			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6	1	0	0	0	0	0	0	1
5	1	0	0	0	0	0	6	1	0	0	0	0	0	0	1
13	1	0	0	0	0	0	14	2	0	0	0	0	0	0	2
24	2	0	0	0	0	0	26	4	0	0	0	0	0	0	4
20	1	0	0	0	0	0	21	9	0	0	0	0	0	0	9
21	1	0	0	0	0	0	22	7	0	0	0	0	0	0	7
25	1	1	0	0	0	0	27	10	0	0	0	0	0	0	10
56	1	0	0	0	0	0	57	48	3	0	0	0	0	0	51
122	4	1	0	0	0	0	127	74	3	0	0	0	0	0	77
50	1	0	0	0	0	0	51	8	0	0	0	0	0	0	8
18	0	0	0	0	0	0	18	6	0	0	0	0	0	0	6
16	0	1	0	0	0	0	17	5	1	0	0	0	0	0	6
11	1	0	0	0	0	0	12	7	0	0	0	0	0	0	7
95	2	1	0	0	0	0	98	26	1	0	0	0	0	0	27
7	1	0	0	0	0	0	8	6	1	0	0	0	0	0	7
11	1	0	0	0	0	0	12	6	0	0	0	0	0	0	6
7	1	0	0	0	0	0	8	3	1	0	0	0	0	0	4
13	1	1	0	0	0	0	15	3	0	0	0	0	0	0	3
38	4	1	0	0	0	0	43	18	2	0	0	0	0	0	20
10	0	0	0	0	0	0	10	7	0	0	0	0	0	0	7
15	1	0	0	0	0	1	17	1	0	0	0	0	0	0	1
8	0	0	0	0	0	0	8	0	0	0	0	0	0	0	0
7	1	0	0	0	0	1	9	5	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
319	14	3	0	0	0	2	338	135	6	0	0	0	0	0	141

C => B								$\mathrm{C}=>\mathrm{C}$							тот
CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	тот	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
12	3	0	0	0	0	0	15	0	0	0	0	0	0	0	0
19	5	0	0	0	0	0	24	0	0	0	0	0	0	0	0
8	1	0	0	0	0	0	9	0	0	0	0	0	0	0	0
12	0	0	0	0	0	0	12	0	0	0	0	0	0	0	0
29	1	0	0	0	0	0	30	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
61	3	0	0	0	0	0	64	0	0	0	0	0	0	0	0
16	1	0	0	0	0	0	17	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	11	0	0	0	0	0	0	0	0
10	0	1	0	0	0	0	11	0	0	0	0	0	0	0	0
10	1	0	0	0	0	0	11	0	0	0	0	0	0	0	0
46	2	2	0	0	0	0	50	0	0	0	0	0	0	0	0
4	4	1	0	0	0	0	9	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	9	0	0	0	0	0	0	0	0
12	1	0	0	0	0	0	13	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0
31	5	1	0	0	0	0	37	0	0	0	0	0	0	0	0
13	2	0	0	0	0	0	15	0	0	0	0	0	0	0	0
10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7	0	0	0	0	0	0	0	0
10	2	0	0	0	0	0	12	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
196	22	3	0	0	0	0	221	0	0	0	0	0	0	0	0

Irish Traffic Surveys

Survey Name:	ITS J-347 Malahide
Site:	Site 9
Date:	09.10 .2019
Time:	07:00-12:00
Location:	$53.451484, \quad-6.1538$
Classification:	Car, LGV, OGV1, OGV2, Bus, P/C, M/C

TIME	A => ${ }^{\text {a }}$							TOT	CAR	LGV
	CAR	LGV	OGV1	OGV2	Bus	M/C	P/C			
07:00	0	0	0	0	0	0	0	0	12	2
07:15	0	0	0	0	0	0	0	0	25	3
07:30	0	0	0	0	0	0	0	0	20	2
07:45	0	0	0	0	0	0	0	0	17	2
H/TOT	0	0	0	0	0	0	0	0	74	9
08:00	0	0	0	0	0	0	0	0	45	2
08:15	0	0	0	0	0	0	0	0	66	3
08:30	0	0	0	0	0	0	0	0	45	6
08:45	0	0	0	0	0	0	0	0	55	4
H/TOT	0	0	0	0	0	0	0	0	211	15
09:00	0	0	0	0	0	0	0	0	34	1
09:15	0	0	0	0	0	0	0	0	18	3
09:30	0	0	0	0	0	0	0	0	28	3
09:45	0	0	0	0	0	0	0	0	23	3
H/TOT	0	0	0	0	0	0	0	0	103	10
10:00	0	0	0	0	0	0	0	0	42	1
10:15	0	0	0	0	0	0	0	0	26	3
10:30	0	0	0	0	0	0	0	0	34	3
10:45	0	0	0	0	0	0	0	0	29	7
H/TOT	0	0	0	0	0	0	0	0	131	14
11:00	0	0	0	0	0	0	0	0	37	4
11:15	0	0	0	0	0	0	0	0	25	6
11:30	0	0	0	0	0	0	0	0	21	2
11:45	0	0	0	0	0	0	0	0	33	4
H/TOT	0	0	0	0	0	0	0	0	116	16
4 hr TOT	0	0	0	0	0	0	0	0	635	64

A => B					TOT	CAR	LGV	B $=>$ A		
OGV1	OGV2	Bus	M/C	P/C				OGV1	OGV2	Bus
1	0	0	0	0	15	11	1	0	0	0
2	0	0	0	0	30	6	3	0	0	2
1	0	0	0	1	24	8	1	3	0	1
2	0	0	0	0	21	19	1	1	1	0
6	0	0	0	1	90	44	6	4	1	3
1	0	0	0	0	48	19	0	0	0	1
3	0	0	0	1	73	25	1	2	0	0
0	0	0	0	0	51	29	3	2	0	0
0	0	0	0	1	60	32	1	0	0	1
4	0	0	0	2	232	105	5	4	0	2
1	0	0	0	0	36	35	2	0	0	0
0	0	0	0	0	21	24	4	0	0	0
2	0	0	1	0	34	23	2	0	0	1
1	0	0	0	1	28	25	3	1	0	1
4	0	0	1	1	119	107	11	1	0	2
0	0	0	0	0	43	22	2	0	0	0
1	0	0	0	0	30	34	2	0	0	0
0	0	0	0	0	37	32	5	0	0	0
0	0	0	0	0	36	26	4	1	0	0
1	0	0	0	0	146	114	13	1	0	0
2	0	0	0	0	43	33	3	0	0	1
0	0	0	0	0	31	27	1	3	0	0
1	0	0	0	0	24	15	3	1	0	0
0	0	0	0	0	37	28	4	2	0	0
3	0	0	0	0	135	103	11	6	0	1
18	0	0	1	4	722	473	46	16	1	8

M/C	P/C	TOT	CAR	LGV	B => B			M/C	P/C	TOT
					OGV1	OGV2	Bus			
1	0	13	0	0	0	0	0	0	0	0
0	0	11	0	0	0	0	0	0	0	0
0	0	13	0	0	0	0	0	0	0	0
0	1	23	0	0	0	0	0	0	0	0
1	1	60	0	0	0	0	0	0	0	0
0	0	20	0	0	0	0	0	0	0	0
0	1	29	0	0	0	0	0	0	0	0
0	0	34	0	0	0	0	0	0	0	0
0	0	34	0	0	0	0	0	0	0	0
0	1	117	0	0	0	0	0	0	0	0
0	0	37	0	0	0	0	0	0	0	0
0	1	29	0	0	0	0	0	0	0	0
0	1	27	0	0	0	0	0	0	0	0
0	1	31	0	0	0	0	0	0	0	0
0	3	124	0	0	0	0	0	0	0	0
0	2	26	0	0	0	0	0	0	0	0
0	0	36	0	0	0	0	0	0	0	0
0	0	37	0	0	0	0	0	0	0	0
0	1	32	0	0	0	0	0	0	0	0
0	3	131	0	0	0	0	0	0	0	0
0	1	38	0	0	0	0	0	0	0	0
0	0	31	0	0	0	0	0	0	0	0
0	0	19	0	0	0	0	0	0	0	0
0	0	34	0	0	0	0	0	0	0	0
0	1	122	0	0	0	0	0	0	0	0
1	9	554	0	0	0	0	0	0	0	0

Public Realm Improvements for a Pedestrianised New Street

Appendix B Junction 1 - New Street and the Strand - Linsig Analysis

Full Input Data And Results
Full Input Data And Results

User and Project Details

Project:	Public Realm at New Street, Malahide, Co. Dublin
Title:	Public Realm at New Street, Malahide, Co. Dublin
Location:	
Client:	Fingal County Council
Date Started:	January 2023
Checked By:	D Lehane
Additional detail:	
File name:	222126 New Street - Jn 1_JPM 2023-01-30.Isg3x
Author:	JP Murray
Company:	PUNCH Consulting Engineers
Address:	Carnegie House, Library Road, Dun Laoghaire, Co Dublin, A96 C7W7, Ireland

Network Layout Diagram

Phase Diagram

Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
A	Traffic		7	7
B	Traffic		7	7
C	Traffic		7	7
D	Traffic		7	7
E	Pedestrian		7	7
F	Pedestrian		7	7
G	Pedestrian		7	7
H	Pedestrian		7	7

Phase Intergreens Matrix

	Starting Phase								
Terminating Phase		A	B	C	D	E	F	G	H
	A		-	6	5	8	6	6	7
	B	-		5	12	6	7	14	12
	C	6	6		6	6	6	7	8
	D	6	6	6		7	8	6	6
	E	9	9	9	9		-	-	-
	F	13	13	13	13	-		-	-
	G	11	11	11	11	-	-		-
	H	9	9	9	9	-	-	-	

Phases in Stage

Stage No.	Phases in Stage
1	A B
2	C
3	D
4	E F G H

Stage Diagram

Phase Delays

Term. Stage	Start Stage	Phase	Type	Value	Cont value
There are no Phase Delays defined					

Prohibited Stage Change

	To Stage				
		1	2	3	4
	1		6	12	14
From	2	6		6	8
	3	6	6		8
	4	13	13	13	

Full Input Data And Results

Give-Way Lane Input Data

Junction: New Street and the Strand											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
$\begin{gathered} 1 / 1 \\ \text { (Strand St) } \end{gathered}$	6/1 (Right)	1439	0	7/1	1.09	To 2/1 (Ahead) To 6/1 (Left)	2.00	0.50	0.50	2	2.00
$\begin{gathered} 7 / 1 \\ \text { (The Green) } \end{gathered}$	4/1 (Right)	1439	0	1/1	1.09	To 4/1 (Left) To 8/1 (Ahead)	2.00	0.50	0.50	2	2.00

Full Input Data And Results
Lane Input Data

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: '2023 Existing Survey AM'	$08: 30$	$09: 30$	$01: 00$	
2: '2023 Existing Survey PM'	$16: 30$	$17: 30$	$01: 00$	
3: '2019 Estimated AM'	$08: 30$	$09: 30$	$01: 00$	
4: '2019 Estimated PM'	$16: 30$	$17: 30$	$01: 00$	
5: '2020 Existing Survey AM'	$08: 30$	$09: 30$	$01: 00$	
6: '2020 Existing Survey PM'	$16: 30$	$17: 30$	$01: 00$	

Traffic Flows, Desired
Scenario 1: '2023 AM' (FG1: '2023 Existing Survey AM', Plan 1: 'Sequence 1') Desired Flow :

	Destination						
		A	B	C	D	Tot.	
Origin	A	0	0	39	33	72	
	B	12	0	6	16	34	
	C	218	3	0	76	297	
	D	70	0	45	0	115	
	Tot.	300	3	90	125	518	

Scenario 2: '2023 PM' (FG2: '2023 Existing Survey PM', Plan 1: 'Sequence 1') Desired Flow :

	Destination						
		A	B	C	D	Tot.	
Origin	A	0	1	71	52	124	
	B	3	0	2	2	7	
	C	177	3	0	113	293	
	D	99	0	69	0	168	
	Tot.	279	4	142	167	592	

Scenario 3: '2020 AM' (FG5: '2020 Existing Survey AM', Plan 1: 'Sequence 1') Desired Flow :

	Destination					
Origin		A	B	C	D	Tot.
	A	0	2	65	26	93
	B	5	0	1	0	6
	C	165	3	0	56	224
	D	51	0	31	0	82
	Tot.	221	5	97	82	405

Scenario 4: '2020 PM' (FG6: '2020 Existing Survey PM', Plan 1: 'Sequence 1') Desired Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	1	59	48	108	
	B	1	0	0	1	2	
	C	212	2	0	100	314	
	D	85	1	40	0	126	
	Tot.	298	4	99	149	550	

Full Input Data And Results
Scenario 5: '2019 AM' (FG3: '2019 Estimated AM', Plan 1: 'Sequence 1') Desired Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	86	37	31	154	
	C	50	0	45	54	149	
	D	65	86	42	0	193	

Scenario 6: '2019 PM' (FG4: '2019 Estimated PM', Plan 1: 'Sequence 1') Desired Flow :

		Destination					
Origin		A	B	C	D	Tot.	
	A	0	70	66	48	184	
	B	74	0	73	73	220	
	C	165	72	0	105	342	
	D	92	69	64	0	225	
	Tot.	331	211	203	226	971	

Full Input Data And Results

Network Result

Scenario 1: '2023 AM' (FG1: '2023 Existing Survey AM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	45.9\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	45.9\%
1/1	Strand St Left Right Ahead	O	N/A	N/A	B		1	30	-	297	1880	648	45.9\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	90	2015	2015	4.5\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	13	-	115	1670	260	44.3\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	125	1965	1965	6.4\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	7	-	34	1749	155	21.9\%
6/1	New Street	U	N/A	N/A	-		-	-	-	3	1865	1865	0.2\%
7/1	The Green Ahead Right Left	O	N/A	N/A	A		1	30	-	72	2004	460	15.6\%
8/1	The Green	U	N/A	N/A	-		-	-	-	300	2005	2005	15.0\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	36	0	0	3.8	1.2	0.0	5.0	-	-	-	-
New Street and the Strand	-	-	36	0	0	3.8	1.2	0.0	5.0	-	-	-	-
1/1	297	297	3	0	0	1.9	0.4	0.0	2.3	28.1	5.8	0.4	6.2
2/1	90	90	-	-	-	0.0	0.0	-	0.0	0.9	0.0	0.0	0.0
3/1	115	115	-	-	-	1.1	0.4	-	1.5	46.8	2.6	0.4	3.0
4/1	125	125	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
5/1	34	34	-	-	-	0.4	0.1	-	0.5	52.9	0.8	0.1	0.9
6/1	3	3	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
$7 / 1$	72	72	33	0	0	0.4	0.1	0.0	0.5	27.0	1.2	0.1	1.3
8/1	300	300	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 96.2 \\ & 96.2 \end{aligned}$	 Total Delay for Signalled Lanes (pcuHr): 4.85 Total Delay Over All Lanes(pcuHr): 5.00			Cycle Time (s): 90				

Full Input Data And Results
Scenario 2: '2023 PM' (FG2: '2023 Existing Survey PM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	53.1\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	53.1\%
1/1	Strand St Left Right Ahead	0	N/A	N/A	B		1	26	-	293	1841	552	53.1\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	142	2015	2015	7.0\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	17	-	168	1672	334	50.2\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	167	1965	1965	8.5\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	7	-	7	1706	152	4.6\%
6/1	New Street	U	N/A	N/A	-		-	-	-	4	1865	1865	0.2\%
7/1	The Green Ahead Right Left	0	N/A	N/A	A		1	26	-	124	2011	352	35.2\%
8/1	The Green	U	N/A	N/A	-		-	-	-	279	2005	2005	13.9\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	54	0	1	4.5	1.5	0.1	6.1	-	-	-	-
New Street and the Strand	-	-	54	0	1	4.5	1.5	0.1	6.1	-	-	-	-
1/1	293	293	3	0	0	2.1	0.6	0.0	2.7	33.1	6.0	0.6	6.6
2/1	142	142	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
3/1	168	168	-	-	-	1.5	0.5	-	2.0	42.8	3.7	0.5	4.2
4/1	167	167	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
5/1	7	7	-	-	-	0.1	0.0	-	0.1	50.3	0.2	0.0	0.2
6/1	4	4	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
$7 / 1$	124	124	51	0	1	0.8	0.3	0.1	1.2	34.6	2.3	0.3	2.6
8/1	279	279	-	-	-	0.0	0.1	-	0.1	1.0	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 69.6 \\ & 69.6 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): 5.98 Total Delay Over All Lanes(pcuHr): 6.15			Cycle Time (s): 90				

Full Input Data And Results
Scenario 3: '2020 AM' (FG5: '2020 Existing Survey AM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	34.0\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	34.0\%
1/1	Strand St Left Right Ahead	0	N/A	N/A	B		1	31	-	224	1882	669	33.5\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	97	2015	2015	4.8\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	12	-	82	1668	241	34.0\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	82	1965	1965	4.2\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	7	-	6	1680	149	4.0\%
6/1	New Street	U	N/A	N/A	-		-	-	-	5	1865	1865	0.3\%
7/1	The Green Ahead Right Left	0	N/A	N/A	A		1	31	-	93	2042	584	15.9\%
8/1	The Green	U	N/A	N/A	-		-	-	-	221	2005	2005	11.0\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	29	0	0	2.7	0.7	0.0	3.4	-	-	-	-
New Street and the Strand	-	-	29	0	0	2.7	0.7	0.0	3.4	-	-	-	-
1/1	224	224	3	0	0	1.3	0.3	0.0	1.6	25.3	4.0	0.3	4.3
2/1	97	97	-	-	-	0.0	0.0	-	0.0	0.9	0.0	0.0	0.0
3/1	82	82	-	-	-	0.8	0.3	-	1.0	45.9	1.8	0.3	2.1
4/1	82	82	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
5/1	6	6	-	-	-	0.1	0.0	-	0.1	50.4	0.1	0.0	0.2
6/1	5	5	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
$7 / 1$	93	93	26	0	0	0.5	0.1	0.0	0.6	24.3	1.6	0.1	1.6
8/1	221	221	-	-	-	0.0	0.1	-	0.1	1.0	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 164.4 \\ & 164.4 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): 3.33 Total Delay Over All Lanes(pcuHr): 3.44			Cycle Time (s): 90				

Full Input Data And Results
Scenario 4: '2020 PM' (FG6: '2020 Existing Survey PM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	49.0\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	49.0\%
1/1	Strand St Left Right Ahead	0	N/A	N/A	B		1	30	-	314	1862	641	49.0\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	99	2015	2015	4.9\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	13	-	126	1664	259	48.7\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	149	1965	1965	7.6\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	7	-	2	1780	158	1.3\%
6/1	New Street	U	N/A	N/A	-		-	-	-	4	1865	1865	0.2\%
7/1	The Green Ahead Right Left	0	N/A	N/A	A		1	30	-	108	2005	439	24.6\%
8/1	The Green	U	N/A	N/A	-		-	-	-	298	2005	2005	14.9\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	49	0	1	3.9	1.3	0.1	5.2	-	-	-	-
New Street and the Strand	-	-	49	0	1	3.9	1.3	0.1	5.2	-	-	-	-
1/1	314	314	2	0	0	2.0	0.5	0.0	2.5	28.7	6.1	0.5	6.6
2/1	99	99	-	-	-	0.0	0.0	-	0.0	0.9	0.0	0.0	0.0
3/1	126	126	-	-	-	1.2	0.5	-	1.7	48.2	2.9	0.5	3.3
4/1	149	149	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
5/1	2	2	-	-	-	0.0	0.0	-	0.0	49.3	0.0	0.0	0.1
6/1	4	4	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
7/1	108	108	47	0	1	0.6	0.2	0.1	0.9	29.0	1.9	0.2	2.0
8/1	298	298	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 83.8 \\ & 83.8 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): 5.09 Total Delay Over All Lanes(pcuHr): 5.24			Cycle Time (s): 90				

Full Input Data And Results
Scenario 5: '2019 AM' (FG3: '2019 Estimated AM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	69.3\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	69.3\%
1/1	Strand St Left Right Ahead	O	N/A	N/A	B		1	25	-	362	1848	523	69.3\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	124	2015	2015	6.2\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	14	-	193	1777	296	65.2\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	155	1965	1965	7.9\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	11	-	149	1715	229	65.2\%
6/1	New Street	U	N/A	N/A	-		-	-	-	261	1865	1865	14.0\%
7/1	The Green Ahead Right Left	O	N/A	N/A	A		1	25	-	154	1963	386	39.9\%
8/1	The Green	U	N/A	N/A	-		-	-	-	318	2005	2005	15.9\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	119	0	1	7.4	3.5	0.1	10.9	-	-	-	-
New Street and the Strand	-	-	119	0	1	7.4	3.5	0.1	10.9	-	-	-	-
1/1	362	362	88	0	1	2.9	1.1	0.0	4.0	40.2	8.0	1.1	9.2
2/1	124	124	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
3/1	193	193	-	-	-	1.9	0.9	-	2.8	52.2	4.5	0.9	5.4
4/1	155	155	-	-	-	0.0	0.0	-	0.0	1.0	0.0	0.0	0.0
5/1	149	149	-	-	-	1.5	0.9	-	2.4	59.1	3.5	0.9	4.4
6/1	261	261	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
$7 / 1$	154	154	31	0	0	1.1	0.3	0.0	1.4	32.9	3.0	0.3	3.3
8/1	318	318	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 29.9 \\ & 29.9 \end{aligned}$	Total Delay for Signalled Lanes (pcuHr): 10.70 Total Delay Over All Lanes(pcuHr): 10.95			Cycle Time (s): 90				

Full Input Data And Results
Scenario 6: '2019 PM' (FG4: '2019 Estimated PM', Plan 1: 'Sequence 1')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	77.5\%
New Street and the Strand	-	-	N/A	-	-		-	-	-	-	-	-	77.5\%
1/1	Strand St Left Right Ahead	0	N/A	N/A	B		1	22	-	342	1822	466	73.5\%
2/1	Strand St	U	N/A	N/A	-		-	-	-	203	2015	2015	10.1\%
3/1	Marina Village Right Ahead Left	U	N/A	N/A	C		1	14	-	225	1743	290	77.5\%
4/1	Marina Village	U	N/A	N/A	-		-	-	-	226	1965	1965	11.5\%
5/1	New Street Left Ahead Right	U	N/A	N/A	D		1	14	-	220	1706	284	77.4\%
6/1	New Street	U	N/A	N/A	-		-	-	-	211	1865	1865	11.3\%
7/1	The Green Ahead Right Left	0	N/A	N/A	A		1	22	-	184	1981	247	74.5\%
8/1	The Green	U	N/A	N/A	-		-	-	-	331	2005	2005	16.5\%
Ped Link: P1	E	-	N/A	-	E		1	8	-	0	-	0	0.0\%
Ped Link: P2	F	-	N/A	-	F		1	7	-	0	-	0	0.0\%
Ped Link: P3	G	-	N/A	-	G		1	9	-	0	-	0	0.0\%
Ped Link: P4	H	-	N/A	-	H		1	9	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	119	0	1	8.8	6.3	0.1	15.2	-	-	-	-
New Street and the Strand	-	-	119	0	1	8.8	6.3	0.1	15.2	-	-	-	-
1/1	342	342	71	0	1	2.9	1.4	0.0	4.3	45.3	7.8	1.4	9.1
2/1	203	203	-	-	-	0.0	0.1	-	0.1	1.0	0.0	0.1	0.1
3/1	225	225	-	-	-	2.2	1.6	-	3.9	62.1	5.4	1.6	7.0
4/1	226	226	-	-	-	0.0	0.1	-	0.1	1.0	0.0	0.1	0.1
5/1	220	220	-	-	-	2.2	1.6	-	3.8	62.5	5.3	1.6	6.9
6/1	211	211	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
$7 / 1$	184	184	47	0	1	1.4	1.4	0.1	2.9	56.5	3.8	1.4	5.2
8/1	331	331	-	-	-	0.0	0.1	-	0.1	1.1	0.0	0.1	0.1
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): PRC Over All Lanes (\%):		$\begin{aligned} & 16.2 \\ & 16.2 \end{aligned}$	$\begin{aligned} \text { Total Delay for Signalled Lanes (pcuHr): } & 14.89 \\ \text { Total Delay Over All Lanes(pcuHr): } & 15.17\end{aligned}$			Cycle Time (s): 90				

Appendix C Junction 2 - Old Street and the Strand Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
For sales and distisibuion information. proparam adicice and manitenance, contact TRL:	
The users of this computer program for the solution of	of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 2 - Strand Street.Old Street.Gasyard Lane.j9
Path: \lw2k19-dl-fs01\users\CAD\DWGSI222\101-150\222126\3.0 Calculations\1. Civils\222126-PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: 27/01/2023 11:24:57

```
"2023 Survey Year, AM
"2023 Survey Year, PM
"2020 Survey Year, AM
"2020 Survey Year, PM
```

Summary of junction performance

	AM				PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
	2023 Survey Year							
Stream B-ACD	0.2	8.83	0.20	A	0.6	12.00	0.37	B
Stream A-BCD	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream D-ABC	1.3	17.51	0.56	C	0.6	12.58	0.36	B
Stream C-ABD	0.2	6.73	0.13	A	0.4	7.67	0.26	A
	2020 Survey Year							
Stream B-ACD	0.3	9.70	0.26	A	0.5	11.32	0.35	B
Stream A-BCD	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream D-ABC	0.4	10.86	0.29	B	0.9	14.93	0.47	B
Stream C-ABD	0.2	7.30	0.18	A	0.3	7.32	0.21	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
File summary

File Description
Title Location Site number Date $23 / 01 / 2023$ Version Status (new file) Identifier Client Jobnumber Enumerator MPPNET\RLee Description

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D2	2023 Survey Year	PM	ONE HOUR	$16: 45$	$18: 15$	15
D3	2020 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D4	2020 Survey Year	PM	ONE HOUR	$16: 45$	$18: 15$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Strand Street/Old Street/Gasyard Lan	Crossroads	Two-way		12.18	B

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	Gasyard Lane		Major
B	Strand Street		Minor
C	Old Street		Major
D	Strand Street		Minor

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue (PCU)
A - Gasyard Lane	6.00			80.0	\checkmark	0.00
C - Old Street	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Strand Street	One lane	4.00	25	15
D - Strand Street	One lane	3.00	20	12

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for A-D	Slope for B-A	Slope for B-C	Slope for B-D	Slope for C-A	Slope for C-B	Slope for C-D	Slope for D-A	Slope for D-B	Slope for D-C
$\mathbf{1}$	A-D	620	-	-	-	-	-	-	0.240	0.343	0.240	-	-	-
$\mathbf{1}$	B-A	542	0.099	0.250	0.250	-	-	-	0.157	0.357	-	0.250	0.250	0.125
$\mathbf{1}$	B-C	697	0.107	0.270	-	-	-	-	-	-	-	-	-	-
$\mathbf{1}$	B-D, nearside lane	542	0.099	0.250	0.250	-	-	-	0.157	0.357	0.157	-	-	-
$\mathbf{1}$	B-D, offside lane	542	0.099	0.250	0.250	-	-	-	0.157	0.357	0.157	-	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	0.318	-	-	-	-	-	-	-	-	-
$\mathbf{1}$	D-A	631	-	-	-	-	-	-	0.245	-	0.097	-	-	-
$\mathbf{1}$	D-B, nearside lane	490	0.142	0.142	0.322	-	-	-	0.226	0.226	0.089	-	-	-

$\mathbf{1}$	D-B, offside lane	490	0.142	0.142	0.322	-	-	-	0.226	0.226	0.089	-	-	-
$\mathbf{1}$	D-C	490	-	0.142	0.322	0.113	0.226	0.226	0.226	0.226	0.089	-	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Gasyard Lane		\checkmark	4	100.000
B - Strand Street		\checkmark	90	100.000
C - Old Street		\checkmark	119	100.000
D - Strand Street		\checkmark	239	100.000

Origin-Destination Data

Demand (PCU/hr)

	To				
From		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	2	0	2
	B - Strand Street	1	0	0	89
	C - Old Street	0	65	0	54
	D - Strand Street	0	239	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To					
From		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street	
	A - Gasyard Lane	0	0	0	0	
	B - Strand Street	0	0	0	0	
	C - Old Street	0	0	0	0	
	D - Strand Street	0	0	0	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.20	8.83	0.2	A
A-BCD	0.00	0.00	0.0	A
A-B				
A-C				
D-ABC	0.56	17.51	1.3	C
C-ABD	0.13	6.73	0.2	A
C-D				
C-A				

Main Results for each time segment

08:15-08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	68	518	0.131	67	0.1	7.972	A
A-BCD	0	594	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	180	475	0.379	178	0.6	11.997	B
C-ABD	52	602	0.087	52	0.1	6.546	A
C-D	37			37			
C-A	0			0			

08:30-08:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	81	513	0.158	81	0.2	8.321	A
A-BCD	0	588	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	215	472	0.455	214	0.8	13.881	B
C-ABD	64	607	0.105	63	0.1	6.622	A
C-D	43			43			
C-A	0		0				

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity $(\mathbf{P C U} / \mathrm{hr})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	99	507	0.196	99	0.2	8.823	A
A-BCD	0	581	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	263	468	0.562	261	1.2	17.244	C
C-ABD	79	614	0.129	79	0.2	6.725	A
C-D	52			52			
C-A	0			0			

09:00-09:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-ACD	99	507	0.196	99	0.2	8.833	
A-BCD	0	581	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	263	468	0.562	263	1.3	17.505	C
C-ABD	79	615	0.129	79	0.2	6.727	A
C-D	52			52			
C-A	0		0				

09:15-09:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	81	513	0.158	81	0.2	8.336	A
A-BCD	0	588	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	215	472	0.455	216	0.9	14.154	B
C-ABD	64	607	0.105	64	0.1	6.629	A
C-D	43			43			

09:30-09:45

Stream	Total Demand $\mathbf{(P C U / h r)}$	Capacity $\mathbf{(P C U / h r)}$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	68	518	0.131	68	0.2	8.003	A
A-BCD	0	594	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	180	475	0.379	181	0.6	12.271	B
C-ABD	53	602	0.087	53	0.1	6.560	A
C-D	37			37			
C-A	0		0				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Strand Street/Old Street/Gasyard Lan	Crossroads	Two-way		9.42	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 45$	$18: 15$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Gasyard Lane		\checkmark	0	100.000
B - Strand Street		\checkmark	160	100.000
C - Old Street		\checkmark	215	100.000
D - Strand Street		\checkmark	148	100.000

Origin-Destination Data

Demand (PCU/hr)

	To				
From		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	0
	B - Strand Street	1	0	0	159
	C - Old Street	0	130	0	85
	D - Strand Street	0	148	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	0

From	B - Strand Street	0	0	0	0
	C - Old Street	0	0	0	0
	D - Strand Street	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.37	12.00	0.6	B
A-BCD	0.00	0.00	0.0	A
A-B				
A-C				
D-ABC	0.36	12.58	0.6	B
C-ABD	0.26	7.67	0.4	A
C-D				
C-A				

Main Results for each time segment

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-ACD	120	497	0.242	119	0.3	9.489	A
A-BCD	0	571	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	111	462	0.241	110	0.3	10.191	B
C-ABD	109	618	0.177	108	0.2	7.058	A
C-D	53			53			
C-A	0		0				

17:00-17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	144	488	0.295	143	0.4	10.428	B
A-BCD	0	561	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	133	457	0.291	133	0.4	11.104	B
C-ABD	133	626	0.213	133	0.3	7.300	A
C-D	60			60			
C-A	0		0				

17:15-17:30

Stream	Total Demand (PCU/hr)	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	176	476	0.370	176	0.6	11.949	B
A-BCD	0	548	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	163	449	0.363	162	0.6	12.524	B
C-ABD	168	638	0.263	168	0.4	7.654	A
C-D	69			69			
C-A	0		0				

17:30-17:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	176	476	0.370	176	0.6	12.004	B
A-BCD	0	548	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	163	449	0.363	163	0.6	12.580	B
C-ABD	168	638	0.263	168	0.4	7.665	A
C-D	69			69			
C-A	0		0				

17:45-18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	144	488	0.295	144	0.4	10.497	B
A-BCD	0	561	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	133	457	0.291	134	0.4	11.169	B
C-ABD	133	626	0.213	134	0.3	7.318	A
C-D	60			60			
C-A	0		0				

18:00-18:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-ACD	120	497	0.242	121	0.3	9.582	A
A-BCD	0	571	0.000	0	0.0	0.000	A
A-B	0		0				
A-C	0			0			
D-ABC	111	462	0.241	112	0.3	10.292	B
C-ABD	109	618	0.177	110	0.2	7.090	A
C-D	53			53			
C-A	0		0				

2020 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Strand Street/Old Street/Gasyard Lan	Crossroads	Two-way		8.55	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2020 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Gasyard Lane		\checkmark	2	100.000
B - Strand Street		\checkmark	116	100.000
C - Old Street		\checkmark	133	100.000
D - Strand Street		\checkmark	120	100.000

Origin-Destination Data

Demand (PCU/hr)

	To				
From		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	2
	B - Strand Street	0	0	0	116
	C - Old Street	2	93	0	38
	D - Strand Street	1	119	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	0

From	B - Strand Street	0	0	0	0
	C - Old Street	0	0	0	0
	D - Strand Street	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.26	9.70	0.3	A
A-BCD	0.00	0.00	0.0	A
A-B				
A-C				
D-ABC	0.29	10.86	0.4	B
C-ABD	0.18	7.30	0.2	A
C-D				
C-A				

Main Results for each time segment

08:15-08:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $(\mathbf{P C U})$	Delay (s)	Unsignalised level of service
B-ACD	87	513	0.170	87	0.2	8.430	A
A-BCD	0	589	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	90	472	0.191	89	0.2	9.380	A
C-ABD	74	594	0.124	73	0.1	6.899	A
C-D	25			25			
C-A	1		1				

08:30-08:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $(\mathbf{P C U})$	Delay (s)	Unsignalised level of service
B-ACD	104	507	0.206	104	0.3	8.935	A
A-BCD	0	583	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	108	469	0.230	108	0.3	9.966	A
C-ABD	89	598	0.149	89	0.2	7.062	A
C-D	29			29			
C-A	2		2				

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	128	499	0.256	127	0.3	9.685	A
A-BCD	0	574	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	132	464	0.285	132	0.4	10.836	B
C-ABD	111	604	0.183	110	0.2	7.291	A
C-D	34			34			
C-A	2		2				

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	128	499	0.256	128	0.3	9.704	A
A-BCD	0	574	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	132	463	0.285	132	0.4	10.863	B
C-ABD	111	604	0.183	111	0.2	7.295	A
C-D	34			34			
C-A	2		2				

09:15-09:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	104	507	0.206	105	0.3	8.962	A
A-BCD	0	583	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	108	468	0.230	108	0.3	10.005	B
C-ABD	89	599	0.149	89	0.2	7.074	A
C-D	29			29			
C-A	2		2				

09:30-09:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue $(\mathbf{P C U})$	Delay (s)	Unsignalised level of service
B-ACD	87	512	0.170	88	0.2	8.477	A
A-BCD	0	589	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	90	472	0.191	91	0.2	9.443	A
C-ABD	74	595	0.124	74	0.2	6.920	A
C-D	25			25			
C-A	1		1				

2020 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Strand Street/Old Street/Gasyard Lan	Crossroads	Two-way		10.52	B

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2020 Survey Year	PM	ONE HOUR	$16: 45$	$18: 15$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Gasyard Lane		\checkmark	0	100.000
B - Strand Street		\checkmark	155	100.000
C - Old Street		\checkmark	177	100.000
D - Strand Street		\checkmark	195	100.000

Origin-Destination Data

Demand (PCU/hr)

	To				
From		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	0
	B - Strand Street	1	0	1	153
	C - Old Street	5	107	0	65
	D - Strand Street	0	195	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To				
		A - Gasyard Lane	B - Strand Street	C - Old Street	D - Strand Street
	A - Gasyard Lane	0	0	0	0

From	B - Strand Street	0	0	0	0
	C - Old Street	0	0	0	0
	D - Strand Street	0	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-ACD	0.35	11.32	0.5	B
A-BCD	0.00	0.00	0.0	A
A-B				
A-C				
D-ABC	0.47	14.93	0.9	B
C-ABD	0.21	7.32	0.3	A
C-D				
C-A				

Main Results for each time segment

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	117	506	0.231	116	0.3	9.189	A
A-BCD	0	580	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	147	467	0.315	145	0.5	11.132	B
C-ABD	88	610	0.145	87	0.2	6.883	A
C-D	42			42			
C-A	3		3				

17:00-17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	139	499	0.279	139	0.4	9.998	A
A-BCD	0	572	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	175	462	0.380	175	0.6	12.507	B
C-ABD	107	617	0.174	107	0.2	7.059	A
C-D	48			48			
C-A	4		4				

17:15-17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	171	489	0.349	170	0.5	11.278	B
A-BCD	0	561	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	215	456	0.471	214	0.9	14.807	B
C-ABD	134	627	0.215	134	0.3	7.312	A
C-D	56			56			
C-A	4		4				

17:30-17:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-ACD	171	489	0.349	171	0.5	11.321	B
A-BCD	0	561	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	215	456	0.471	215	0.9	14.933	B
C-ABD	134	627	0.215	134	0.3	7.321	A
C-D	56			56			
C-A	4		4				

17:45-18:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	139	499	0.280	140	0.4	10.055	B
A-BCD	0	572	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	175	462	0.380	176	0.6	12.653	B
C-ABD	107	617	0.174	108	0.2	7.072	A
C-D	48			48			
C-A	4		4				

18:00-18:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-ACD	117	506	0.231	117	0.3	9.270	A
A-BCD	0	580	0.000	0	0.0	0.000	A
A-B	0			0			
A-C	0			0			
D-ABC	147	466	0.315	147	0.5	11.310	B
C-ABD	88	610	0.145	88	0.2	6.906	A
C-D	42			42			
C-A	3			3			

Appendix D Junction 3-Townyard Lane and the Strand Junctions 9 Analysis

Filename: Junction 3 - Townyard Lane.The Green.j9
Path: \lw2k19-dl-fs01lusers\CADIDWGS\222\101-150\222126\3.0 Calculations\1. Civils\222126-PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: 27/01/2023 11:23:26

```
»2023 Survey Year, AM
»2023 Survey Year, PM
```


Summary of junction performance

| | AM | | | | PM | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Queue (PCU) | Delay (s) | RFC | LOS | Queue (PCU) | Delay (s) | RFC | LOS |
| | 2023 Survey Year | | | | | | | |
| Stream B-AC | 0.7 | 11.84 | 0.40 | B | 0.9 | 14.02 | 0.47 | B |
| Stream C-AB | 0.0 | 0.00 | 0.00 | A | 0.0 | 0.00 | 0.00 | A |

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$10: 15$	$11: 45$	15
D2	2023 Survey Year	PM	ONE HOUR	$16: 30$	$18: 00$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Townyard Lane/The Green	T-Junction	Two-way		5.07	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	The Green		Major
B	Townyard Lane		Minor
C	The Green		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue $($ PCU $)$
C - The Green	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Townyard Lane	One lane	3.20	40	20

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	510	0.093	0.235	0.148	0.336
$\mathbf{1}$	B-C	649	0.100	0.252	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

| | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$10: 15$	$11: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - The Green		\checkmark	246	100.000
B - Townyard Lane		\checkmark	184	100.000
C - The Green		\checkmark	0	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - The Green	B - Townyard Lane	C - The Green
	A - The Green	0	0	246
	B - Townyard Lane	90	0	94
	C - The Green	0	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - The Green	B - Townyard Lane	C - The Green
	A - The Green	0	0	0
	B - Townyard Lane	0	0	0
	C - The Green	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.40	11.84	0.7	B
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

10:15-10:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	139	528	0.263	137	0.4	9.187	A
C-AB	0	533	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	185		185				

10:30-10:45

| Stream | Total Demand | Capacity | RFC | Throughput | End queue | Delay (s) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | Unsignalised

	(PCU/hr)	(PCU/hr)		(PCU/hr)	(PCU)		level of service
B-AC	165	519	0.319	165	0.5	10.161	B
C-AB	0	525	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0			0			
A-C	221			221			

10:45-11:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	$\mathbf{R F C}$	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	203	507	0.400	202	0.7	11.781	B
C-AB	0	514	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	271			271			

11:00-11:15

Stream	Total Demand (PCU/hr)	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	203	507	0.400	203	0.7	11.839	B
C-AB	0	514	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	271			271			

11:15-11:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	165	519	0.319	166	0.5	10.229	B
C-AB	0	525	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0			0			
A-C	221			221			

11:30-11:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	139	528	0.263	139	0.4	9.276	
C-AB	0	533	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	185		185				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Townyard Lane/The Green	T-Junction	Two-way		5.99	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 30$	$18: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - The Green		\checkmark	278	100.000
B - Townyard Lane		\checkmark	207	100.000
C - The Green		\checkmark	1	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - The Green	B - Townyard Lane	C - The Green
	A - The Green	0	0	278
	B - Townyard Lane	123	0	84
	C - The Green	1	0	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - The Green	B - Townyard Lane	C - The Green
	A - The Green	0	0	0
	B - Townyard Lane	0	0	0
	C - The Green	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.47	14.02	0.9	B
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:30-16:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	156	508	0.307	154	0.4	10.124	B
C-AB	0	527	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	209			209			

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathrm{hr})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	186	498	0.374	185	0.6	11.492	B
C-AB	0	518	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0			0			
A-C	250		250				

17:00-17:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	228	484	0.470	227	0.9	13.910	
C-AB	0	506	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	306			306			

17:15-17:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	228	484	0.470	228	0.9	14.025	B
C-AB	0	506	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0			0			
A-C	306			306			

17:30-17:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	186	498	0.374	187	0.6	11.617	
C-AB	0	518	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0			0			
A-C	250		250				

17:45-18:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	156	508	0.307	156	0.4	10.259	B
C-AB	0	527	0.000	0	0.0	0.000	A
C-A	0			0			
A-B	0		0				
A-C	209			209			

Public Realm Improvements for a Pedestrianised New Street

Appendix E Junction 4-New Street and the R106-Linsig Analysis

Full Input Data And Results
Full Input Data And Results

User and Project Details

Project:	Public Realm at New Street, Malahide, Co. Dublin
Title:	Public Realm at New Street, Malahide, Co. Dublin
Location:	
Client:	Fingal County Council
Date Started:	January 2023
Checked By:	D Lehane
Additional detail:	
File name:	222126 New Street - Jn 4_JPM 2023-01-27.Isg3x
Author:	JP Murray
Company:	PUNCH Consulting Engineers
Address:	Carnegie House, Library Road, Dun Laoghaire, Co Dublin, A96 C7W7, Ireland

Network Layout Diagram

Full Input Data And Results
Phase Diagram

Full Input Data And Results
Phase Input Data

Phase Name	Phase Type	Assoc. Phase	Street Min	Cont Min
A	Traffic		7	7
B	Traffic		7	7
C	Traffic		7	7
D	Traffic		7	7
E	Traffic		7	7
F	Traffic		7	7
G	Pedestrian		7	7
H	Pedestrian		7	7
I	Pedestrian		7	7
J	Pedestrian		7	7

Phase Intergreens Matrix

	Starting Phase										
Terminating Phase		A	B	C	D	E	F	G	H	1	J
	A		-	-	-	5	6	5	7	8	-
	B	-		-	-	6	5	8	-	5	7
	C	-	-		-	5	5	5	-	-	8
	D	-	-	-		5	5	-	7	5	
	E	6	5	5	6		6	7	8	8	5
	F	5	5	6	5	6		8	5	7	
	G	12	12	12	-	12	12		-	-	
	H	12	-	-	12	12	12	-		-	-
	1	12	12	-	12	12	12	-	-		-
	J	-	11	11	-	11	11	-	-	-	

Phases in Stage

Stage No.	Phases in Stage
1	A B C D
2	B D
3	A C
4	F
5	E
6	G H I J

Stage Diagram

Full Input Data And Results
Phase Delays

Term. Stage	Start Stage	Phase	Type	Value	Cont value
There are no Phase Delays defined					

Prohibited Stage Change

	To Stage						
		1	2	3	4	5	6
	1		0	0	6	6	8
	2	2		2	5	6	8
From	3	2	2		6	5	8
	4	6	5	6		6	8
	5	6	6	6	6		8
	6	12	12	12	12	12	

Full Input Data And Results

Give-Way Lane Input Data

Junction: New Street / R106											
Lane	Movement	Max Flow when Giving Way (PCU/Hr)	Min Flow when Giving Way (PCU/Hr)	Opposing Lane	Opp. Lane Coeff.	Opp. Mvmnts.	Right Turn Storage (PCU)	Non-Blocking Storage (PCU)	RTF	Right Turn Move up (s)	Max Turns in Intergreen (PCU)
$\begin{gathered} 1 / 2 \\ \text { (R106 West (eastbound)) } \end{gathered}$	6/1 (Right)	1439	0	3/1	1.09	All	2.00	-	0.50	2	2.00
$\begin{gathered} 3 / 2 \\ \text { (R106 East (westbound)) } \end{gathered}$	2/1 (Right)	1439	0	1/1	1.09	All	2.00	-	0.50	2	2.00

Full Input Data And Results

Lane Input Data

Junction: New Street / R106												
Lane	Lane Type	Phases	Start Disp.	End Disp.	Physical Length (PCU)	Sat Flow Type	Def User Saturation Flow (PCU/Hr)	Lane Width (m)	Gradient	Nearside Lane	Turns	Turning Radius (m)
1/1 (R106 West (eastbound))	U	A	2	3	60.0	Geom	-	2.65	0.00	Y	$\text { Arm } 2$ Left	10.68
											Arm 7 Ahead	Inf
$\begin{gathered} 1 / 2 \\ \text { (R106 West } \\ \text { (eastbound)) } \end{gathered}$	0	C	2	3	9.6	Geom	-	2.74	0.00	N	Arm 6 Right	18.47
$\begin{gathered} 2 / 1 \\ \text { (New Street) } \end{gathered}$	U		2	3	60.0	Inf	-	-	-	-	-	-
3/1 (R106 East (westbound))	U	B	2	3	3.6	Geom	-	2.60	0.00	Y	Arm 5 Ahead Arm 6 Left	$\begin{gathered} \text { Inf } \\ 10.65 \end{gathered}$
$\begin{gathered} 3 / 2 \\ \text { (R106 East } \\ \text { (westbound)) } \end{gathered}$	0	D	2	3	3.5	Geom	-	2.60	0.00	N	Arm 2 Right	13.49
4/1(Church Road(northbound))	U	E	2	3	60.0	Geom	-	2.40	0.00	Y	Arm 2 Ahead	Inf
											Arm 5 Left	17.37
											Arm 7 Right	17.13
5/1 (R106 West (westbound))	U		2	3	60.0	Inf	-	-	-	-	-	-
6/1 (Church Road (southbound))	U		2	3	60.0	Inf	-	-	-	-	-	-
$\begin{gathered} 7 / 1 \\ \text { (R106 East } \\ \text { (eastbound)) } \end{gathered}$	U		2	3	60.0	Inf	-	-	-	-	-	-
8/1 (New Street (southbound/not used))	U	F	2	3	60.0	Geom	-	3.50	0.00	Y	Arm 5 Right	15.97
											Arm 6 Ahead	Inf
											Arm 7 Left	13.49

Traffic Flow Groups

Flow Group	Start Time	End Time	Duration	Formula
1: '2023 Survey Year AM'	$08: 30$	$09: 30$	$01: 00$	
2: '2023 Survey Year PM'	$15: 45$	$16: 45$	$01: 00$	
3: '2019 Survey Year AM'	$08: 30$	$09: 30$	$01: 00$	
4: '2019 Survey Year PM'	$18: 00$	$19: 00$	$01: 00$	
5: '2020 Survey Year AM'	$08: 30$	$09: 30$	$01: 00$	
6: '2020 Survey Year PM'	$15: 45$	$16: 45$	$01: 00$	

Traffic Flows, Desired
Scenario 1: '2023 Existing Survey AM' (FG1: '2023 Survey Year AM', Plan 2: 'Network Control Plan 2 (2023)') Desired Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	7	261	138	406	
	B	0	0	0	0	0	
	C	389	7	0	124	520	
	D	162	27	93	0	282	
	Tot.	551	41	354	262	1208	

Scenario 2: '2023 Existing Survey PM' (FG2: '2023 Survey Year PM', Plan 2: 'Network Control Plan 2 (2023)') Desired Flow :

	Destination					
Origin		A	B	C	D	Tot.
	A	0	0	280	107	387
	B	0	0	0	0	0
	C	353	0	0	84	437
	D	172	0	78	0	250
	Tot.	525	0	358	191	1074

Scenario 3: '2020 Existing Survey AM' (FG5: '2020 Survey Year AM', Plan 2: 'Network Control Plan 2 (2023)') Desired Flow :

	Destination					
Origin		A	B	C	D	Tot.
	A	0	1	316	50	367
	B	0	0	0	0	0
	C	382	0	0	63	445
	D	117	0	58	0	175
	Tot.	499	1	374	113	987

Scenario 4: '2020 Existing Survey PM' (FG6: '2020 Survey Year PM', Plan 2: 'Network Control Plan 2 (2023)') Desired Flow :

	Destination					
Origin		A	B	C	D	Tot.
	A	0	2	338	58	398
	B	0	0	1	1	2
	C	382	0	0	82	464
	D	106	0	101	0	207
	Tot.	488	2	440	141	1071

Full Input Data And Results
Scenario 5: '2019 Existing Survey AM' (FG3: '2019 Survey Year AM', Plan 1: 'Network Control Plan 1 (2019)') Desired Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	28	287	110	425	
	B	97	0	15	150	262	
	C	338	15	0	75	428	
	D	86	75	104	0	265	
	Tot.	521	118	406	335	1380	

Scenario 6: '2019 Existing Survey PM' (FG4: '2019 Survey Year PM', Plan 1: 'Network Control Plan 1 (2019)') Desired Flow :

	Destination						
Origin		A	B	C	D	Tot.	
	A	0	77	261	78	416	
	C	21	0	43	85	209	
	D	89	70	66	0	225	
	Tot.	447	217	370	207	1241	

Full Input Data And Results

Network Results

Scenario 1: '2023 Existing Survey AM' (FG1: '2023 Survey Year AM', Plan 2: 'Network Control Plan 2 (2023)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	79.6\%
$\begin{aligned} & \text { New Street } / \\ & \text { R106 } \end{aligned}$	-	-	N/A	-	-		-	-	-	-	-	-	79.6\%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	38	-	406	1873:1877	707+311	$\begin{aligned} & 37.9: \\ & 44.4 \% \end{aligned}$
2/1	New Street	U	N/A	N/A	-		-	-	-	41	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	O+U	N/A	N/A	D B		1	31	-	520	1813:1813	9+645	$\begin{gathered} 79.6: \\ 79.6 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	18	-	282	1720	363	77.7\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	551	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	262	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	354	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		0	0	-	0	1965	0	0.0\%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Full Input Data And Results
Scenario 2: '2023 Existing Survey PM' (FG2: '2023 Survey Year PM', Plan 2: 'Network Control Plan 2 (2023)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	73.2\%
New Street / R106	-	-	N/A	-	-		-	-	-	-	-	-	73.2\%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	39	-	387	1880:1877	754+288	$\begin{gathered} 37.1: \\ 37.1 \% \end{gathered}$
2/1	New Street	U	N/A	N/A	-		-	-	-	0	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	$\mathrm{O}+\mathrm{U}$	N/A	N/A	D B		1	32	-	437	2015:1826	0+670	$\begin{gathered} 0.0: \\ 65.3 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	17	-	250	1707	341	73.2\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	525	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	191	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	358	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		0	0	-	0	1965	0	0.0\%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Item	Arriving (pcu)	Leaving (pcu)	Turners In Gaps (pcu)	Turners When Unopposed (pcu)	Turners In Intergreen (pcu)	Uniform Delay (pcuHr)	Rand + Oversat Delay (pcuHr)	Storage Area Uniform Delay (pcuHr)	Total Delay (pcuHr)	Av. Delay Per PCU (s/pcu)	Max. Back of Uniform Queue (pcu)	Rand + Oversat Queue (pcu)	Mean Max Queue (pcu)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	96	6	5	6.8	2.6	0.4	9.8	-	-	-	-
New Street / R106	-	-	96	6	5	6.8	2.6	0.4	9.8	-	-	-	-
1/1+1/2	387	387	96	6	5	1.6	0.3	0.4	2.3	21.2	4.4	0.3	4.7
2/1	0	0	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
$3 / 2+3 / 1$	437	437	0	0	0	2.9	0.9	0.0	3.8	31.4	9.0	0.9	9.9
4/1	250	250	-	-	-	2.3	1.3	-	3.7	52.9	5.8	1.3	7.2
5/1	525	525	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
6/1	191	191	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
7/1	358	358	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
8/1	0	0	-	-	-	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0
Ped Link: P1	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P2	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P3	0	0	-	-	-	-	-	-	-	-	-	-	-
Ped Link: P4	0	0	-	-	-	-	-	-	-	-	-	-	-
C1			PRC for Signalled Lanes (\%): 22.9 PRC Over All Lanes (\%): 22.9		Total Delay for Signalled Lanes (pcuHr): Total Delay Over All Lanes(pcuHr):				Cycle Time (s): 90				

Full Input Data And Results

Scenario 3: '2020 Existing Survey AM' (FG5: '2020 Survey Year AM', Plan 2: 'Network Control Plan 2 (2023)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	115.3\%
New Street / R106	-	-	N/A	-	-		-	-	-	-	-	-	115.3\%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	42	-	367	1879:1877	883+139	$\begin{aligned} & 35.9: \\ & 35.9 \% \end{aligned}$
2/1	New Street	U	N/A	N/A	-		-	-	-	1	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	O+U	N/A	N/A	D B		1	42	-	445	2015:1838	0+878	$\begin{gathered} 0.0: \\ 50.7 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	7	-	175	1707	152	115.3\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	499	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	113	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	374	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		0	0	-	0	1965	0	0.0\%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Full Input Data And Results

Scenario 4: '2020 Existing Survey PM' (FG6: '2020 Survey Year PM', Plan 2: 'Network Control Plan 2 (2023)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	Inf \%
New Street / R106	-	-	N/A	-	-		-	-	-	-	-	-	Inf \%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	42	-	398	1878:1877	$880+150$	$\begin{aligned} & 38.7: \\ & 38.7 \% \end{aligned}$
2/1	New Street	U	N/A	N/A	-		-	-	-	2	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	O+U	N/A	N/A	D B		1	42	-	464	2015:1829	0+874	$\begin{gathered} 0.0: \\ 53.1 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	7	-	207	1707	152	136.4\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	488	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	141	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	440	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		0	0	-	2	1862	0	Inf \%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Full Input Data And Results
Scenario 5: '2019 Existing Survey AM' (FG3: '2019 Survey Year AM', Plan 1: 'Network Control Plan 1 (2019)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	170.7\%
New Street / R106	-	-	N/A	-	-		-	-	-	-	-	-	170.7\%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	28	-	425	1857:1877	618+216	$\begin{aligned} & 51.0: \\ & 51.0 \% \end{aligned}$
2/1	New Street	U	N/A	N/A	-		-	-	-	118	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	O+U	N/A	N/A	D B		1	28	-	428	1813:1828	21+583	$\begin{gathered} 70.8: \\ 70.8 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	7	-	265	1746	155	170.7\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	521	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	335	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	406	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		1	7	-	262	1887	168	156.2\%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Full Input Data And Results
Scenario 6: '2019 Existing Survey PM' (FG4: '2019 Survey Year PM', Plan 1: 'Network Control Plan 1 (2019)')

Item	Lane Description	Lane Type	Controller Stream	Position In Filtered Route	Full Phase	Arrow Phase	Num Greens	Total Green (s)	Arrow Green (s)	Demand Flow (pcu)	Sat Flow (pcu/Hr)	Capacity (pcu)	Deg Sat (\%)
Network: Public Realm at New Street, Malahide, Co. Dublin	-	-	N/A	-	-		-	-	-	-	-	-	144.6\%
New Street / R106	-	-	N/A	-	-		-	-	-	-	-	-	144.6\%
1/1+1/2	R106 West (eastbound) Left Right Ahead	U+O	N/A	N/A	A C		2	28	-	416	1822:1877	603+139	$\begin{gathered} 56.1: \\ 56.1 \% \end{gathered}$
2/1	New Street	U	N/A	N/A	-		-	-	-	217	Inf	Inf	0.0\%
$3 / 2+3 / 1$	R106 East (westbound) Right Ahead Left	O+U	N/A	N/A	D B		1	28	-	391	1813:1839	$113+520$	$\begin{gathered} \text { 61.8: } \\ 61.8 \% \end{gathered}$
4/1	Church Road (northbound) Ahead Left Right	U	N/A	N/A	E		1	7	-	225	1750	156	144.6\%
5/1	R106 West (westbound)	U	N/A	N/A	-		-	-	-	447	Inf	Inf	0.0\%
6/1	Church Road (southbound)	U	N/A	N/A	-		-	-	-	207	Inf	Inf	0.0\%
7/1	R106 East (eastbound)	U	N/A	N/A	-		-	-	-	370	Inf	Inf	0.0\%
8/1	New Street (southbound/not used) Right Ahead Left	U	N/A	N/A	F		1	7	-	209	1855	165	126.8\%
Ped Link: P1	Unnamed Ped Link	-	N/A	-	H		1	7	-	0	-	0	0.0\%
Ped Link: P2	Unnamed Ped Link	-	N/A	-	1		1	7	-	0	-	0	0.0\%
Ped Link: P3	Unnamed Ped Link	-	N/A	-	J		1	10	-	0	-	0	0.0\%
Ped Link: P4	Unnamed Ped Link	-	N/A	-	G		1	8	-	0	-	0	0.0\%

Full Input Data And Results

Appendix F Junction 5 - Townyard Lane and the R106 Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
- Veorision:9.5.0.6986 2018	
For sales and distisibuion information. program advice and manitenance, contact TRL:	
The users of this computer program for the solution of	n of an engineering problem are in no way relieved of their responsibility for the correctness of the solutio

Filename: Junction 5 - Townyard Lane.R106.j9
Path: \lw2k19-dl-fs01\users\CAD\DWGSI222\101-150\222126\3.0 Calculations\1. Civils\222126-
PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: $3 \overline{1} / 01 / 2023$ 11:09:36

```
"2023 Survey Year, AM
"2023 Survey Year, PM
"2020 Survey Year, AM
"2020 Survey Year, PM
"2019 Estimated, AM
"2019 Estimated, PM
```


Summary of junction performance

	AM				PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
	2023 Survey Year							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.9	5.66	0.32	A	0.8	5.88	0.30	A
	2020 Survey Year							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.7	5.53	0.26	A	1.0	6.14	0.36	A
	2019 Estimated							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.6	5.10	0.23	A	0.1	4.78	0.07	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units

\qquad kph PCU

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 30$	$10: 00$	15
D2	2023 Survey Year	PM	ONE HOUR	$12: 45$	$14: 15$	15
D3	2020 Survey Year	AM	ONE HOUR	$08: 30$	$10: 00$	15
D4	2020 Survey Year	PM	ONE HOUR	$12: 45$	$14: 15$	15
D5	2019 Estimated	AM	ONE HOUR	$08: 30$	$10: 00$	15
D6	2019 Estimated	PM	ONE HOUR	$12: 45$	$14: 15$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		1.34	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	R106		Major
B	Townyard Lane		Minor
C	R106		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue (PCU)
C-R106	6.00			100.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Townyard Lane	One lane	3.20	0	0

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	487	0.089	0.224	0.141	0.321
$\mathbf{1}$	B-C	636	0.098	0.247	-	-
$\mathbf{1}$	C-B	632	0.245	0.245	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 30$	$10: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	376	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	628	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	51	325
	B - Townyard Lane	0	0	0
	C - R106	524	104	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.32	5.66	0.9	A
C-A				
A-B				
A-C				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		1.28	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$12: 45$	$14: 15$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	410	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	556	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	81	329
	B - Townyard Lane	0	0	0
	C - R106	454	102	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.30	5.88	0.8	A
C-A				
A-B				
A-C				

2020 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		1.13	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2020 Survey Year	AM	ONE HOUR	$08: 30$	$10: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	370	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	545	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	80	290
	B - Townyard Lane	0	0	0
	C - R106	454	91	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.26	5.53	0.7	A
C-A				
A-B				
A-C				

2020 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		1.48	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2020 Survey Year	PM	ONE HOUR	$12: 45$	$14: 15$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	443	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	622	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	87	356
	B - Townyard Lane	0	0	0
	C - R106	509	113	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.36	6.14	1.0	A
C-A				
A-B				
A-C				

2019 Estimated, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		1.00	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2019 Estimated	AM	ONE HOUR	$08: 30$	$10: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	310	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	569	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	7	303
	B - Townyard Lane	0	0	0
	C - R106	488	81	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.23	5.10	0.6	A
C-A				
A-B				
A-C				

2019 Estimated, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 5	T-Junction	Two-way		0.29	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2019 Estimated	PM	ONE HOUR	$12: 45$	$14: 15$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	352	100.000
B - Townyard Lane		\checkmark	0	100.000
C - R106		\checkmark	448	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Townyard Lane	C - R106
	A - R106	0	46	306
	B - Townyard Lane	0	0	0
	C - R106	423	25	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Townyard Lane	C - R106
	A R106	0	0	0
	B - Townyard Lane	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.07	4.78	0.1	A
C-A				
A-B				
A-C				

Appendix G Junction 6 - Old Street and the R106
 Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
- Veorision:9.5.0.6986 2018	
For sales and distisibuion information. program advice and manitenance, contact TRL:	
The users of this computer program for the solution of	n of an engineering problem are in no way relieved of their responsibility for the correctness of the solutio

Filename: Junction 6 - Old Street.R106.j9
Path: \lw2k19-dl-fs01\users\CAD\DWGS\222\101-150\222126l3.0 Calculations\1. Civils\222126-
PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: $3 \overline{1} / 01 / 2023$ 11:10:40

```
"2023 Survey Year, AM
"2023 Survey Year, PM
"2020 Survey Year, AM
"2020 Survey Year, PM
"2019 Estimated, AM
"2019 Estimated, PM
```


Summary of junction performance

	AM				PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
	2023 Survey Year							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.5	5.26	0.21	A	0.6	5.70	0.26	A
	2020 Survey Year							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.5	5.35	0.21	A	0.5	5.20	0.20	A
	2019 Estimated							
Stream B-AC	0.0	0.00	0.00	A	0.0	0.00	0.00	A
Stream C-AB	0.3	5.03	0.14	A	0.3	4.98	0.13	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units

\qquad kph PCU

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15
D2	2023 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15
D3	2020 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15
D4	2020 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15
D5	2019 Estimated	AM	ONE HOUR	$08: 00$	$09: 30$	15
D6	2019 Estimated	PM	ONE HOUR	$15: 30$	$17: 00$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		0.76	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	R106		Major
B	Old Street		Minor
C	R106		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue (PCU)
C-R106	6.00			100.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Old Street	One lane	3.30	0	0

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	492	0.090	0.227	0.143	0.324
$\mathbf{1}$	B-C	643	0.099	0.249	-	-
$\mathbf{1}$	C-B	632	0.245	0.245	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	483	100.000
B - Old Street		\checkmark	0	100.000
C - R106		\checkmark	536	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	70	413
	B - Old Street	0	0	0
	C - R106	467	69	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	0	0
	B - Old Street	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.21	5.26	0.5	A
C-A				
A-B				
A-C				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		1.03	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	458	100.000
B - Old Street		\checkmark	0	100.000
C - R106		\checkmark	524	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	79	379
	B - Old Street	0	0	0
	C - R106	437	87	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A R106	0	0	0
	B - Old Street	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.26	5.70	0.6	A
C-A				
A-B				
A-C				

2020 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		0.86	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2020 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	414	100.000
B - Old Street		\checkmark	0	100.000
C - R106		\checkmark	504	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	50	364
	B - Old Street	0	0	0
	C - R106	430	74	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A R106	0	0	0
	B - Old Street	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.21	5.35	0.5	A
C-A				
A-B				
A-C				

2020 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		0.73	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2020 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	471	100.000
B - Old Street		\checkmark	1	100.000
C - R106		\checkmark	524	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	66	405
	B - Old Street	0	0	1
	C - R106	458	66	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A R106	0	0	0
	B - Old Street	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.20	5.20	0.5	A
C-A				
A-B				
A-C				

2019 Estimated, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		0.52	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2019 Estimated	AM	ONE HOUR	$08: 00$	$09: 30$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	435	100.000
B - Old Street		\checkmark	0	100.000
C - R106		\checkmark	481	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	51	384
	B - Old Street	0	0	0
	C - R106	434	47	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A - Old Street	0	0	0
	B - R106	0	0	0
	C10	0	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.14	5.03	0.3	A
C-A				
A-B				
A-C				

2019 Estimated, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Old Street/R106	T-Junction	Two-way		0.54	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2019 Estimated	PM	ONE HOUR	$15: 30$	$17: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	388	100.000
B - Old Street		\checkmark	0	100.000
C - R106		\checkmark	481	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Old Street	C - R106
	A - R106	0	35	353
	B - Old Street	0	0	0
	C - R106	434	47	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Old Street	C - R106
	A - Old Street	0	0	0
	C - R106	0	0	0
	C106	0	0	

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.00	0.00	0.0	A
C-AB	0.13	4.98	0.3	A
C-A				
A-B				
A-C				

Appendix H Junction 7 - James' Terrace and the R106 Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
For sales and distisibuion information. proparam adicice and manitenance, contact TRL:	
The users of this computer program for the solution of	of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 7 - Jame's Terrace.R106.j9
Path: \lw2k19-dl-fs01\users\CAD\DWGSI222\101-150\222126\3.0 Calculations\1. Civils\222126-
PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: $3 \overline{1} / 01 / 2023$ 11:11:32

```
"2023 Survey Year, AM
"2023 Survey Year, PM
"2020 Survey Year, AM
"2020 Survey Year, PM
"2019 Estimated, AM
"2019 Estimated, PM
```


Summary of junction performance

	AM				PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS
	2023 Survey Year							
Stream B-AC	3.6	39.16	0.80	E	4.7	46.19	0.84	E
Stream C-AB	0.0	0.00	0.00	A	0.0	0.00	0.00	A
	2020 Survey Year							
Stream B-AC	1.7	21.15	0.63	C	4.5	44.75	0.84	E
Stream C-AB	0.0	0.00	0.00	A	0.0	4.60	0.00	A
	2019 Estimated							
Stream B-AC	0.7	13.58	0.41	B	1.1	16.16	0.53	C
Stream C-AB	0.0	0.00	0.00	A	0.0	0.00	0.00	A

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units

\qquad

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15
D3	2020 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D4	2020 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15
D5	2019 Estimated	AM	ONE HOUR	$08: 15$	$09: 45$	15
D6	2019 Estimated	PM	ONE HOUR	$16: 15$	$17: 45$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7 - Jame's Terrace/R106	T-Junction	Two-way		11.27	B

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	R106		Major
B	Jame's Terrace		Minor
C	R106		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue $($ PCU $)$
C-R106	6.00			80.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Jame's Terrace	One lane	3.25	0	0

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	490	0.089	0.225	0.142	0.322
$\mathbf{1}$	B-C	640	0.098	0.248	-	-
$\mathbf{1}$	C-B	620	0.240	0.240	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	294	100.000
B - Jame's Terrace		\checkmark	321	100.000
C - R106		\checkmark	500	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	294
	B - Jame's Terrace	131	0	190
	C - R106	500	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.80	39.16	3.6	E
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7-Jame's Terrace/R106	T-Junction	Two-way		15.33	C

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	297	100.000
B - Jame's Terrace		\checkmark	357	100.000
C - R106		\checkmark	422	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	297
	B - Jame's Terrace	120	0	237
	C - R106	422	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.84	46.19	4.7	E
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

2020 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7-Jame's Terrace/R106	T-Junction	Two-way		5.86	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2020 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	268	100.000
B - Jame's Terrace		\checkmark	265	100.000
C - R106		\checkmark	424	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	268
	B - Jame's Terrace	103	0	162
	C - R106	424	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.63	21.15	1.7	C
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

2020 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7-Jame's Terrace/R106	T-Junction	Two-way		14.03	B

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2020 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	332	100.000
B - Jame's Terrace		\checkmark	349	100.000
C - R106		\checkmark	433	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	332
	B - Jame's Terrace	110	0	239
	C - R106	432	1	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.84	44.75	4.5	E
C-AB	0.00	4.60	0.0	A
C-A				
A-B				
A-C				

2019 Estimated, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7-Jame's Terrace/R106	T-Junction	Two-way		2.53	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D5	2019 Estimated	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	274	100.000
B - Jame's Terrace		\checkmark	169	100.000
C - R106		\checkmark	465	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	274
	B - Jame's Terrace	69	0	100
	C - R106	465	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.41	13.58	0.7	B
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

2019 Estimated, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 7-Jame's Terrace/R106	T-Junction	Two-way		4.11	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D6	2019 Estimated	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	276	100.000
B - Jame's Terrace		\checkmark	228	100.000
C - R106		\checkmark	393	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	276
	B - Jame's Terrace	77	0	151
	C - R106	393	0	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - Jame's Terrace	C - R106
	A - R106	0	0	0
	B - Jame's Terrace	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.53	16.16	1.1	C
C-AB	0.00	0.00	0.0	A
C-A				
A-B				
A-C				

Appendix I Junction 8 - The Rise and the R106
Junctions 9 Analysis

Filename: Junction 8 - The Rise.R106.j9
Path: \lw2k19-dl-fs01lusers\CADIDWGS\222\101-150\222126|3.0 Calculations\1. Civils\222126-PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: 27/01/2023 11:17:46

```
"2023 Survey Year, AM
"2023 Survey Year, PM
„2019 Survey Year, AM
"2019 Survey Year, PM
```

Summary of junction performance

	AM					PM				
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS		
	2023 Survey Year									
Stream B-AC	0.9	19.32	0.47	C	0.2	12.33	0.15	B		
Stream C-AB	0.0	5.09	0.02	A	0.1	5.34	0.06	A		
	2019 Survey Year									
Stream B-AC	0.7	19.17	0.43	C	0.2	13.21	0.18	B		
Stream C-AB	0.1	5.28	0.05	A	0.3	5.47	0.11	A		

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.

File summary

File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	perMin	

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 8-The Rise/R106	T-Junction	Two-way		2.79	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	R106		Major
B	The Rise		Minor
C	R106		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue $($ PCU $)$
C-R106	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - The Rise	One lane	2.50	30	25

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	475	0.086	0.218	0.137	0.312
$\mathbf{1}$	B-C	608	0.093	0.235	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	483	100.000
B- The Rise		\checkmark	147	100.000
C-R106		\checkmark	415	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	22	461
	B - The Rise	92	0	55
	C - R106	408	7	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	0	0
	B - The Rise	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.47	19.32	0.9	C
C-AB	0.02	5.09	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r)}$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	111	403	0.275	109	0.4	12.212	B
C-AB	9	716	0.013	9	0.0	5.092	A
C-A	303			303			
A-B	17			17			
A-C	347		347				

08:30-08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCC)	Delay (s)	Unsignalised level of service
B-AC	132	380	0.348	132	0.5	14.465	B
C-AB	12	747	0.017	12	0.0	4.900	A
C-A	361			361			
A-B	20			20			
A-C	414			414			

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	162	348	0.465	161	0.8	19.082	C

C-AB	18	791	0.023	18	0.0	4.654	A
C-A	439			439			
A-B	24			24			
A-C	508		508				

09:00-09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	162	348	0.465	162	0.9	19.325	
C-AB	18	791	0.023	18	0.0	4.656	
C-A	439			439			
A-B	24		24				
A-C	508		508				

09:15-09:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	132	380	0.348	133	0.5	14.684	B
C-AB	12	747	0.017	12	0.0	4.901	A
C-A	361			361			
A-B	20		20				
A-C	414			414			

09:30-09:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	111	403	0.275	111	0.4	12.390	B
C-AB	9	716	0.013	9	0.0	5.092	A
C-A	303			303			
A-B	17			17			
A-C	347			347			

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 8-The Rise/R106	T-Junction	Two-way		0.77	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	536	100.000
B- The Rise		\checkmark	46	100.000
C-R106		\checkmark	406	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	85	451
	B - The Rise	29	0	17
	C - R106	388	18	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	0	0
	B - The Rise	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period
$\lceil|\quad| \quad \mid$

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.15	12.33	0.2	B
C-AB	0.06	5.34	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:15-16:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	35	399	0.087	34	0.1	9.863	A
C-AB	23	698	0.033	23	0.0	5.335	A
C-A	282			282			
A-B	64		64				
A-C	340			340			

16:30-16:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	41	375	0.110	41	0.1	10.768	B
C-AB	31	725	0.043	31	0.1	5.187	A
C-A	334			334			
A-B	76		76				
A-C	405			405			

16:45-17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	51	343	0.148	50	0.2	12.311	B
C-AB	45	765	0.059	45	0.1	5.000	A
C-A	402			402			
A-B	94		94				
A-C	497			497			

17:00-17:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	51	343	0.148	51	0.2	12.326	B
C-AB	45	765	0.059	45	0.1	5.001	A
C-A	402			402			
A-B	94		94				
A-C	497			497			

17:15-17:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	41	375	0.110	42	0.1	10.789	B
C-AB	31	725	0.043	31	0.1	5.189	A
C-A	334			334			
A-B	76			76			
A-C	405		405				

17:30-17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	35	399	0.087	35	0.1	9.890	A
C-AB	23	698	0.034	23	0.0	5.341	A
C-A	282			282			
A-B	64		64				
A-C	340			340			

2019 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 8-The Rise/R106	T-Junction	Two-way		2.39	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	541	100.000
B - The Rise		\checkmark	126	100.000
C-R106		\checkmark	408	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	13	528
	B - The Rise	83	0	43
	C - R106	394	14	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	0	0
	B - The Rise	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period
$\lceil|\quad| \quad \mid$

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.43	19.17	0.7	C
C-AB	0.05	5.28	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	95	387	0.245	94	0.3	12.234	B
C-AB	18	700	0.026	18	0.0	5.277	A
C-A	289			289			
A-B	10		10				
A-C	398			398			

08:30-08:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	113	362	0.313	113	0.4	14.442	B
C-AB	25	728	0.034	25	0.0	5.114	A
C-A	342			342			
A-B	12			12			
A-C	475			475			

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	139	326	0.425	138	0.7	18.966	C
C-AB	35	769	0.046	35	0.1	4.907	A
C-A	414			414			
A-B	14		14				
A-C	581		581				

09:00-09:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	139	326	0.425	139	0.7	19.168	C
C-AB	36	769	0.046	36	0.1	4.910	A
C-A	414			414			
A-B	14			14			
A-C	581			581			

09:15-09:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	113	361	0.313	114	0.5	14.627	B
C-AB	25	728	0.034	25	0.0	5.118	A
C-A	342			342			
A-B	12			12			
A-C	475			475			

09:30-09:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	95	387	0.245	95	0.3	12.385	B
C-AB	18	700	0.026	18	0.0	5.280	A
C-A	289			289			
A-B	10		10				
A-C	398			398			

2019 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 8-The Rise/R106	T-Junction	Two-way		1.05	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	541	100.000
B - The Rise		\checkmark	53	100.000
C-R106		\checkmark	434	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	51	490
	B - The Rise	33	0	20
	C - R106	400	34	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - R106	B - The Rise	C - R106
	A - R106	0	0	0
	B - The Rise	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period
$\lceil|\quad| \quad \mid$

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max Los
B-AC	0.18	13.21	0.2	B
C-AB	0.11	5.47	0.3	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:15-16:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	40	392	0.102	39	0.1	10.213	B
C-AB	45	704	0.064	44	0.1	5.458	A
C-A	282			282			
A-B	38			38			
A-C	369		369				

16:30-16:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	48	366	0.130	48	0.1	11.287	B
C-AB	60	732	0.082	60	0.2	5.358	A
C-A	330			330			
A-B	46			46			
A-C	440			440			

16:45-17:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	58	331	0.176	58	0.2	13.181	B
C-AB	87	774	0.113	87	0.3	5.242	A
C-A	391			391			
A-B	56		56				
A-C	540		540				

17:00-17:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	58	331	0.176	58	0.2	13.207	B
C-AB	87	774	0.113	87	0.3	5.248	A
C-A	390			390			
A-B	56		56				
A-C	540			540			

17:15-17:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	48	366	0.130	48	0.2	11.317	B
C-AB	60	733	0.083	61	0.2	5.364	A
C-A	330			330			
A-B	46		46				
A-C	440			440			

17:30-17:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	40	391	0.102	40	0.1	10.249	B
C-AB	45	704	0.064	45	0.1	5.471	A
C-A	282			282			
A-B	38		38				
A-C	369			369			

Appendix J Junction 9 - Grove Road and the R106
 Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
For sales and distribution information, program advice and maintenance, contact TRL:+444 ()) 1344379777software@trico.	
The users of this computer program for the solution	ion of an engineering problem are in no way relieved of their responsibility for the of the solution

Filename: Junction 9 - R106.Grove Road.j9
Path: I:\DWGS\222\101-150\222126\3.0 Calculations\1. Civils\222126-PUNCH-XX-XX-CA-C0008_Traffic\Junctions 9
Report generation date: 27/01/2023 11:16:40

```
»2023 Survey Year, AM
»2023 Survey Year, PM
»2019 Survey Year, AM
»2019 Survey Year, PM
```

Summary of junction performance

	AM						PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS		
	2023 Survey Year									
Stream B-AC	0.3	11.54	0.20	B	0.3	10.74	0.23	B		
Stream C-AB	0.1	5.43	0.07	A	0.1	5.31	0.05	A		
	2019 Survey Year									
Stream B-AC	0.3	12.80	0.26	B	0.5	13.04	0.34	B		
Stream C-AB	0.1	5.41	0.06	A	0.1	5.44	0.06	A		

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
File summary
File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 9-R106/Grove Road	T-Junction	Two-way		1.10	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	R106		Major
B	Grove Road		Minor
C	R106		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue (PCU)
C-R106	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Grove Road	One lane	3.30	70	45

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	538	0.098	0.248	0.156	0.354
$\mathbf{1}$	B-C	672	0.103	0.260	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	517	100.000
B - Grove Road		\checkmark	73	100.000
C - R106		\checkmark	397	100.000

Origin-Destination Data
Demand (PCU/hr)

	To			
From		A - R106	B - Grove Road	C - R106
	A - R106	0	100	417
	B - Grove Road	47	0	26
	C - R106	374	23	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Grove Road	C - R106
	A - Grove Road	0	0	0
	B - R106	0	0	0
	C	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.20	11.54	0.3	B
C-AB	0.07	5.43	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	55	453	0.121	54	0.1	9.027	
C-AB	29	693	0.042	29	0.1	5.422	
C-A	270			270			
A-B	75			75			
A-C	314						

08:30-08:45

Stream	Total Demand	Capacity	RFC	Throughput	End queue	Delay (s)	Unsignalised

	(PCU/hr)	(PCU/hr)		(PCU/hr)	(PCU)		level of service
B-AC	66	428	0.154	65	0.2	9.939	A
C-AB	39	719	0.054	39	0.1	5.295	A
C-A	318			318			
A-B	90		90				
A-C	375		375				

08:45-09:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	80	392	0.205	80	0.3	11.522	B
C-AB	56	757	0.074	56	0.1	5.134	A
C-A	381			381			
A-B	110			110			
A-C	459		459				

09:00-09:15

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	80	392	0.205	80	0.3	11.543	B
C-AB	56	757	0.074	56	0.1	5.138	A
C-A	381			381			
A-B	110			110			
A-C	459			459			

09:15-09:30

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	66	427	0.154	66	0.2	9.964	A
C-AB	39	719	0.054	39	0.1	5.297	A
C-A	318			318			
A-B	90			90			
A-C	375		375				

09:30-09:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	55	453	0.121	55	0.1	9.061	A
C-AB	29	693	0.042	29	0.1	5.427	A
C-A	270			270			
A-B	75			75			
A-C	314		314				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 9-R106/Grove Road	T-Junction	Two-way		1.20	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	472	100.000
B - Grove Road		\checkmark	92	100.000
C - R106		\checkmark	385	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Grove Road	C - R106
	A R106	0	55	417
	B - Grove Road	41	0	51
	C - R106	370	15	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Grove Road	C - R106
	A - R106	0	0	0
	B - Grove Road	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.23	10.74	0.3	B
C-AB	0.05	5.31	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:15-16:30

Stream	Total Demand $\mathbf{(P C U / h r)}$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	69	491	0.141	69	0.2	8.506	A
C-AB	19	697	0.027	19	0.0	5.308	A
C-A	271			271			
A-B	41			41			
A-C	314			314			

16:30-16:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathrm{hr})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	83	468	0.177	83	0.2	9.323	A
C-AB	25	724	0.035	25	0.0	5.152	A
C-A	321			321			
A-B	49			49			
A-C	375		375				

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	101	436	0.232	101	0.3	10.720	B
C-AB	36	762	0.047	36	0.1	4.954	A
C-A	388			388			
A-B	61			61			
A-C	459			459			

17:00-17:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	101	436	0.232	101	0.3	10.742	B
C-AB	36	762	0.047	36	0.1	4.955	A
C-A	388			388			
A-B	61			61			
A-C	459			459			

17:15-17:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	83	468	0.177	83	0.2	9.351	A
C-AB	25	724	0.035	25	0.0	5.154	A
C-A	321			321			
A-B	49			49			
A-C	375			375			

17:30-17:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	69	491	0.141	69	0.2	8.542	A
C-AB	19	697	0.027	19	0.0	5.311	A
C-A	271			271			
A-B	41			41			
A-C	314			314			

2019 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 9-R106/Grove Road	T-Junction	Two-way		1.35	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	519	100.000
B - Grove Road		\checkmark	90	100.000
C - R106		\checkmark	384	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Grove Road	C - R106
	A R106	0	130	389
	B - Grove Road	69	0	21
	C - R106	366	18	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Grove Road	C - R106
	A - R106	0	0	0
	B - Grove Road	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.26	12.80	0.3	B
C-AB	0.06	5.41	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand $\mathbf{(P C U / h r)}$	Capacity $\mathbf{(P C U / h r)}$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	68	439	0.154	67	0.2	9.650	A
C-AB	23	688	0.033	22	0.0	5.407	A
C-A	266			266			
A-B	98		98				
A-C	293			293			

08:30-08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	81	415	0.195	81	0.2	10.770	B
C-AB	30	713	0.042	30	0.1	5.268	A
C-A	315			315			
A-B	117			117			
A-C	350			350			

08:45-09:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	99	380	0.261	99	0.3	12.762	
C-AB	43	750	0.057	43	0.1	5.092	A
C-A	380			380			
A-B	143			143			
A-C	428			428			

09:00-09:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	99	380	0.261	99	0.3	12.800	B
C-AB	43	750	0.057	43	0.1	5.095	A
C-A	380			380			
A-B	143			143			
A-C	428			428			

09:15-09:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	81	415	0.195	81	0.2	10.812	B
C-AB	30	713	0.042	30	0.1	5.273	A
C-A	315			315			
A-B	117			117			
A-C	350			350			

09:30-09:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	68	439	0.154	68	0.2	9.700	A
C-AB	23	688	0.033	23	0.0	5.411	A
C-A	266			266			
A-B	98		98				
A-C	293		293				

2019 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix	HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.	

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 9-R106/Grove Road	T-Junction	Two-way		1.82	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - R106		\checkmark	513	100.000
B - Grove Road		\checkmark	127	100.000
C - R106		\checkmark	380	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - R106	B - Grove Road	C - R106
	A R106	0	111	402
	B - Grove Road	69	0	58
	C - R106	361	19	0

Vehicle Mix
Heavy Vehicle Percentages

	To			
From		A - R106	B - Grove Road	C - R106
	A - R106	0	0	0
	B - Grove Road	0	0	0
	C - R106	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.34	13.04	0.5	B
C-AB	0.06	5.44	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

16:15-16:30

Stream	Total Demand $\mathbf{(P C U / h r)}$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	96	473	0.202	95	0.3	9.489	A
C-AB	24	686	0.035	24	0.0	5.431	A
C-A	262			262			
A-B	84			84			
A-C	303			303			

16:30-16:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r)}$	$\mathbf{R F C}$	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	114	449	0.254	114	0.3	10.722	B
C-AB	32	711	0.044	31	0.1	5.299	A
C-A	310			310			
A-B	100			100			
A-C	361		361				

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	140	416	0.336	139	0.5	12.977	B
C-AB	45	747	0.060	45	0.1	5.127	A
C-A	374			374			
A-B	122			122			
A-C	443			443			

17:00-17:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	140	416	0.336	140	0.5	13.036	B
C-AB	45	747	0.060	45	0.1	5.131	A
C-A	373			373			
A-B	122			122			
A-C	443			443			

17:15-17:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	114	449	0.254	115	0.3	10.784	B
C-AB	32	711	0.044	32	0.1	5.302	A
C-A	310			310			
A-B	100			100			
A-C	361			361			

17:30-17:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	96	473	0.202	96	0.3	9.559	A
C-AB	24	686	0.035	24	0.0	5.437	A
C-A	262			262			
A-B	84		84				
A-C	303			303			

Appendix K Junction 10 - Grove Road and The Rise Junctions 9 Analysis

Junctions 9	
PICADY 9 - Priority Intersection Module	
For sales and distribibion information, program advive and minitenanee, contact TRL:	
The users of this computer program for the solution of	ion of an engineering problem are in no way relieved of their responsibility for the correctness of the solution

Filename: Junction 10 - The Rise.Grove Road.j9
Path: \lw2k19-dl-fs01\users\CAD\DWGSI222\101-150\222126\3.0 Calculations\1. Civils\222126-
PUNCH-XX-XX-CA-C-0008_Traffic\Junctions 9
Report generation date: $3 \overline{1} / 01 / 202311: 12: 21$

```
"2023 Survey Year, AM
"2023 Survey Year, PM
"2019 Survey Year, AM
"2019 Survey Year, PM
```

Summary of junction performance

	AM						PM			
	Queue (PCU)	Delay (s)	RFC	LOS	Queue (PCU)	Delay (s)	RFC	LOS		
	2023 Survey Year									
Stream B-AC	0.1	9.14	0.11	A	0.3	10.87	0.26	B		
Stream C-AB	0.3	7.97	0.24	A	0.0	6.14	0.01	A		
	2019 Survey Year									
Stream B-AC	0.1	8.53	0.05	A	0.1	9.20	0.12	A		
Stream C-AB	0.5	8.48	0.32	A	0.0	5.90	0.01	A		

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
File summary
File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15
D3	2019 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 10-The Rise/ Grove Road	T-Junction	Two-way		6.30	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	Grove Road		Major
B	The Rise		Minor
C	Grove Road		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue $($ PCU $)$
C - Grove Road	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - The Rise	One lane	2.40	25	20

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	466	0.085	0.214	0.135	0.306
$\mathbf{1}$	B-C	598	0.092	0.232	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Grove Road	\checkmark	26	100.000	
B - The Rise		\checkmark	46	100.000
C - Grove Road		\checkmark	157	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	15	11
	B - The Rise	36	0	10
	C - Grove Road	36	121	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	0	0
	B - The Rise	0	0	0
	C - Grove Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.11	9.14	0.1	A
C-AB	0.24	7.97	0.3	A
C-A				
A-B				
A-C				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 10-The Rise/ Grove Road	T-Junction	Two-way		4.34	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Grove Road		\checkmark	96	100.000
B - The Rise		\checkmark	103	100.000
C - Grove Road		\checkmark	65	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	40	56
	B - The Rise	97	0	6
	C - Grove Road	61	4	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	0	0
	B - The Rise	0	0	0
	C - Grove Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.26	10.87	0.3	B
C-AB	0.01	6.14	0.0	A
C-A				
A-B				
A-C				

2019 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 10-The Rise/ Grove Road	T-Junction	Two-way		6.04	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2019 Survey Year	AM	ONE HOUR	$08: 00$	$09: 30$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Grove Road		\checkmark	26	100.000
B - The Rise		\checkmark	21	100.000
C - Grove Road		\checkmark	232	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	6	20
	B - The Rise	14	0	7
	C - Grove Road	75	157	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	0	0
	B - The Rise	0	0	0
	C - Grove Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.05	8.53	0.1	A
C-AB	0.32	8.48	0.5	A
C-A				
A-B				
A-C				

2019 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 10-The Rise/ Grove Road	T-Junction	Two-way		1.69	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2019 Survey Year	PM	ONE HOUR	$16: 15$	$17: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Grove Road		\checkmark	114	100.000
B - The Rise		\checkmark	48	100.000
C - Grove Road		\checkmark	117	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	46	68
	B - The Rise	41	0	7
	C - Grove Road	113	4	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Grove Road	B - The Rise	C - Grove Road
	A - Grove Road	0	0	0
	B - The Rise	0	0	0
	C - Grove Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.12	9.20	0.1	A
C-AB	0.01	5.90	0.0	A
C-A				
A-B				
A-C				

Appendix L Junction 11-Grove Road and Church Road Junctions 9 Analysis

Filename: Junction 11 - Church Road.Grove Road.j9
Path: I:IDWGS\222\101-150\222126\3.0 Calculations\1. Civils\222126-PUNCH-XX-XX-CA-C0008_Traffic\Junctions 9
Repört generation date: 27/01/2023 11:13:34

```
»2023 Survey Year, AM
»2023 Survey Year, PM
»2019 Survey Year, AM
»2019 Survey Year, PM
```

Summary of junction performance

| | AM | | | | | PM | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | Queue (PCU) | Delay (s) | RFC | LOS | Queue (PCU) | Delay (s) | RFC | LOS | |
| | 2023 Survey Year | | | | | | | | |
| Stream B-AC | 0.1 | 11.68 | 0.11 | B | 0.9 | 18.70 | 0.49 | C | |
| Stream C-AB | 0.0 | 5.25 | 0.01 | A | 0.0 | 5.91 | 0.03 | A | |
| | 2019 Survey Year | | | | | | | | |
| Stream B-AC | 0.1 | 12.10 | 0.10 | B | 1.0 | 18.72 | 0.51 | C | |
| Stream C-AB | 0.0 | 5.07 | 0.01 | A | 0.1 | 6.09 | 0.04 | A | |

There are warnings associated with one or more model runs - see the 'Data Errors and Warnings' tables for each Analysis or Demand Set.
Values shown are the highest values encountered over all time segments. Delay is the maximum value of average delay per arriving vehicle.
File summary
File Description

Title	
Location	
Site number	
Date	$17 / 01 / 2023$
Version	
Status	(new file)
Identifier	
Client	
Jobnumber	
Enumerator	MPPNET\RLee
Description	

Units

Distance units	Speed units	Traffic units input	Traffic units results	Flow units	Average delay units	Total delay units	Rate of delay units
m	kph	PCU	PCU	perHour	s	-Min	perMin

Analysis Options

Calculate Queue Percentiles	Calculate residual capacity	RFC Threshold	Average Delay threshold (s)	Queue threshold (PCU)
		0.85	36.00	20.00

Demand Set Summary

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D2	2023 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15
D4	2019 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15

Analysis Set Details

ID	Network flow scaling factor (\%)
A1	100.000

2023 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 11 - Church Road/Grove Road	T-Junction	Two-way		0.55	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Arms

Arms

Arm	Name	Description	Arm type
A	Church Road		Major
B	Grove Road		Minor
C	Church Road		Major

Major Arm Geometry

Arm	Width of carriageway (\mathbf{m})	Has kerbed central reserve	Has right turn bay	Visibility for right turn (\mathbf{m})	Blocks?	Blocking queue $($ PCU $)$
C - Church Road	6.00			0.0	\checkmark	0.00

Geometries for Arm C are measured opposite Arm B. Geometries for Arm A (if relevant) are measured opposite Arm D.

Minor Arm Geometry

Arm	Minor arm type	Lane width (m)	Visibility to left (m)	Visibility to right (m)
B - Grove Road	One lane	2.50	20	16

Slope / Intercept / Capacity

Priority Intersection Slopes and Intercepts

Junction	Stream	Intercept (PCU/hr)	Slope for A-B	Slope for A-C	Slope for C-A	Slope for C-B
$\mathbf{1}$	B-A	467	0.085	0.215	0.135	0.307
$\mathbf{1}$	B-C	602	0.092	0.233	-	-
$\mathbf{1}$	C-B	574	0.222	0.222	-	-

The slopes and intercepts shown above do NOT include any corrections or adjustments.
Streams may be combined, in which case capacity will be adjusted.
Values are shown for the first time segment only; they may differ for subsequent time segments.

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D1	2023 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Church Road		\checkmark	400	100.000
B - Grove Road		\checkmark	34	100.000
C - Church Road		\checkmark	341	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Church Road	B - Grove Road	C - Church Road
	A - Church Road	0	19	381
	B - Grove Road	28	0	6
	C - Church Road	338	3	0

Vehicle Mix

Heavy Vehicle Percentages

	To			
From		A - Church Road	B - Grove Road	C - Church Road
	A - Church Road	0	0	0
	B - Grove Road	0	0	0
	C - Church Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.11	11.68	0.1	B
C-AB	0.01	5.25	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	26	391	0.066	25	0.1	9.850	A
C-AB	4	690	0.005	4	0.0	5.245	A
C-A	253			253			
A-B	14			14			
A-C	287			287			

08:30-08:45

Page 5 of 14

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	31	372	0.082	30	0.1	10.547	B
C-AB	5	714	0.007	5	0.0	5.071	A
C-A	302			302			
A-B	17			17			
A-C	343			343			

08:45-09:00

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue $(\mathbf{P C U})$	Delay (s)	Unsignalised level of service
B-AC	37	346	0.108	37	0.1	11.672	B
C-AB	7	750	0.009	7	0.0	4.843	A
C-A	369			369			
A-B	21			21			
A-C	419			419			

09:00-09:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	37	346	0.108	37	0.1	11.682	B
C-AB	7	750	0.009	7	0.0	4.845	A
C-A	369			369			
A-B	21			21			
A-C	419			419			

09:15-09:30

Stream	Total Demand $(\mathbf{P C U} / \mathbf{h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathrm{hr})$	End queue $(\mathbf{P C U})$	Delay (s)	Unsignalised level of service
B-AC	31	372	0.082	31	0.1	10.561	B
C-AB	5	714	0.007	5	0.0	5.071	A
C-A	302			302			
A-B	17			17			
A-C	343			343			

09:30-09:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput (PCU/hr)	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	26	391	0.066	26	0.1	9.868	A
C-AB	4	690	0.005	4	0.0	5.245	A
C-A	253			253			
A-B	14			14			
A-C	287		287				

2023 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 11-Church Road/Grove Road	T-Junction	Two-way		4.53	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D2	2023 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Church Road		\checkmark	344	100.000
B - Grove Road		\checkmark	169	100.000
C - Church Road		\checkmark	204	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Church Road	B - Grove Road	C - Church Road
	A - Church Road	0	79	265
	B - Grove Road	149	0	20
	C - Church Road	193	11	0

Vehicle Mix

Heavy Vehicle Percentages

To				
From	A - Church Road	B - Grove Road	C - Church Road	
	A - Church Road	0	0	0
	B - Grove Road	0	0	0
	C - Church Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.49	18.70	0.9	C
C-AB	0.03	5.91	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

15:30-15:45

Stream	Total Demand (PCU/hr)	Capacity $\mathbf{(P C U / h r)}$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	127	411	0.310	125	0.4	12.549	B
C-AB	11	620	0.017	11	0.0	5.909	A
C-A	143			143			
A-B	59			59			
A-C	200			200			

15:45-16:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	152	397	0.383	151	0.6	14.600	B
C-AB	14	630	0.022	14	0.0	5.840	A
C-A	170			170			
A-B	71			71			
A-C	238		238				

16:00-16:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	186	378	0.492	185	0.9	18.460	
C-AB	18	644	0.028	18	0.0	5.747	A
C-A	207			207			
A-B	87			87			
A-C	292			292			

16:15-16:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathrm{hr})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	186	378	0.492	186	0.9	18.695	C
C-AB	18	644	0.028	18	0.0	5.747	A
C-A	206			206			
A-B	87			87			
A-C	292			292			

16:30-16:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	152	397	0.383	153	0.6	14.836	B
C-AB	14	630	0.022	14	0.0	5.841	A
C-A	170			170			
A-B	71			71			
A-C	238			238			

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	127	411	0.310	128	0.5	12.766	B
C-AB	11	620	0.017	11	0.0	5.909	A
C-A	143			143			
A-B	59			59			
A-C	200			200			

2019 Survey Year, AM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 11 - Church Road/Grove Road	T-Junction	Two-way		0.52	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D3	2019 Survey Year	AM	ONE HOUR	$08: 15$	$09: 45$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Church Road		\checkmark	370	100.000
B - Grove Road		\checkmark	31	100.000
C - Church Road		\checkmark	379	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Church Road	B - Grove Road	C - Church Road
	A - Church Road	0	9	361
	B - Grove Road	29	0	2
	C - Church Road	376	3	0

Vehicle Mix

Heavy Vehicle Percentages

To				
From	A - Church Road	B - Grove Road	C - Church Road	
	A - Church Road	0	0	0
	B - Grove Road	0	0	0
	C - Church Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.10	12.10	0.1	B
C-AB	0.01	5.07	0.0	A
C-A				
A-B				
A-C				

Main Results for each time segment

08:15-08:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	$\mathbf{R F C}$	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	23	377	0.062	23	0.1	10.167	B
C-AB	4	715	0.005	4	0.0	5.064	A
C-A	282			282			
A-B	7		7				
A-C	272			272			

08:30-08:45

Stream	Total Demand (PCU/hr)	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathrm{hr})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	28	358	0.078	28	0.1	10.901	B
C-AB	5	744	0.007	5	0.0	4.869	A
C-A	336			336			
A-B	8			8			
A-C	325			325			

08:45-09:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	34	332	0.103	34	0.1	12.088	
C-AB	7	786	0.009	7	0.0	4.619	A
C-A	410			410			
A-B	10			10			
A-C	397			397			

09:00-09:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	34	332	0.103	34	0.1	12.097	B
C-AB	7	786	0.009	7	0.0	4.619	A
C-A	410			410			
A-B	10			10			
A-C	397			397			

09:15-09:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	28	358	0.078	28	0.1	10.915	B
C-AB	5	744	0.007	5	0.0	4.871	A
C-A	336			336			
A-B	8			8			
A-C	325			325			

09:30-09:45

Stream	Total Demand $\mathbf{(P C U} / \mathbf{h r})$	Capacity (PCU/hr)	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	23	377	0.062	23	0.1	10.187	B
C-AB	4	715	0.005	4	0.0	5.066	A
C-A	282			282			
A-B	7		7				
A-C	272			272			

2019 Survey Year, PM

Data Errors and Warnings

Severity	Area	Item	Description
Warning	Vehicle Mix		HV\% is zero for all movements / time segments. Vehicle Mix matrix should be completed whether working in PCUs or Vehs. If HV\% at the junction is genuinely zero, please ignore this warning.

Junction Network

Junctions

Junction	Name	Junction type	Major road direction	Use circulating lanes	Junction Delay (s)	Junction LOS
$\mathbf{1}$	Junction 11 - Church Road/Grove Road	T-Junction	Two-way		4.74	A

Junction Network Options

Driving side	Lighting
Left	Normal/unknown

Traffic Demand

Demand Set Details

ID	Scenario name	Time Period name	Traffic profile type	Start time (HH:mm)	Finish time (HH:mm)	Time segment length (min)
D4	2019 Survey Year	PM	ONE HOUR	$15: 30$	$17: 00$	15

Vehicle mix source	PCU Factor for a HV (PCU)
HV Percentages	2.00

Demand overview (Traffic)

Arm	Linked arm	Use O-D data	Average Demand (PCU/hr)	Scaling Factor (\%)
A - Church Road		\checkmark	363	100.000
B - Grove Road		\checkmark	178	100.000
C - Church Road		\checkmark	192	100.000

Origin-Destination Data

Demand (PCU/hr)

	To			
From		A - Church Road	B - Grove Road	C - Church Road
	A - Church Road	0	101	262
	B - Grove Road	142	0	36
	C - Church Road	175	17	0

Vehicle Mix

Heavy Vehicle Percentages

To				
From	A - Church Road	B - Grove Road	C - Church Road	
	A - Church Road	0	0	0
	B - Grove Road	0	0	0
	C - Church Road	0	0	0

Results

Results Summary for whole modelled period

Stream	Max RFC	Max Delay (s)	Max Queue (PCU)	Max LOS
B-AC	0.51	18.72	1.0	C
C-AB	0.04	6.09	0.1	A
C-A				
A-B				
A-C				

Main Results for each time segment

15:30-15:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U} / \mathbf{h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	134	420	0.319	132	0.5	12.420	B
C-AB	16	607	0.027	16	0.0	6.090	A
C-A	128			128			
A-B	76			76			
A-C	197			197			

15:45-16:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $(\mathbf{P C U} / \mathbf{h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	160	407	0.393	159	0.6	14.508	B
C-AB	21	615	0.033	21	0.0	6.056	A
C-A	152			152			
A-B	91			91			
A-C	236		236				

16:00-16:15

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $(\mathbf{P C U} / \mathbf{h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	196	388	0.505	195	1.0	18.475	C
C-AB	27	626	0.043	27	0.1	6.011	A
C-A	184			184			
A-B	111			111			
A-C	288			288			

16:15-16:30

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity (PCU/hr)	RFC	Throughput $(\mathbf{P C U} / \mathrm{hr})$	End queue (PCU)	Delay (s)	Unsignalised level of service
B-AC	196	388	0.505	196	1.0	18.724	C
C-AB	27	626	0.043	27	0.1	6.015	A
C-A	184			184			
A-B	111			111			
A-C	288			288			

16:30-16:45

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r})$	End queue $\mathbf{(P C U)}$	Delay (s)	Unsignalised level of service
B-AC	160	407	0.393	161	0.7	14.752	B
C-AB	21	615	0.033	21	0.0	6.058	A
C-A	152			152			
A-B	91			91			
A-C	236			236			

16:45-17:00

Stream	Total Demand $\mathbf{(P C U / h r})$	Capacity $\mathbf{(P C U / h r})$	RFC	Throughput $\mathbf{(P C U / h r)}$	End queue $\mathbf{(P C U})$	Delay (s)	Unsignalised level of service
B-AC	134	420	0.319	135	0.5	12.646	B
C-AB	16	607	0.027	16	0.0	6.091	A
C-A	128			128			
A-B	76			76			
A-C	197			197			

Public Realm Improvements for a Pedestrianised New Street

Appendix M Network Flow Diagrams

Existing Survey Data 2023

LEGEND:

2019- Estimated and Actual Data

APPENDIX J

Arboricultural Report by the Tree File Consulting Arborists.

The Tree File

Consulting Arborists

Arboricultural Report
Proposed Public Realm Improvements for a Pedestrianised New Street
Malahide
Co Dublin
The Tree File Ltd
Consulting Arborists
Ashgrove House
26 Foxrock Court
Dublin 18
D18 R2K1
February 2023

Contents

Section
1
2
3

4
5
6

7
8 Construction Activities and their Effect on Trees
9
10
11
12
13
14

A1
Subject

Executive Summary

Arboricultural Scenario
Introduction
Site Description
Pre-Development Arboricultural Scenario
Planning Scenario in Respect of Tree
Other Legislative and Legal Constraints

Nature of Project Works
Development Related Impacts and Concerns
1 Design Iteration and Arboricultural Considerations
Identification of Arboricultural Impacts on Trees
3 Tree Retention and Loss
14 Bibliography

$\underline{\text { Associated Drawings }}$

This report is for reading in conjunction with the drawings noted below:

Drawing Title

1) New Street Tree Constraints Plan
2) New Street Tree Impacts Plan

Drawing Subject

Tree Constraints Plan
A plan depicting the predevelopment location, size, calculated constraints, and simplified tree quality category system

Tree Impacts Plan
This plan represents the effects of the proposed improvement works on the above tree population and depicts trees to be retained and removed.

1.0 Executive Summary

1.1 As outlined below and expanded on within this report, substantial sustainability issues relate to the trees within the current New Street context. Existing and ongoing damage cannot be mitigated or sustainably repaired and these issues, together with continued growth over time, will result in an unavoidable and inevitable need to remove these trees in the future. The trees on New Street are generally young and still small specimens, having attained much less than 20% of their ultimate species mass. As they are existing within a constrained environment, it is advised that they are replaced with new trees. This would allow for species choices better suited to the constrained context and positioning at better ranges from buildings. These trees would benefit from purpose designed planting scenarios, that would better guarantee sustainability without encroachment or growth-related damage issues over time.

2.0 Arboricultural Scenario

2.1 Though inarguably urban, much of the current New Street visual context relates to its population of eleven Norway Maple. While the tree survey notes many trees remaining vigorous, some have suffered some mechanical damage. This might suggest the trees potentially offer sustainability. However, due consideration must be given to what tree retention might entail and result in over time. Particularly, attention must be drawn to the fact that the predominant species, Norway Maple, has the potential to become a large tree over time. Many authorities cite heights between 25.00 and 30.00 metres (Mitchell et al.) with potentially similar crown spread. Such trees will stand on immense stems, arguably diameters more than 1.00 m (W.J. Bean, 1980).
2.2 Such trees only exist at the sufferance of the ground environment in which they grow. The development of these trees, and particularly their stem bases, buttress regions and zone of structural roots, can only exist within soil, either by its compression or its displacement. The results of this issue are plain to be seen across the site area. Examples are well illustrated by the ground surfaces directly adjoining the tree stems, that are becoming uplifted and by both lateral and rotational displacement of surface structures, most notably the kerb edges and paved surfaces.
2.3 Currently, the street functions predominantly as a pedestrian zone, with vehicle access restricted to 7am-11am daily and two-way vehicular access available to Ross Cottages on the east side at all times. A footpath of varying widths runs the full length of the street between the kerb and buildings lines, with mature trees growing at intervals in the footpath. Notwithstanding this, the context remains one of an urban streetscape. The central road corridor is of typical tarmacadam, exhibiting evidence of numerous intrusions over time, as depicted by the patchwork of various surface repairs and excavation areas. The pavement context is equally hostile, comprising the existing granite kerb stone, but with block pavers as a pedestrian surface together with retained areas of reconstituted rubber carpet near trees. Much of the pedestrian context exhibits evidence of extensive underground infrastructure including what appears to be gas, water, and telecoms. For the much of the western side, the pedestrian surface maintains circa 2.50 to 2.80 m widths, however, the eastern side is often reduced to circa 1.75 m at its northern end, with a limited area, north of the street centre, extending to circa 3.30 m.
2.4 In Arboricultural terms, the streetscape would be regarded as a hostile environment. Historical thoroughfares tend to be based on hard, compacted soils resulting from longterm historical use. This issue is often compounded by modern construction requirements for minimum "California Bearing Ratios" (CBR's) required to provide stability, avoid subsidence, and maximise durability of surface structures. In practice, this often results in ground environment that can be inaccessible to tree roots.
2.5 Tree root morphology within such urban contexts is difficult to estimate in either depth, range, or form. In practice, streetscape tree rooting systems rarely develop symmetrically or conform to the typical root protection area as might be estimated under the auspices of BS 5837-2012. Most likely, tree roots will proliferate where they can and where they can maintain optimum root function given the poor ground environments. Invariably, this relates to areas of ground where gas exchange and water infiltration can occur notwithstanding the typical covering of ground surfaced by impermeable, watersheds and materials. Therefore, we commonly see tree roots proliferating and following channels of prior disturbance, i.e., trenches created during the installation of infrastructure or at the interfaces between various materials such as buildings and pavements, roads and kerbs or paths and kerbs. Additionally, and only confirmable by additional, exploratory excavations, it is quite likely that a high proportion of tree roots will be shallow. It is often the case that tree roots proliferate directly beneath artificial surfaces, because of moisture build-up. This water tends to relate to daily temperature changes and the condensation of soil moisture about the lower face of the constructed surface.
2.6 Appreciating the trees currently reviewed are all relatively young and arguably substantially less than 20% of their ultimate size, then an issue of future growth and unavoidable ground disturbance must be considered. The current scenario provides no capacity to accommodate future growth. Furthermore and otherwise hostile environment within which they are growing then, any future growth is unlikely to be accommodated by way of downward compression and distinctly more likely to be accommodated by upward movement and uplifting of lightly laden surfaces (table A1 - "BS 5837, Trees in Relation to Design, Demolition and Construction Recommendations") and structures located above any tree roots.
2.7 Considering the degree of uplifting and distortion existing at present and relating to still small trees, then the potential to retrofit a new surface without causing substantial damage becomes highly questionable. This issue is compounded by existing threshold levels to adjoining properties and the maintenance of universal access and sustainable, nonintrusive drainage.
2.8 Most trees within the west of New Street exist at a range of circa $2.20-2.30 \mathrm{~m}$ from the adjoining buildings, with trees to the east of the roadway being as little as 1.50 and 1.60 m from the adjoining buildings. These minimal ranges require the consideration of "lightly laden structures", such as paved surfaces, that may be subject to growthrelated disturbance over time, in line with "Table A1" of BS 5837-2012. Additionally, and considering the ultimate potential of these trees to grow much larger, there is the potential for maximum stem growth to provide a distinct impingement existing on pedestrian space, and a far greater extent of the existing pavement will be subject to uplifting and distortion. The ultimate size of the trees, considering their small size to date, will be such that the already existing overhanging encroachment on buildings will increase greatly.
2.9 Considering the above, and particularly the ultimate size of the trees, the almost inevitable likelihood of ongoing damage disturbance and encroachment, combined with limited potential for retrofitting sustainable new surfaces and what will prove to be an inevitable and costly ongoing management regime over time would combine to suggest that the best course of action would be, rather than retaining the existing trees, to consider the replacement of the trees with new trees, of more contextually compatible species, within a sustainable, purpose designed underground planting environment and potentially at ranges better selected from the fronts of adjoining buildings.

3.0 Introduction

3.1 Dermot Foley Landscape Architects

Argus House,
Malpas Street,
Blackpitts,
D08 DD56
3.2 The survey has been prepared by:

Andy Worsnop Tech Arbor A, NCH Arb (PTI LANTRA)
The Tree File Ltd
Brookfield House
Carysfort Avenue
Blackrock
Co Dublin

Report Brief

3.3 In line with the requirement for Arboricultural information in respect of the proposed New Street project, the intention of the tree survey is to register, describe and evaluate the trees regarding their current health status and current condition within their current context. The survey is based upon and has been compiled considering the recommendations of BS5837: 2012 Trees in Relation to Design, Demolition and Construction - Recommendations.

Report Context

3.4 In line with the recommendations of "BS5837: 2012 Trees in Relation to Design, Demolition and Construction - Recommendations", this assessment has been advised by the results and findings of a tree survey, the findings of which are included as "Appendix 1 " to this report. This comprises a simple qualitative tree survey describing the material of Arboricultural interest, upon and adjoining the subject site. The survey provided the basic information that assisted in the compilation of the broader report.
3.5 This tree report should be read in conjunction with the Tree Constraints Plan "New Street Tree Constraints Plan". This drawing provides a graphic representation of the tree survey depicting the nominally calculated constraints and the spatial retention requirements of the trees, as well as colour coded categorisation their condition and potential value.
3.6 In line with the recommendations of "BS5837:2012 Trees in Relation to Design, Demolition and Construction - Recommendations", this report provides an accurate understanding of the Arboricultural implications of the proposed improvement works and to explain the issues at hand.
3.7 As the recommended outcome of this report is to replace the existing trees with new trees, within specifically designed and constructed contexts, and that no trees will be retained within the proposed works zone, then this report does not include a Tree Protection Plan or Arboricultural Method Statement,

Report Limitations

3.8 This report is based on the Arborists interpretation of information provided to them prior to report compilation and gathered from the site during the undertaking of the site review. The site review data is subject to the limitation as set out under "Inspection and Evaluation Limitations and Disclaimers" in "Appendix 1" to this report. The findings and recommendations made within this report are based upon the knowledge and expertise of the inspecting Arborist.

$4 \quad$ Site Description

4.1 Currently, the street functions predominantly as a pedestrian zone, with vehicle access restricted to 7am - 11am daily and two-way vehicular access available to Ross Cottages on the east side at all times. A footpath of varying widths runs the full length of the street between the kerb and buildings lines, with mature trees growing at intervals in the footpath.
4.2 The streetscape consists of a central, tarmacadam and roadway currently designed for one-way traffic only. The roadway is adjoined to both the east and west by pedestrian footpaths of varying widths. It is from these footpaths that the review of tree population arises. The footpath configuration typically comprises a block paver scenario with, for the most part, granite kerb edge stones. A clear majority of the trees reviewed arise from position immediately adjoining the kerb edge or within $200-300 \mathrm{~mm}$ thereof. Note is made that in many instances, the paving surface directly adjoining the tree stems has been swapped from hard block pavers to the use of reconstituted rubber matting.
4.3 In many instances, trees exist at ranges in or about 2.00 m from the fronts of buildings including residential and commercial premises. Accordingly, and in line with the age of trees encountered, the streetscape includes a substantial overhang of adjoining properties.

5 Pre-Development Arboricultural Scenario

5.1 The species encountered on New Street, Norway Maple, is originally from eastern and central Europe was introduced in the 17th century. Most authorities regard the species as large and fast growing, capable of attaining 20 to 25 metres height and developing stem girths can exceed 3 metres (more than 1 metre diameter) (WJ Bean, 1980). Considering that such tree stems will have (and will continue to develop) significantly greater buttress flairs near ground level, illustrates that their potential to disturb and uplift ground in the New Street contexts is immense.
5.2 This report acknowledges that a majority of the subject trees are of fair health and might, under other circumstances, offer substantial sustainability. However, within the context in which the trees exist, any expectation of sustainable retention is undermined. Limited available space and already visible, growth-related disturbance, relating to trees that are still small (see Appendix 2), illustrates a fundamental lack of sustainability. The lack of foresight, poor species selection, poor planting contexts, and the provision of no capacity for future growth, mean that these trees will inevitably cause damage and will raise insurmountable management issues over time.
5.3 Future tree growth is inevitable. Tree root development is unlikely to be accommodated by downward compression of soil. However, it is more likely to be accommodated by upward movement and uplifting of lightly laden surfaces and structures located above any tree roots. This issue is highlighted and cautioned against in "Table A1" of "BS 5837, Trees in Relation to Design, Demolition and Construction - Recommendations".
5.4 The retrospective installation of engineered tree pits or suspended pavement is impossible. Equally, issues of future growth space provision and raising pavement levels are complicated by the fixed threshold levels of existing homes and businesses. Equally, tree retention and protection during any redevelopment and construction phase
will prove particularly onerous to works and particularly any necessary excavation, construction or changing of levels near the trees.
5.5 Despite the reasonable health of the trees inspected and the benefits of incorporating trees into future landscapes, it is difficult to see how the existing trees can be kept. The young age of the trees, their proximity to existing buildings, and the constraints that tree retention would place on the nature and extent of any work would be highly restrictive on what can be achieved, its durability and how regularly it would be subject to ongoing repair. This suggests that a future "tree-scape" should consist of new, context-appropriate trees, planted in conjunction with a properly designed and engineered ground context. This option offers the best chance of attaining long-term and sustainable arboricultural outcomes.
5.6 Some concern relates to the fact that these trees are growing from a highly artificial and restrictive environment, they will not have developed a naturally symmetrical root system. It is more likely that the developed root systems are highly asymmetrical, their patterns being influenced and governed by the availability and location of "hospitable ground" and deflected by many underground obstacles. It is likely that these tees have developed elongated connective root systems, proliferating for absorptive purposes at what may be limited and distant locations. Such physically influenced root systems cannot realistically be "lifted" without extensive works and bespoke engineering. Equally and if replanting is attempted, they will require bespoke stabilisation which, because of s lack of a symmetrical and consolidated root system would likely require aerial guying, thereby diminishing their value within a new landscape. Fundamentally, the lifting and relocation of these trees cannot be justified on the grounds of enormous expense and minimal likelihood of success. Appreciating this and the availability of purpose produced trees at heights of 10 metres and more, then the more sustainable option would be to buy in new trees and to plant them in a sustainable manner, by providing engineered tree pits at suitable locations.

Fig 1

Fig 2
5.7 The tree-by-tree review, as illustrated in figures 1 to 4 , would appear to illustrate a tree population that offers notable sustainability. The typically younger age profile appears top correlate well with the high proportion of "good-fair" and "fair" quality trees, which
in turn is mirrored in the high proportion of category " B " and " C " trees. An issue is illustrated in respect of "useful life expectancy" in that when reviewed in respect of age, health and condition, they appear to offer substantial sustainability. However, such sustainability must be qualified and in this instance, such sustainability comes with issues and risks of damage and disturbance to adjoining infrastructure.

Fig 3

Fig 4

6 Pre-Planning Scenario in Respect of Tree

6.1 Throughout their pre-planning considerations, Fingal County Council consider the part played by trees in both the urban and rural landscapes. Note is made of two particular areas of guidance including - The Forest of Fingal A Tree Strategy for Fingal and Fingal Development Plan 2017-2023.
6.2 The Forest of Fingal A Tree Strategy for Fingal, a draft strategy document that outlines various intents and objectives surrounding trees and woodlands within the county area
6.3 Fingal Development Plan 2017-2023, that sets out both a tree policy, as well as specific tree related objective across 5 different chapters of the plan, including -

- Chapter 3 - Placemaking (Objective PM64)
- Chapter 5 - Rural Fingal (Objectives RF24, Objective RF52, Objective RF57 and Objective RF59(b))
- Chapter 8 - Green Infrastructure (Objective GI16 and Objective GI19)
- Chapter 9 - Natural Heritage (Objective NH23, Objective NH27 and Objective NH28)
- Chapter 12 - Development Management Standards (Objective DMS39, Objective DMS78, Objective DMS79, Objective DMS80, Objective DMS81, Objective DMS82, Objective DMS83 and Objective DMS84)
6.4 Notwithstanding the notes above, the current development plan shows no specific objectives to protect and preserve trees and woodland on or near the New Street site. Equally, the site area supports no Tree Preservation Orders.

$7 \quad$ Other Legislative and Legal Constraints

7.1 Under the Forestry Act 2014, the felling of a tree standing in a county area requires a felling license unless the trees are exempted under Section 19 of the Act. An exemption applies where trees are being felled in line with a specific detail of a grant of planning permission. This derogation may apply should the proposals be granted permission.
7.2 Some "Section 19" exemptions are not applicable to the development scenario, for example, those applying to fire control, forest survey or gene pool protection relating to horticultural use or Christmas tree production.
7.3 Some exemptions are pertinent to the development scenario, particularly Section 19(1) (M)(ii), where "the removal of which is specified in a grant of planning permission".
7.4 Additionally, other non-specific exemptions may apply, including-

- Trees standing in an urban area.
- Trees within 30 metres of a building (other than a wall or temporary structure), but excluding any building built after the trees were planted.
- Trees removed by a public authority in the performance of its statutory functions.
- A tree within 10 metres of a public road and which, in the opinion of the owner (being an opinion formed on reasonable grounds), is dangerous to persons using the public road on account of its age or condition.
7.5 The above derogations may not apply where-
- The tree is within the curtilage or attendant grounds of a protected structure under Chapter 1 of Part IV of the Act of 2000.
- The tree is within an area subject to a special amenity area order
- The tree is within a landscape conservation area under section 204 of the Act of 2000.
- The tree is within a monument or place recorded under section 12 of the National Monuments (Amendment) Act 1994, a historic monument or archaeological area entered in the Register of Historic Monuments under section 5 of the National Monuments (Amendment) Act 1987, or a national monument in the ownership or guardianship of the Minister for the Arts, Heritage and the Gaeltacht under the National Monuments Acts 1930 to 1994 or is within a European Site or a natural heritage area within the meaning of Regulation 2(1) of the European Communities (Birds and Natural Habitats) Regulations 2011 (S.I. No. 477 of 2011)
7.6 For further clarification, contact should be made with Forest Service (Department of Agriculture, Fisheries and Food). The Felling Section of the Forest Service is based in Johnstown Castle, Co. Wexford
7.7 Other legislation may affect tree cutting and felling. Particular note should be made of the "Wildlife Act 1976 (as amended), as well as the EU Habitats Directive. These offer protection to animals, including Bats that often root or even breed in trees. The protection afforded by the above legislation means that particular care must be taken in the pruning of felling of trees that may contain Bats. For this reason, specific specialist advice should be sought.

8 Construction Activities and their Effect on Trees

8.1 Retaining trees requires space. There is a big difference between physically preserving a tree and ensuring its future survival. Sustainable tree retention often depends on the extent and nature of construction protection.
8.2 Like all living things, trees are highly dependent on the environment in which the exist, and particularly on a continuity in supplies of water and nutrients from the soil. Any long-term change in ground conditions can easily affect a tree's metabolism, health, and sustainability.
8.3 Particularly, development and construction activities can easily damage the soil environment. Removing, disturbing or denaturing soil can irreparably damage tree roots and can render the soil incapable of supporting plant root function. Most modern construction requires large plants, equipment, and vehicles. Such machinery causes soil profile destruction and compaction that denatures the soil.
8.4 The sustainability of a tree's health and safety can be compromised where the above issues occur within the minimum "root protection area" defined by "BS5837-2012", then the affected tree is likely to be regarded as unsustainable and unsuitable for retention.
8.5 Sustainable tree retention must accept changing contexts and increased management in the future. Where rates of occupation and use increase, then any retained trees have the potential to cause harm or damage. This issue may be exacerbated where shelter loss and exposure occur regarding the retention of individual trees.
8.6 Retained trees should be considered in respect of shadow-cast, light admission, and view-blocking. Wind patterns can affect leaf shedding, causing drifts and accumulations, creating management issues around drains and gullies, or creating slippery surfaces.

$9 \quad$ Nature of Project Works

9.1 The proposed works include Public Realm Improvements for a Pedestrianised New Street, Malahide. The development extends to the full length of New Street from Main Street/ The Mall (also known as The Diamond) in the south to Strand Street to the north and including parts of Main Street/ The Mall, Ross Terrace and Strand Street all at Malahide, Co. Dublin. The site is located within Malahide Architectural Conservation Area.
9.2 The proposed public realm improvements will comprise: -
(i) Widening of footpaths and provision of new kerb edges with existing kerbstones retained, realigned and protected within the widened footpaths and public spaces.
(ii) Realignment and narrowing of the trafficable section of New Street (c.150m in length, 0.22 ha) and insertion of control measures and all necessary signage to provide for a pedestrianised street with associated traffic flow routes and restrictions allowing for time limited one-way access from 7am to 11am each day for deliveries and emergency vehicles from Main Street/ The Mall to New Street and a two-way access from Strand Street to Ross's Terrace via New Street.
(iii) Upgrade of all street surfaces.
(iv) Provision of 2no. loading bays at the southern and northern ends of New Street and an accessible parking space in front of the HSE building.
(v) Installation of cycle stands at 6no. locations on New Street with capacity for 23 no. cycle parking spaces.
(vi) Removal and replacement of 11 no. existing trees with 37 no. trees of species appropriate to the location and environment and provision of soft landscaping and green infrastructure with planting zones for seeded, planted and hedging areas and associated bioretention and tree pit areas.
(vii) Provision of outdoor dining zones including tables and chairs and other ancillary moveable structures.
(viii) Provision of street furniture including seating, benches and litter and recycling bins and a water feature.
(ix) New public lighting.
(x) Upgrade of the watermain and foul drainage networks and upgrade and relocation of the surface water drainage network including provision of sustainable urban drainage systems (SUDs) features as part of hard and soft landscaping.
(xi) Provision of ducting for existing and future utilities and piped infrastructure.
9.2.1 Fingal County Council will be providing regulatory traffic signs in accordance with Section 95 of the Road Traffic Act 1961 (as amended).
9.3 Many of the issues dealt with at "Construction Works and Trees" above could apply, including-
a) Direct conflict with proposed structures, thus requiring tree removal.
b) A partial conflict where the "Root Protection Area" is encroached upon by works or ground amendments and cannot be preserved/protected in full.
c) Environmental damage e.g. compaction, capping, sealing - changing the existing ground environment to one that can no longer support tree root function.
d) Construction activity and the use of large plant and machinery that can denature the ground.
e) A change in site context or a change in occupation or use which makes a tree unsuitable for retention.

10 Development Related Issues and Arboricultural Concerns

10.1 The greatest issues affecting trees relates to the need to repair and replace existing surfaces, particularly pedestrian surfaces when they have already been distorted and uplifted by tree growth. The levels of these new surfaces are fixed and relates to the existing thresholds of adjoining homes and businesses. This requires that the uplifted pavements must be lowered to original levels, a process that will conflict with existing tree roots, and will be affected by any future tree and tree root growth in the future. Additionally, the form and extent of existing pavements will be changed. This includes the realignment of existing kerbs and gullies for drainage purposes. Such work cannot be achieved without damaging the trees.
10.2 The trees found within the New Street context are all Norway Maple. The trees are still young and small compared with their species potential but have nonetheless begun to cause damage to pavements. The extent of damage noted to date must be considered as a small fraction of the potential damage as would relate to fully grown specimens. This issue relates both to tree size and the incremental reduction of pedestrian passage space, ongoing encroachment onto the existing building, and most importantly, the substantial uplifting, breakage, and distortion of the existing pavements over time.
10.3 It is considered that the existing tree population is contextually incompatible with its existing context and is unsustainable. Attempted retention must accept what will eventually become irreparable damage and issues such as trip hazards.

10 Design Iterations and Arboricultural Considerations

11.1 The sustainability issues outlined in this report were brought to the design team's attention at an early stage of the design process. Accordingly, and appreciating that tree sustainability could not be improved within the existing scenario, a design intent was adopted that incorporated the replacement of the existing trees with new tree specimens, in line with the new street layouts.

12 Identification of Development Impacts to Trees

12.1 The expected tree impacts have been represented graphically on the tree impacts drawing "New Street Tree Impacts Plan" and within the narrative of this report. This drawing combines the tree constraints plan information with the current stage development details, including the architectural and services layouts below, thereby allowing for simple direct comparisons between the existing site context and the development proposals regarding new structures.
12.2 In this drawing, trees denoted with "Broken Pink" crown outlines are to be removed, and those denoted with "Continuous Green" crown outlines are to be retained.
12.3 Detail of the development proposals where gained from drawings provided by-

- Punch - Consulting Engineers - Drainage and Engineering information overlaid on Masterplan
- Dermot Foley Landscape Architects - Proposed Landscape Masterplan
12.4 The evaluation is primarily based on the likelihood of the proposed works to damage or otherwise interfere with trees within or adjoining the works zone. Any structure, action or apparent need to enter or otherwise disturb/convert the "root protection area" of a site tree has been considered likely to have a negative impact, with the potential to render a tree wholly unsuitable for retention, unsafe or unsustainable. Particularly pertinent to this project is the fact that tree growth uplifting and disturbance of existing ground surfaces means that repairs and replacement surfaces called up in the proposed works cannot be achieved without substantially damaging tree, and furthermore cannot be completed without risk of damage from future tree growth.
12.5 Where applicable, this assessment attempts to consider both direct and indirect implications. The assessment is based on perceived construction requirements and how a tree will likely interact with the development. The assessment appreciates issues including growth, hazard development, light blockage and other social concerns regarding the changing context, including its effect on tree amenity value.

13 Tree Retention and Loss

13.1 The drawing "New Street Tree Impacts Plan" comprises the tree survey drawings overlaid by the development drawings, thus providing a graphic representation of the relationship between tree constraints and the proposed works extents. In this drawing, the trees that will be removed, are highlighted in "pink dashed" outlines.
13.2 In line with the findings of this report, all trees located within the works area of New Street will be removed and replaced in line with the new landscape proposals.
13.3 In line with the above, tree numbers $1773,1774,1775,1776,1777,1778,1779,1780$, 1781,1782 and 1783 will be removed as part of the proposed works.

14 Bibliography

14.1 British Standards Institution (2010) BS 3998:2010: Tree Work - Recommendations. London: British Standards Institution.
14.2 British Standards Institution (2012) BS 5837:2012: Trees in Relation to Design, Demolition and Construction - Recommendations. London: British Standards Institution.
14.3 Jackson, R.B et al (1996) A Global Analysis for Root Distribution in Terrestrial Biomes Oecologica, 108 (1996) pp389-411, Springer Verlag
14.4 Lonsdale, D. (2005) Principals of Tree Hazard Assessment and Management, London, TSO
14.5 Mattheck, C. and Breloer, H. (1994) The Body Language of Trees, London, TSO
14.6 Roberts, J. and Jackson, N. and Smith, M. (2006) Tree Roots in the Built Environment, London, TSO
14.7 Strouts, R.G. and Winter, T.G. (1994) Diagnosis of Ill-Health in Trees, London, HMSO
14.8 WJ Bean (1980) Trees and Shrubs Hardy in the British Isles (eighth edition), London, John Murray

A1 Appendix 1-Tree Survey Nature of Survey

A1.1 The criteria put forward in "BS5837:2012 - Trees in Relation to Design, Demolition and Construction - Recommendations" have provided a basis for this report.

A1.2 The data collected has been represented in table form as "Table 1" within "Appendix $1 "$ to this report. This appendix includes a Survey Methodology, Survey Key, Survey Abbreviations, Condition Category Definitions and a brief resume of the typical application of Tree Protection measures as defined within the above standard and as relates to the "RPA" zones defined both within the survey table and on the "TCP" drawing.

A1.3 The survey, its findings and management recommendations relate to the site and the conditions thereon at the time of the survey. It relates to a "do nothing" or "as is" scenario and intends to provide an impartial representation of the site's tree population, regardless of any possible works. It is likely that changes in site usage, development or other environmental changes will require an amendment of any tree's potential retention status and its preliminary management recommendations, and in some instances, may require the re-classification of a tree's suitability for retention.

Drawing References

A1.4 The survey must be read with the "Tree Constraints Plan" drawing "New Street Tree Constraints Plan" regarding the representation of tree positions, crown forms, "RPA" extents and colour reference to category systems. Trees omitted from the supplied drawing may be "sketched in" to "New Street Tree Constraints Plan". Any such trees should be located and plotted by professional means to identify the constraints such trees have upon the site.

A1.5 A green coloured outline represents each tree crown. It is scaled to represent the north, east, south, and west crown radii as denoted in the survey table. Each tree (categories A-green, B-blue, and C-grey only) have been apportioned a "Root Protection Area" (RPA see below) denoted as a dashed orange circle.

A1.6 The development of a Tree Constraints Plan (TCP) provides a design tool regarding tree retention. Such a plan combines the topographical land survey drawing with additional information as provided by the tree survey. The aspects of the tree's existence recorded on the "TCP" are, firstly, the tree canopies, represented by the four cardinal compass point radii ($\mathrm{Sp}: \mathrm{R}$ in survey Table 1). Secondly, and following paragraphs 4.6.1, 4.6.2 and 4.6.3 of BS5837: 2012, we represent each tree's "Root Protection Area" (RPA). For design purposes, it approximates the position of the tree protection fencing to be erected before the commencement of any site works, thus excluding all site activities other than those dealt with by way of the "Arboricultural Implication Assessment" and "Arboricultural Method Statement".

A1.7 The "Tree Constraints Plan" (TCP) depicts the extent and location of constraints, placed upon the site by the trees. The "TCP" represents both the true canopy form (north, east, south, and west radii) but also the "RPA" as defined above. These constraints are provided to advise regarding the design and layout of a proposed development.

Survey Intent and Context

A1.8 This document intends to highlight the extent and nature of the material of Arboricultural interest on the site in question.

Survey Data Collection and Methodology

The Survey

A1.9 This survey was compiled in October of 2022. This survey portion of the overall report is not an Implication Assessment though but provided some of the basic information regarding its compilation. The compilation of this survey was guided by the recommendations of BS 5837: 2012. This survey typically includes trees of stem diameters exceeding 150 mm at approximately 1.50 metres from ground level. The survey relates to current site conditions, setting and context.

A1.10 Each tree in the survey has a consecutive number that relates directly to the survey text. Measurements are metric and defined in metres and millimetres. All trees referred to in the survey text have been measured to provide information regarding canopy height and canopy spread (north, east, south, and west radii), level of canopy base and stem diameter at 1.50 meters from ground level. The dimensions provided are intended to provide a reasonable representation of a tree's size and form. While efforts are made to maintain accuracy, visual obstruction, especially regarding trees in groups, requires that some tree dimensions be estimated only.

Inspection and Evaluation Limitations and Disclaimers

A1.11 The information set out in this report relates to the review of a tree population on the site in question. As such, the information provided is based on a general review of trees and does not constitute a detailed review of any one of the individual specimens. Such an evaluation (tree report) would require the gathering of substantially more information than that dealt with in this survey.

A1.12 The survey is not a safety assessment and the parameters reviewed within this survey context would be substantially deficient in extent to provide for a reliable safety assessment. The survey is intended to provide a general and qualitative review to assist in gauging the suitability of an individual tree for retention within a development context. All trees are subject to impromptu failure and damage. The assessment of risk as may be presented by a tree requires the review of numerous factors more than those
noted herein and as such, remains outside the scope of this document and any attempt to use the information herein for such proposes will render the information invalid.

A1.13 A competent and experienced Arborist has completed all inspection and tree assessment. The inspection involves visual tree assessment (Mattheck and Breloer 1994) only, which has been carried out from ground level. No below ground, internal, invasive, or aerial (climbing) inspection has been carried out.

A1.14 Trees are living organisms whose health, condition and safety can change rapidly. All trees should be re-evaluated regarding their condition on an annual basis or after substantial trauma such a storm event, other damage, or injury. The results and recommendations of this survey will require review and reassessment after one year from the date of execution. This survey does not constitute a review of tree or site safety. Attempts to use the contents herein for such purposes will render the contents invalid.

A1.15 Several factors acted against the tree inspector, contriving to reduce the accuracy of the survey. Particularly, the survey have been completed during specific seasons. Some of the signs, typically symptomatic of ill-health or defect within a tree, may not have been available to view at the time of the survey or may have been obscured by seasonality related factors. Some of the fruiting bodies of various fungi, parasitic upon or causing decay or disease in trees, may have been out of season and unavailable to view. This survey can only comment upon symptoms of ill-health or defects visible at the time of the inspection.

Survey Key

Species Refers to the specific tree species

Age	Referred to in generalised categories including: - Y - Young S/M - Semi-Mature A young and type, having attained dimensions that allow it to be regarded independently of its neighbours but typically, would be less than 50% of its ultimate size.
E/M - Early-Mature	A specimen, typically $50 \%-100 \%$ of ultimate dimensions but with substantial capacity for mass and dimensional increase remaining.
M - Mature	A specimen of dimensions typical of a full-grown specimen of its species. Future growth would tend to be extremely slow with little if any dimensional increase.
O/M - Over-Mature	An old specimen of a species having already attained or exceeded its naturally expected longevity.
V - Veteran	An extremely old, veteran specimen of a species, usually of low vigour and typically subject to rapid decline and deterioration or of very limited future longevity.

Tree Dimensions
 All dimensions are in meters. See notes regarding limitation of accuracy.

Table 1 - Tree Data Table

No.	Species	Age	Con	Ht	CH	N	E	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1773	Norway Maple (Acer platanoides)	E/M	F	$\stackrel{I}{8}$	$\begin{aligned} & \text { w } \\ & i \\ & i \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { ir } \end{aligned}$	$\frac{1}{8}$	$\begin{aligned} & n \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { in } \end{aligned}$	-	悹	0	Young and vigorous, arises from area tarmacadam patch within block-paved area. Adjoining kerb edge is distorted and exhibits evidence of prior works and repair. Nonetheless, current kerb alignment is distorted having been pushed to east. Vigour and vitality are good. Lower middle crown has suffered repeated mechanical collisions with wounds at 2.50 and 3.00 m .		L	C2
1774	Norway Maple (Acer platanoides)	M	G/F	$\begin{aligned} & N \\ & \stackrel{8}{8} \end{aligned}$	N	$\stackrel{f}{i r}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \stackrel{i}{i} \\ & \dot{\theta} \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { in } \end{aligned}$	-	wow		Young and vigorous, arising from reconstituted rubber mats section within block-paved area. General vigour and vitality are good. Tree stem has suffered extensive wounding at circa 2.50 m . Kerb edge in vicinity of tree shows evidence of minor uplifting and rotation to east. Western crown already over sales and is in contact with adjoining rooms.		M	C2

No．	Species	Age	Con	Ht	CH	N	E	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1775	Norway Maple （Acer platanoides）	S／M	F	$\stackrel{7}{8}$	$\stackrel{\omega}{8}$	$\begin{aligned} & \omega \\ & 8 \end{aligned}$	$\begin{aligned} & n \\ & 8 \end{aligned}$	N	$\stackrel{\omega}{8}$	－	$\underset{\infty}{N}$	$\stackrel{N}{\circ}$	A relatively small specimen suggesting installation at date after many of its peers．Vigour and vitality remain good．Tree arises from reconstituted rubber matting area within area of block－paved． Tree stem in contact with and has shifted in easterly direction， adjoining kerb edge．Tree over sales roof of adjoining property．		M	C2
1776	Norway Maple （Acer platanoides）	E／M	F	$\begin{aligned} & \bar{N} \\ & \stackrel{8}{8} \end{aligned}$		$\stackrel{\omega}{8}$	$\begin{aligned} & \omega \\ & 8 \\ & \hline \end{aligned}$	$\stackrel{+}{8}$	$\dot{8}$	－	$\underset{\oplus}{\mathbf{u}}$	$\stackrel{\rightharpoonup}{0}$	Young and still vigorous．Arises from area of rubber matting within broader block－paved area． Proximity to kerb edge has seen notable uplifting and shifting to east．Tree greatly over sales adjoining roof to west．Tree stems have suffered damage on eastern side presumably in relation to vehicular damage．Exposed buttress region shows evidence of early life root girdling．		M	B2
1777	Norway Maple （Acer platanoides）	E／M	G／F	$\begin{aligned} & \bar{\omega} \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{+}{8}$	$\stackrel{+}{8}$	$\begin{gathered} \omega \\ \dot{y} \end{gathered}$	u	$\stackrel{ \pm}{8}$	－	W్ర⿱心夊心		A young and vigorous specimen stem has suffered mechanical damage on eastern side at circa 2.25 m ．Tree arises from area of rubber matting within broader block－paved area．Trees growth has resulted in substantial lifting of rubber mat as well as uplifting rotate action and shifting of kerb edge in easterly direction．		L	B2

No.	Species	Age	Con	Ht	CH	N	E	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1778	Norway Maple (Acer platanoides)	E/M	F/P	$\begin{aligned} & \ddagger \\ & 8 \end{aligned}$	$\begin{aligned} & + \\ & 8 \end{aligned}$	$\begin{aligned} & u \\ & i \\ & i \end{aligned}$	$\frac{1}{8}$	$\begin{aligned} & n \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & u \\ & i \\ & i \end{aligned}$	\square	悹	$\begin{aligned} & u \\ & \dot{\infty} \end{aligned}$	Large specimen of apparently good vigour and vitality. Tree arises from area of hard tarmacadam infill within broader area of block-paving. Evidence exists to suggest prior repair including cement infill of granite kerb edge. Nonetheless, uplifting and rotation of kerb edge is evident. Tree greatly overhangs roof of adjoining Malahide antiques stems have suffered damage at circa $2.50-3.00 \mathrm{~m}$ in respect of vehicular collision. Higher crown vigour and vitality is impaired with some twiggy deadwood though because of same is not evident at present.	Review regularly.	M	C2
1779	Norway Maple (Acer platanoides)	E/M	G/F	$\stackrel{\rightharpoonup}{8}$	$\begin{aligned} & 1 \\ & 8 \end{aligned}$	ب	$\begin{aligned} & \text { N } \\ & \text { Ü } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & w \\ & 8 \\ & \hline \end{aligned}$	-	$\underset{\sim}{\omega}$	+	Young and vigorous arising from area of rubber matting within broader block-paving context. Vitality appears fair with no major damage to tree stem. Kerb edge misalignment is limited to area south-east of stem.		L	B2

No.	Species	Age	Con	Ht	CH	N	\mathbf{E}	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1780	Norway Maple (Acer platanoides)	E/M	F/P	$\begin{aligned} & \bar{N} \\ & \mathbf{O} \end{aligned}$	$\stackrel{+}{8}$	$\begin{aligned} & N \\ & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	-	$\stackrel{N}{\infty}$	$\stackrel{\omega}{\perp}$	Arises from area of reconstituted rubber matting within broader area of block-paving. Evidence exists to show uplifting of kerb edge immediately to east of stem. General vigour by cavity is particularly poor with crown vigour being heavily variable. Crown exhibit evidence of sectional dieback and deadwood development remaining crown appears to be of good vigour and vitality.	Retention might be afforded by cleaning out works, subject to regular review.	S	C2
1781	Norway Maple (Acer platanoides)	E/M	F	$\begin{aligned} & \bar{N} \\ & \stackrel{8}{8} \end{aligned}$	$\stackrel{+}{8}$	$\begin{aligned} & \omega \\ & 0 \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \omega \\ & 0 \\ & \hline \end{aligned}$	$\frac{1}{8}$	$\begin{aligned} & \text { N } \\ & \text { On } \end{aligned}$	-	${\underset{y}{\omega}}^{\omega}$		Young and still vigorous. Tree arises from combined area of tarmacadam and rubberised matting. Large section of kerb edge has been replaced immediately east of tree by cement. Large buttress root is in contact with this and adjoining matting resulting in exacerbated fracture and uplifting.		M	C2
1782	Norway Maple (Acer platanoides)	E/M	P	$\begin{aligned} & \circ \\ & 8 \\ & \hline 8 \end{aligned}$	$\frac{1}{8}$	$\begin{aligned} & w \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & u \\ & \sim \\ & u \end{aligned}$	$\begin{aligned} & N \\ & 8 \\ & 8 \end{aligned}$	-	No	$\stackrel{u}{u}_{u}^{u}$	Tree has suffered extensive damage at circa $2.00-3.50 \mathrm{~m}$ on eastern side of stem with repeated bark wounding together with decay and fracture of underlying timber. Tree is regarded as unsuitable for retention.	Remove.	N/A	U

No.	Species	Age	Con	Ht	CH	N	E	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1783	Norway Maple (Acer platanoides)	E/M	F/P	$\begin{aligned} & \overline{8} \\ & \hline 8 \end{aligned}$	$\stackrel{+}{8}$	$\begin{aligned} & \omega \\ & \dot{8} \end{aligned}$	$\stackrel{\rightharpoonup}{\mathrm{b}}$	$\begin{gathered} \omega \\ \dot{C} . \end{gathered}$	$\begin{gathered} \omega \\ \dot{\sim} \end{gathered}$	-	\sim_{0}^{∞}	$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{t} \end{aligned}$	Tree has suffered extensive wounding at circa 2.50 m including area of developing decay at 3.00 m . Tree supports notable imbalance to north-west. Vigour and vitality are fair but variable. Tree arises from area of reconstituted rubber matting adjoining cement kerbing. Cement kerb is fractured and dislodged. Tree is of questionable sustainability.		S	C2
1784	Norway Maple (Acer platanoides)	E/M	F	$\stackrel{\circ}{8}$	Nín	$\begin{gathered} w \\ u_{0}^{\prime} \end{gathered}$	$\stackrel{+}{8}$	$\begin{gathered} \omega \\ \dot{U} . \end{gathered}$	ب	-	$\stackrel{\sim}{\sim}$	$\dot{\omega}$	Young and vigorous. Arises from area of rubber matting within block-paved area. Granite kerb edge has been both uplifted and rotated to west. Stem has suffered minor damage at circa 3.00 m . Tree greatly oversales adjoining shop.		M	B2
1785	Norway Maple (Acer platanoides)	E/M	F/P	$\stackrel{7}{8}$	$\begin{aligned} & \omega \\ & 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Uín } \end{aligned}$	N	$\begin{aligned} & n \\ & 0 \end{aligned}$	-	$\underset{+}{w}$	$\stackrel{+}{\bullet}$	Tree arises from small area of which mastic tarmacadam within broader block-paved area. Proximate matting has been heavily uplifted with adjoining kerb stones both uplifted and shifted to west. Tree has suffered extensive wounding between circa 2.00 m and 3.00 m exposing underlying timber to decay and longitudinal fracture. Tree appears to offer limited sustainability.		S	C2

No.	Species	Age	Con	Ht	CH	N	E	S	W	Stm	Dia	RPA	Structural Condition	PMR	Yrs	Cat
1786	London Plane (Platanus x hispanica)	E/M	G/F	$\begin{aligned} & u \\ & \vdots \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \text { u } \\ & \text { ín } \end{aligned}$	$\stackrel{\rightharpoonup}{i}$	$\begin{aligned} & 4 \\ & 8 \\ & 8 \end{aligned}$	$\hat{8}$	$\begin{aligned} & \omega \\ & \hline 8 \end{aligned}$	-	ua		Relatively young and vigorous. Tree arises from area of rubberised matting within broader area of block-paved. Granite kerb edges to east exhibit classic signs of shifting and uplifting to east. Tree becomes notably multi stemmed at 2.50 m . Stem has suffered collision damage with circa 1 m long wound to east. Vigour and vitality are good. Tree greatly overhangs adjoining buildings.		L	B2
1787	Norway Maple (Acer platanoides)	E/M	G/F	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\begin{gathered} w \\ \hline 8 \end{gathered}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { in } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { w } \\ & \text { in } \end{aligned}$	$\stackrel{+}{8}$	-	wô		Young and still vigorous. Arises from area of reconstituted rubber matting within broader area of block-paving. Kerb edge immediately north of stem has been amended and cut to fit. Buttress area real signs of physical root damage. Principal stem shows evidence of vehicular collision and bark damage at circa 2.50 m . Tree partially overhangs adjoining commercial properties.		L	B2

Appendix 2 - Photographic Information

Photo 1

This image illustrates the overall context of the streetscape within which the subject trees exist. Note should be made of the limited range between trees and buildings, as well as the current extent of the crown overhang of the buildings

Photo 2

Tree No. 1773
The ongoing growth of this relatively young tree has already required the adaptation of kerb stones, but still shows evidence of ongoing uplifting and kerb rotation.

Photo 3

Tree No. 1774
While the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing and uplifting is already apparent.

Photo 4

Tree No. 1775
As with 1774, the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing and uplifting as well as kerb stone distortion is already apparent.

Photo 5

Tree No. 1776
As with 1774 and 1775, the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing as well as causing substantial uplifting and distortion of the kerb edge.

Photo 6

Tree No. 1777
As with 1774 to 1776 , the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing and uplifting as well as kerb stone distortion is already apparent.

Photo 7

Tree No. 1778
As with 1774 to 1777 , the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing, and uplifting. The kerb stone has suffered distortion and partial replacement.

Photo 8

Tree No. 1781
As with 1774 to 1778 , the "rubber mat" surface about the tree has absorbed some surface distortion, mat fracturing and uplifting as well as kerb stone distortion is already apparent. Additionally, much of the original kerb edge has required replacement.

Photo 9

Tree No. 1782
As with previous trees, the "rubber mat" surface around the tree has absorbed some surface distortion. The adjoining kerb edge has suffered uplifting and shifting towards the road centre.

Photo 10

Tree No. 1783
As with previous trees, the "rubber mat" surface about the tree has absorbed some surface distortion. Additionally, the adjoining kerb edge is showing signs of uplifting and rotation distortion.

APPENDIX K

List of Planning Permissions

Planning reference
Application type
Proposal description

Location/Address/Eircode
Applicants name
Registration date
Decision date
Decision
Final grant date

Planning reference

Application type
Proposal description
Location/Address/Eircode
Applicants name
Registration date
Decision date
Decision
Final grant date

Planning reference
Application type
Proposal description

Location/Address/Eircode
Applicants name
Registration date
Decision date
Decision
Final grant date

Planning reference
Application type
Proposal description

F18A/0446
Permission
Change of use from retail to estate agency branch, replacement of existing fascia lighting, new shopfront finishes and new external signage.
Unit 6 New Street Mall, New Street, Malahide, Co. Dublin
Sherry Fitzgerald
31 Jul 2018
19 Sep 2018
GRANT PERMISSION
22 Oct 2018

F21A/0174

Permission
Change of use from retail premises to food retail premises/coffee shop and new shop front.
12 New Street (ground floor level), Malahide, Co Dublin
Barry Gibney
29 Mar 2021
17 May 2021
GRANT PERMISSION
23 Jun 2021

F21A/0611

Permission
Planning permission is being sought for previously approved development (planning ref F11A/0344) which is for the partial demolition reconstruction and change of use of existing two storey building from dwelling house to retail premises, works to include a two storey extension to rear, new shop front.
1 \& 11 New Street, Malahide, Co. Dublin, K36 NV07
Thomas Wright
15 Nov 2021
11 Jan 2022
GRANT PERMISSION
15 Feb 2022

F20A/0559

Permission and Retention
Permission for construction of extension to existing first floor kitchen (additional floor area 24.25 sq . metres), \& change of use of part of existing first floor office (5.0 sq . metres) to kitchen store, retention of revised location for wheelchair accessible toilet, increase in floor area of landscaped roof garden $\&$ sun terrace for customer use (additional floor area 17.80 sq. metres) and all associated ancillary works, removal of requirement for annual noise monitoring review, change to permitted opening hours for landscaped roof garden \& sun terrace for

Location/Address/Eircode	customer use to normal 7-day licence hours with closing time 11:30pm Monday to Thursday, 12:30am Friday \& Saturday \& 11:00pm Sunday. rear of existing licensed premises at, Gibney's Bar, 5, 6 \& 7 New Street, Malahide, Co. Dublin
Applicants name	Gibney Limited
Registration date	05 Nov 2020
Decision date	17 Dec 2020
Decision	GRANT PERMISSION \& GRANT RETENTION
Final grant date	17 May 2021
Appeal lodged date	18 Jan 2021
Appeal decision date	17 May 2021
ABP Reference	ABP-309228-21
Appeal decision	Grant Permission
Planning reference	F20A/0633
Application type	Permission
Proposal description	New timber bi-fold sliding glazed windows to replace existing glazing in timber shopfront, new backlit signage and paint to existing timber shopfront and all associated site works. Bi-fold windows when opened are to provide access for hot food takeaway service served to customers on New Street.
Add Info received	12th March 2021.
Location/Address/Eircode	2 Ross Terrace, New Street, Malahide, Co Dublin
Applicants name	Aileen Dignam
Registration date	12 Mar 2021
Decision date	08 Apr 2021
Decision	GRANT PERMISSION
Final grant date	19 May 2021
Planning reference	F21A/0491
Application type	Permission
Proposal description	Change of use to first floor (former hairdressers) from shop to residential accommodation and all associated site works.
Al received	15/12/21
Location/Address/Eircode	2 Ross Terrace, New Street, Malahide, Co Dublin
Applicants name	Aileen Dignam
Registration date	15 Dec 2021
Decision date	19 Jan 2022
Decision	GRANT PERMISSION
Final grant date	22 Feb 2022
Planning reference	F22A/0134
Application type	Permission
Proposal description	The development will consist of 1 . The reconfiguration of the entrance area to provide 10sqm additional external dining area for use as sale of hot food and drinks for consumption on and off the premises incorporating the extension of the low level glass screen to the boundary and landscaping to create a new entrance to the store. 2.

	Construction of new external bin store to the existing boundary wall and associated site works. 3. New infill wall in place of existing entrance door to cafe with new sliding door internally.
Location/Address/Eircode	Site at Junction to New Street and The Green, Malahide, Co. Dublin
Applicants name	Donnybrook Fair Malahide Ltd
Registration date	16 Mar 2022
Decision date	10 May 2022
Decision	GRANT PERMISSION
Final grant date	15 Jun 2022
Planning reference	F18A/0260
Application type	Permission
Proposal description	Permission for (1) change of use of the existing market space to combined market space/retail with sale of hot food and drinks for consumption on and off premises. with glazed screen and sliding doors. (2) Change of use for existing bin store to retail use. (3) Provision of new vent in external wall to facilitate ventilation to relocated internal bin store and new roof across hatch.
Location/Address/Eircode	Junction of New Street, and The Green, Malahide, Co Dublin
Applicants name	Donnybrook Fair Malahide Ltd.
Registration date	18 May 2018
Decision date	27 Jun 2018
Decision	GRANT PERMISSION
Final grant date	30 Jul 2018

